alsdec.c 58.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * MPEG-4 ALS decoder
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24 25 26 27 28 29 30 31 32 33 34 35 36
 * MPEG-4 ALS decoder
 * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
 */


//#define DEBUG


#include "avcodec.h"
#include "get_bits.h"
#include "unary.h"
#include "mpeg4audio.h"
#include "bytestream.h"
37
#include "bgmc.h"
38
#include "dsputil.h"
39
#include "libavcore/samplefmt.h"
40
#include "libavutil/crc.h"
41

42 43 44
#include <stdint.h>

/** Rice parameters and corresponding index offsets for decoding the
R
Reinhard Tartler 已提交
45
 *  indices of scaled PARCOR values. The table chosen is set globally
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *  by the encoder and stored in ALSSpecificConfig.
 */
static const int8_t parcor_rice_table[3][20][2] = {
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
};


/** Scaled PARCOR values used for the first two PARCOR coefficients.
 *  To be indexed by the Rice coded indices.
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
 *  Actual values are divided by 32 in order to be stored in 16 bits.
 */
static const int16_t parcor_scaled_values[] = {
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
};


/** Gain values of p(0) for long-term prediction.
 *  To be indexed by the Rice coded indices.
 */
static const uint8_t ltp_gain_values [4][4] = {
    { 0,  8, 16,  24},
    {32, 40, 48,  56},
    {64, 70, 76,  82},
    {88, 92, 96, 100}
};

115

116 117 118 119 120 121 122 123 124 125 126
/** Inter-channel weighting factors for multi-channel correlation.
 *  To be indexed by the Rice coded indices.
 */
static const int16_t mcc_weightings[] = {
    204,  192,  179,  166,  153,  140,  128,  115,
    102,   89,   76,   64,   51,   38,   25,   12,
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
   -102, -115, -128, -140, -153, -166, -179, -192
};


127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
 */
static const uint8_t tail_code[16][6] = {
    { 74, 44, 25, 13,  7, 3},
    { 68, 42, 24, 13,  7, 3},
    { 58, 39, 23, 13,  7, 3},
    {126, 70, 37, 19, 10, 5},
    {132, 70, 37, 20, 10, 5},
    {124, 70, 38, 20, 10, 5},
    {120, 69, 37, 20, 11, 5},
    {116, 67, 37, 20, 11, 5},
    {108, 66, 36, 20, 10, 5},
    {102, 62, 36, 20, 10, 5},
    { 88, 58, 34, 19, 10, 5},
    {162, 89, 49, 25, 13, 7},
    {156, 87, 49, 26, 14, 7},
    {150, 86, 47, 26, 14, 7},
    {142, 84, 47, 26, 14, 7},
    {131, 79, 46, 26, 14, 7}
};


149 150 151 152 153 154 155 156 157 158 159
enum RA_Flag {
    RA_FLAG_NONE,
    RA_FLAG_FRAMES,
    RA_FLAG_HEADER
};


typedef struct {
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
160
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    int frame_length;         ///< frame length for each frame (last frame may differ)
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
    int coef_table;           ///< table index of Rice code parameters
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
    int max_order;            ///< maximum prediction order (0..1023)
    int block_switching;      ///< number of block switching levels
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
    int sb_part;              ///< sub-block partition
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
    int chan_config;          ///< indicates that a chan_config_info field is present
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
    int *chan_pos;            ///< original channel positions
178
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
179 180 181
} ALSSpecificConfig;


182 183 184 185 186 187 188 189 190 191
typedef struct {
    int stop_flag;
    int master_channel;
    int time_diff_flag;
    int time_diff_sign;
    int time_diff_index;
    int weighting[6];
} ALSChannelData;


192 193 194 195
typedef struct {
    AVCodecContext *avctx;
    ALSSpecificConfig sconf;
    GetBitContext gb;
196 197 198 199
    DSPContext dsp;
    const AVCRC *crc_table;
    uint32_t crc_org;               ///< CRC value of the original input data
    uint32_t crc;                   ///< CRC value calculated from decoded data
200 201 202 203
    unsigned int cur_frame_length;  ///< length of the current frame to decode
    unsigned int frame_id;          ///< the frame ID / number of the current frame
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
    unsigned int num_blocks;        ///< number of blocks used in the current frame
204
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
205 206
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
    unsigned int *bgmc_lut_status;  ///< pointer at lookup table status flags used for BGMC
207
    int ltp_lag_length;             ///< number of bits used for ltp lag value
208 209 210 211
    int *use_ltp;                   ///< contains use_ltp flags for all channels
    int *ltp_lag;                   ///< contains ltp lag values for all channels
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
212 213 214 215
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
216
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
217 218 219
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
    int *reverted_channels;         ///< stores a flag for each reverted channel
220 221 222
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
    int32_t **raw_samples;          ///< decoded raw samples for each channel
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
223
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
224 225 226
} ALSDecContext;


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
typedef struct {
    unsigned int block_length;      ///< number of samples within the block
    unsigned int ra_block;          ///< if true, this is a random access block
    int          const_block;       ///< if true, this is a constant value block
    int32_t      const_val;         ///< the sample value of a constant block
    int          js_blocks;         ///< true if this block contains a difference signal
    unsigned int shift_lsbs;        ///< shift of values for this block
    unsigned int opt_order;         ///< prediction order of this block
    int          store_prev_samples;///< if true, carryover samples have to be stored
    int          *use_ltp;          ///< if true, long-term prediction is used
    int          *ltp_lag;          ///< lag value for long-term prediction
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
    int32_t      *quant_cof;        ///< quantized parcor coefficients
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
} ALSBlockData;


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
static av_cold void dprint_specific_config(ALSDecContext *ctx)
{
#ifdef DEBUG
    AVCodecContext *avctx    = ctx->avctx;
    ALSSpecificConfig *sconf = &ctx->sconf;

    dprintf(avctx, "resolution = %i\n",           sconf->resolution);
    dprintf(avctx, "floating = %i\n",             sconf->floating);
    dprintf(avctx, "frame_length = %i\n",         sconf->frame_length);
    dprintf(avctx, "ra_distance = %i\n",          sconf->ra_distance);
    dprintf(avctx, "ra_flag = %i\n",              sconf->ra_flag);
    dprintf(avctx, "adapt_order = %i\n",          sconf->adapt_order);
    dprintf(avctx, "coef_table = %i\n",           sconf->coef_table);
    dprintf(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
    dprintf(avctx, "max_order = %i\n",            sconf->max_order);
    dprintf(avctx, "block_switching = %i\n",      sconf->block_switching);
    dprintf(avctx, "bgmc = %i\n",                 sconf->bgmc);
    dprintf(avctx, "sb_part = %i\n",              sconf->sb_part);
    dprintf(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
    dprintf(avctx, "mc_coding = %i\n",            sconf->mc_coding);
    dprintf(avctx, "chan_config = %i\n",          sconf->chan_config);
    dprintf(avctx, "chan_sort = %i\n",            sconf->chan_sort);
    dprintf(avctx, "RLSLMS = %i\n",               sconf->rlslms);
    dprintf(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
#endif
}


275
/** Read an ALSSpecificConfig from a buffer into the output struct.
276 277 278 279 280
 */
static av_cold int read_specific_config(ALSDecContext *ctx)
{
    GetBitContext gb;
    uint64_t ht_size;
281
    int i, config_offset;
282 283 284
    MPEG4AudioConfig m4ac;
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
285
    uint32_t als_id, header_size, trailer_size;
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);

    config_offset = ff_mpeg4audio_get_config(&m4ac, avctx->extradata,
                                             avctx->extradata_size);

    if (config_offset < 0)
        return -1;

    skip_bits_long(&gb, config_offset);

    if (get_bits_left(&gb) < (30 << 3))
        return -1;

    // read the fixed items
    als_id                      = get_bits_long(&gb, 32);
    avctx->sample_rate          = m4ac.sample_rate;
    skip_bits_long(&gb, 32); // sample rate already known
    sconf->samples              = get_bits_long(&gb, 32);
    avctx->channels             = m4ac.channels;
    skip_bits(&gb, 16);      // number of channels already knwon
    skip_bits(&gb, 3);       // skip file_type
    sconf->resolution           = get_bits(&gb, 3);
    sconf->floating             = get_bits1(&gb);
310
    sconf->msb_first            = get_bits1(&gb);
311 312 313 314 315 316 317 318 319 320 321 322 323 324
    sconf->frame_length         = get_bits(&gb, 16) + 1;
    sconf->ra_distance          = get_bits(&gb, 8);
    sconf->ra_flag              = get_bits(&gb, 2);
    sconf->adapt_order          = get_bits1(&gb);
    sconf->coef_table           = get_bits(&gb, 2);
    sconf->long_term_prediction = get_bits1(&gb);
    sconf->max_order            = get_bits(&gb, 10);
    sconf->block_switching      = get_bits(&gb, 2);
    sconf->bgmc                 = get_bits1(&gb);
    sconf->sb_part              = get_bits1(&gb);
    sconf->joint_stereo         = get_bits1(&gb);
    sconf->mc_coding            = get_bits1(&gb);
    sconf->chan_config          = get_bits1(&gb);
    sconf->chan_sort            = get_bits1(&gb);
325
    sconf->crc_enabled          = get_bits1(&gb);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    sconf->rlslms               = get_bits1(&gb);
    skip_bits(&gb, 5);       // skip 5 reserved bits
    skip_bits1(&gb);         // skip aux_data_enabled


    // check for ALSSpecificConfig struct
    if (als_id != MKBETAG('A','L','S','\0'))
        return -1;

    ctx->cur_frame_length = sconf->frame_length;

    // read channel config
    if (sconf->chan_config)
        sconf->chan_config_info = get_bits(&gb, 16);
    // TODO: use this to set avctx->channel_layout


    // read channel sorting
    if (sconf->chan_sort && avctx->channels > 1) {
        int chan_pos_bits = av_ceil_log2(avctx->channels);
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
        if (get_bits_left(&gb) < bits_needed)
            return -1;

        if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
            return AVERROR(ENOMEM);

        for (i = 0; i < avctx->channels; i++)
            sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);

        align_get_bits(&gb);
        // TODO: use this to actually do channel sorting
    } else {
        sconf->chan_sort = 0;
    }


    // read fixed header and trailer sizes,
    // if size = 0xFFFFFFFF then there is no data field!
    if (get_bits_left(&gb) < 64)
        return -1;

368 369 370 371 372 373
    header_size  = get_bits_long(&gb, 32);
    trailer_size = get_bits_long(&gb, 32);
    if (header_size  == 0xFFFFFFFF)
        header_size  = 0;
    if (trailer_size == 0xFFFFFFFF)
        trailer_size = 0;
374

375
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
376 377 378 379 380 381 382 383 384 385 386 387


    // skip the header and trailer data
    if (get_bits_left(&gb) < ht_size)
        return -1;

    if (ht_size > INT32_MAX)
        return -1;

    skip_bits_long(&gb, ht_size);


388 389
    // initialize CRC calculation
    if (sconf->crc_enabled) {
390 391 392
        if (get_bits_left(&gb) < 32)
            return -1;

393 394 395 396 397 398
        if (avctx->error_recognition >= FF_ER_CAREFUL) {
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
            ctx->crc       = 0xFFFFFFFF;
            ctx->crc_org   = ~get_bits_long(&gb, 32);
        } else
            skip_bits_long(&gb, 32);
399 400 401 402 403 404 405 406 407 408 409
    }


    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)

    dprint_specific_config(ctx);

    return 0;
}


410
/** Check the ALSSpecificConfig for unsupported features.
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
 */
static int check_specific_config(ALSDecContext *ctx)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    int error = 0;

    // report unsupported feature and set error value
    #define MISSING_ERR(cond, str, errval)              \
    {                                                   \
        if (cond) {                                     \
            av_log_missing_feature(ctx->avctx, str, 0); \
            error = errval;                             \
        }                                               \
    }

    MISSING_ERR(sconf->floating,             "Floating point decoding",     -1);
    MISSING_ERR(sconf->rlslms,               "Adaptive RLS-LMS prediction", -1);
    MISSING_ERR(sconf->chan_sort,            "Channel sorting",              0);

    return error;
}


434
/** Parse the bs_info field to extract the block partitioning used in
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
 */
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
                          unsigned int div, unsigned int **div_blocks,
                          unsigned int *num_blocks)
{
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
        // if the level is valid and the investigated bit n is set
        // then recursively check both children at bits (2n+1) and (2n+2)
        n   *= 2;
        div += 1;
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
    } else {
        // else the bit is not set or the last level has been reached
        // (bit implicitly not set)
        **div_blocks = div;
        (*div_blocks)++;
        (*num_blocks)++;
    }
}


M
Måns Rullgård 已提交
458
/** Read and decode a Rice codeword.
459 460 461
 */
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
{
462
    int max = get_bits_left(gb) - k;
463 464 465 466 467 468 469 470 471 472 473 474 475
    int q   = get_unary(gb, 0, max);
    int r   = k ? get_bits1(gb) : !(q & 1);

    if (k > 1) {
        q <<= (k - 1);
        q  += get_bits_long(gb, k - 1);
    } else if (!k) {
        q >>= 1;
    }
    return r ? q : ~q;
}


476
/** Convert PARCOR coefficient k to direct filter coefficient.
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 */
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
{
    int i, j;

    for (i = 0, j = k - 1; i < j; i++, j--) {
        int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
        cof[i]  += tmp1;
    }
    if (i == j)
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);

    cof[k] = par[k];
}


M
Måns Rullgård 已提交
494 495
/** Read block switching field if necessary and set actual block sizes.
 *  Also assure that the block sizes of the last frame correspond to the
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
 *  actual number of samples.
 */
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
                            uint32_t *bs_info)
{
    ALSSpecificConfig *sconf     = &ctx->sconf;
    GetBitContext *gb            = &ctx->gb;
    unsigned int *ptr_div_blocks = div_blocks;
    unsigned int b;

    if (sconf->block_switching) {
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
        *bs_info = get_bits_long(gb, bs_info_len);
        *bs_info <<= (32 - bs_info_len);
    }

    ctx->num_blocks = 0;
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);

    // The last frame may have an overdetermined block structure given in
    // the bitstream. In that case the defined block structure would need
    // more samples than available to be consistent.
    // The block structure is actually used but the block sizes are adapted
    // to fit the actual number of available samples.
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
    // This results in the actual block sizes:    2 2 1 0.
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    // This appears to happen in case of an odd number of samples in the last
    // frame which is actually not allowed by the block length switching part
    // of 14496-3.
    // The ALS conformance files feature an odd number of samples in the last
    // frame.

    for (b = 0; b < ctx->num_blocks; b++)
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];

    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
        unsigned int remaining = ctx->cur_frame_length;

        for (b = 0; b < ctx->num_blocks; b++) {
537
            if (remaining <= div_blocks[b]) {
538 539 540 541 542 543 544 545 546 547 548
                div_blocks[b] = remaining;
                ctx->num_blocks = b + 1;
                break;
            }

            remaining -= div_blocks[b];
        }
    }
}


549
/** Read the block data for a constant block
550
 */
551
static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
552 553 554 555 556
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;

557 558 559
    bd->const_val    = 0;
    bd->const_block  = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
    bd->js_blocks    = get_bits1(gb);
560 561 562 563

    // skip 5 reserved bits
    skip_bits(gb, 5);

564
    if (bd->const_block) {
565
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
566
        bd->const_val = get_sbits_long(gb, const_val_bits);
567 568
    }

569 570 571 572 573
    // ensure constant block decoding by reusing this field
    bd->const_block = 1;
}


574
/** Decode the block data for a constant block
575 576 577 578 579 580 581
 */
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    int      smp = bd->block_length;
    int32_t  val = bd->const_val;
    int32_t *dst = bd->raw_samples;

582
    // write raw samples into buffer
583 584
    for (; smp; smp--)
        *dst++ = val;
585 586 587
}


588
/** Read the block data for a non-constant block
589
 */
590
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
591 592 593 594 595 596
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;
    unsigned int k;
    unsigned int s[8];
597
    unsigned int sx[8];
598 599
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
    unsigned int start      = 0;
600 601 602
    unsigned int opt_order;
    int          sb;
    int32_t      *quant_cof = bd->quant_cof;
603
    int32_t      *current_res;
604

605 606 607 608 609 610 611 612

    // ensure variable block decoding by reusing this field
    bd->const_block = 0;

    bd->opt_order   = 1;
    bd->js_blocks   = get_bits1(gb);

    opt_order       = bd->opt_order;
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    // determine the number of subblocks for entropy decoding
    if (!sconf->bgmc && !sconf->sb_part) {
        log2_sub_blocks = 0;
    } else {
        if (sconf->bgmc && sconf->sb_part)
            log2_sub_blocks = get_bits(gb, 2);
        else
            log2_sub_blocks = 2 * get_bits1(gb);
    }

    sub_blocks = 1 << log2_sub_blocks;

    // do not continue in case of a damaged stream since
    // block_length must be evenly divisible by sub_blocks
628
    if (bd->block_length & (sub_blocks - 1)) {
629 630 631 632 633
        av_log(avctx, AV_LOG_WARNING,
               "Block length is not evenly divisible by the number of subblocks.\n");
        return -1;
    }

634
    sb_length = bd->block_length >> log2_sub_blocks;
635 636

    if (sconf->bgmc) {
637 638 639 640 641 642 643 644
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 2);

        for (k = 0; k < sub_blocks; k++) {
            sx[k]   = s[k] & 0x0F;
            s [k] >>= 4;
        }
645 646 647 648 649 650 651
    } else {
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 0);
    }

    if (get_bits1(gb))
652
        bd->shift_lsbs = get_bits(gb, 4) + 1;
653

654
    bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || bd->shift_lsbs;
655 656 657 658


    if (!sconf->rlslms) {
        if (sconf->adapt_order) {
659
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
660
                                                2, sconf->max_order + 1));
661
            bd->opt_order        = get_bits(gb, opt_order_length);
662
        } else {
663
            bd->opt_order = sconf->max_order;
664 665
        }

666 667
        opt_order = bd->opt_order;

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        if (opt_order) {
            int add_base;

            if (sconf->coef_table == 3) {
                add_base = 0x7F;

                // read coefficient 0
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficient 1
                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficients 2 to opt_order
                for (k = 2; k < opt_order; k++)
                    quant_cof[k] = get_bits(gb, 7);
            } else {
                int k_max;
                add_base = 1;

                // read coefficient 0 to 19
                k_max = FFMIN(opt_order, 20);
                for (k = 0; k < k_max; k++) {
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
                }

                // read coefficients 20 to 126
                k_max = FFMIN(opt_order, 127);
                for (; k < k_max; k++)
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);

                // read coefficients 127 to opt_order
                for (; k < opt_order; k++)
                    quant_cof[k] = decode_rice(gb, 1);

                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];

                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
            }

            for (k = 2; k < opt_order; k++)
                quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
        }
    }

716 717
    // read LTP gain and lag values
    if (sconf->long_term_prediction) {
718
        *bd->use_ltp = get_bits1(gb);
719

720
        if (*bd->use_ltp) {
721 722
            int r, c;

723 724
            bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
            bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
725

726 727 728
            r                 = get_unary(gb, 0, 4);
            c                 = get_bits(gb, 2);
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
729

730 731
            bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
            bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
732

733 734
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
735 736
        }
    }
737 738

    // read first value and residuals in case of a random access block
739
    if (bd->ra_block) {
740
        if (opt_order)
741
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
742
        if (opt_order > 1)
743
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
744
        if (opt_order > 2)
745
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
746 747 748 749 750 751

        start = FFMIN(opt_order, 3);
    }

    // read all residuals
    if (sconf->bgmc) {
752 753
        unsigned int delta[8];
        unsigned int k    [8];
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
        unsigned int i = start;

        // read most significant bits
        unsigned int high;
        unsigned int low;
        unsigned int value;

        ff_bgmc_decode_init(gb, &high, &low, &value);

        current_res = bd->raw_samples + start;

        for (sb = 0; sb < sub_blocks; sb++, i = 0) {
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
            delta[sb] = 5 - s[sb] + k[sb];

            ff_bgmc_decode(gb, sb_length, current_res,
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);

            current_res += sb_length;
        }

        ff_bgmc_decode_end(gb);


        // read least significant bits and tails
        i = start;
        current_res = bd->raw_samples + start;

        for (sb = 0; sb < sub_blocks; sb++, i = 0) {
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
            unsigned int cur_k         = k[sb];
            unsigned int cur_s         = s[sb];

            for (; i < sb_length; i++) {
                int32_t res = *current_res;

                if (res == cur_tail_code) {
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
                                          << (5 - delta[sb]);

                    res = decode_rice(gb, cur_s);

                    if (res >= 0) {
                        res += (max_msb    ) << cur_k;
                    } else {
                        res -= (max_msb - 1) << cur_k;
                    }
                } else {
                    if (res > cur_tail_code)
                        res--;

                    if (res & 1)
                        res = -res;

                    res >>= 1;

                    if (cur_k) {
                        res <<= cur_k;
                        res  |= get_bits_long(gb, cur_k);
                    }
                }

T
Thilo Borgmann 已提交
817
                *current_res++ = res;
818 819
            }
        }
820
    } else {
821
        current_res = bd->raw_samples + start;
822 823 824 825 826 827

        for (sb = 0; sb < sub_blocks; sb++, start = 0)
            for (; start < sb_length; start++)
                *current_res++ = decode_rice(gb, s[sb]);
     }

828 829 830 831 832 833 834
    if (!sconf->mc_coding || ctx->js_switch)
        align_get_bits(gb);

    return 0;
}


835
/** Decode the block data for a non-constant block
836 837 838 839 840 841 842
 */
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int block_length = bd->block_length;
    unsigned int smp = 0;
    unsigned int k;
843
    int opt_order             = bd->opt_order;
844 845 846 847 848
    int sb;
    int64_t y;
    int32_t *quant_cof        = bd->quant_cof;
    int32_t *lpc_cof          = bd->lpc_cof;
    int32_t *raw_samples      = bd->raw_samples;
849
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
850
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
851

852
    // reverse long-term prediction
853
    if (*bd->use_ltp) {
854 855
        int ltp_smp;

856 857
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
            int center = ltp_smp - *bd->ltp_lag;
858 859 860 861 862 863 864 865
            int begin  = FFMAX(0, center - 2);
            int end    = center + 3;
            int tab    = 5 - (end - begin);
            int base;

            y = 1 << 6;

            for (base = begin; base < end; base++, tab++)
866
                y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
867 868 869 870 871

            raw_samples[ltp_smp] += y >> 7;
        }
    }

872
    // reconstruct all samples from residuals
873
    if (bd->ra_block) {
874 875 876 877
        for (smp = 0; smp < opt_order; smp++) {
            y = 1 << 19;

            for (sb = 0; sb < smp; sb++)
878
                y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
879

880
            *raw_samples++ -= y >> 20;
881 882 883 884 885 886 887
            parcor_to_lpc(smp, quant_cof, lpc_cof);
        }
    } else {
        for (k = 0; k < opt_order; k++)
            parcor_to_lpc(k, quant_cof, lpc_cof);

        // store previous samples in case that they have to be altered
888 889 890
        if (bd->store_prev_samples)
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
891 892

        // reconstruct difference signal for prediction (joint-stereo)
893
        if (bd->js_blocks && bd->raw_other) {
894 895
            int32_t *left, *right;

896
            if (bd->raw_other > raw_samples) {  // D = R - L
897
                left  = raw_samples;
898
                right = bd->raw_other;
899
            } else {                                // D = R - L
900
                left  = bd->raw_other;
901 902 903 904 905 906 907 908
                right = raw_samples;
            }

            for (sb = -1; sb >= -sconf->max_order; sb--)
                raw_samples[sb] = right[sb] - left[sb];
        }

        // reconstruct shifted signal
909
        if (bd->shift_lsbs)
910
            for (sb = -1; sb >= -sconf->max_order; sb--)
911
                raw_samples[sb] >>= bd->shift_lsbs;
912 913
    }

914 915 916 917 918 919
    // reverse linear prediction coefficients for efficiency
    lpc_cof = lpc_cof + opt_order;

    for (sb = 0; sb < opt_order; sb++)
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];

920
    // reconstruct raw samples
921 922 923 924
    raw_samples = bd->raw_samples + smp;
    lpc_cof     = lpc_cof_reversed + opt_order;

    for (; raw_samples < raw_samples_end; raw_samples++) {
925 926
        y = 1 << 19;

927 928
        for (sb = -opt_order; sb < 0; sb++)
            y += MUL64(lpc_cof[sb], raw_samples[sb]);
929

930
        *raw_samples -= y >> 20;
931 932
    }

933 934
    raw_samples = bd->raw_samples;

935
    // restore previous samples in case that they have been altered
936 937
    if (bd->store_prev_samples)
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
938 939 940 941 942 943
               sizeof(*raw_samples) * sconf->max_order);

    return 0;
}


944
/** Read the block data.
945
 */
946
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
947 948 949 950 951
{
    GetBitContext *gb        = &ctx->gb;

    // read block type flag and read the samples accordingly
    if (get_bits1(gb)) {
952
        if (read_var_block_data(ctx, bd))
953 954
            return -1;
    } else {
955
        read_const_block_data(ctx, bd);
956 957
    }

958 959
    return 0;
}
960 961


962
/** Decode the block data.
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
 */
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    unsigned int smp;

    // read block type flag and read the samples accordingly
    if (bd->const_block)
        decode_const_block_data(ctx, bd);
    else if (decode_var_block_data(ctx, bd))
        return -1;

    // TODO: read RLSLMS extension data

    if (bd->shift_lsbs)
        for (smp = 0; smp < bd->block_length; smp++)
            bd->raw_samples[smp] <<= bd->shift_lsbs;
979 980 981 982 983

    return 0;
}


M
Måns Rullgård 已提交
984
/** Read and decode block data successively.
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
 */
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    int ret;

    ret = read_block(ctx, bd);

    if (ret)
        return ret;

    ret = decode_block(ctx, bd);

    return ret;
}


1001
/** Compute the number of samples left to decode for the current frame and
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
 *  sets these samples to zero.
 */
static void zero_remaining(unsigned int b, unsigned int b_max,
                           const unsigned int *div_blocks, int32_t *buf)
{
    unsigned int count = 0;

    while (b < b_max)
        count += div_blocks[b];

1012
    if (count)
A
Alex Converse 已提交
1013
        memset(buf, 0, sizeof(*buf) * count);
1014 1015 1016
}


1017
/** Decode blocks independently.
1018 1019 1020 1021 1022 1023
 */
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
                             unsigned int c, const unsigned int *div_blocks,
                             unsigned int *js_blocks)
{
    unsigned int b;
1024 1025 1026 1027 1028 1029 1030 1031
    ALSBlockData bd;

    memset(&bd, 0, sizeof(ALSBlockData));

    bd.ra_block         = ra_frame;
    bd.use_ltp          = ctx->use_ltp;
    bd.ltp_lag          = ctx->ltp_lag;
    bd.ltp_gain         = ctx->ltp_gain[0];
1032 1033
    bd.quant_cof        = ctx->quant_cof[0];
    bd.lpc_cof          = ctx->lpc_cof[0];
1034 1035 1036
    bd.prev_raw_samples = ctx->prev_raw_samples;
    bd.raw_samples      = ctx->raw_samples[c];

1037 1038

    for (b = 0; b < ctx->num_blocks; b++) {
1039 1040 1041 1042
        bd.shift_lsbs       = 0;
        bd.block_length     = div_blocks[b];

        if (read_decode_block(ctx, &bd)) {
1043
            // damaged block, write zero for the rest of the frame
1044
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1045 1046
            return -1;
        }
1047 1048
        bd.raw_samples += div_blocks[b];
        bd.ra_block     = 0;
1049 1050 1051 1052 1053 1054
    }

    return 0;
}


1055
/** Decode blocks dependently.
1056 1057 1058 1059 1060 1061 1062 1063
 */
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
                         unsigned int c, const unsigned int *div_blocks,
                         unsigned int *js_blocks)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int offset = 0;
    unsigned int b;
1064 1065 1066 1067 1068 1069 1070 1071
    ALSBlockData bd[2];

    memset(bd, 0, 2 * sizeof(ALSBlockData));

    bd[0].ra_block         = ra_frame;
    bd[0].use_ltp          = ctx->use_ltp;
    bd[0].ltp_lag          = ctx->ltp_lag;
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1072 1073
    bd[0].quant_cof        = ctx->quant_cof[0];
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1074 1075 1076 1077 1078 1079 1080
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
    bd[0].js_blocks        = *js_blocks;

    bd[1].ra_block         = ra_frame;
    bd[1].use_ltp          = ctx->use_ltp;
    bd[1].ltp_lag          = ctx->ltp_lag;
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1081 1082
    bd[1].quant_cof        = ctx->quant_cof[0];
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1083 1084
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
    bd[1].js_blocks        = *(js_blocks + 1);
1085 1086 1087 1088

    // decode all blocks
    for (b = 0; b < ctx->num_blocks; b++) {
        unsigned int s;
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

        bd[0].shift_lsbs   = 0;
        bd[1].shift_lsbs   = 0;

        bd[0].block_length = div_blocks[b];
        bd[1].block_length = div_blocks[b];

        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;

        bd[0].raw_other    = bd[1].raw_samples;
        bd[1].raw_other    = bd[0].raw_samples;

        if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
1103
            // damaged block, write zero for the rest of the frame
1104 1105
            zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
            zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1106 1107 1108 1109
            return -1;
        }

        // reconstruct joint-stereo blocks
1110 1111
        if (bd[0].js_blocks) {
            if (bd[1].js_blocks)
1112 1113 1114
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");

            for (s = 0; s < div_blocks[b]; s++)
1115 1116
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
        } else if (bd[1].js_blocks) {
1117
            for (s = 0; s < div_blocks[b]; s++)
1118
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1119 1120 1121
        }

        offset  += div_blocks[b];
1122 1123
        bd[0].ra_block = 0;
        bd[1].ra_block = 0;
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    }

    // store carryover raw samples,
    // the others channel raw samples are stored by the calling function.
    memmove(ctx->raw_samples[c] - sconf->max_order,
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);

    return 0;
}


1136
/** Read the channel data.
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
  */
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
{
    GetBitContext *gb       = &ctx->gb;
    ALSChannelData *current = cd;
    unsigned int channels   = ctx->avctx->channels;
    int entries             = 0;

    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));

        if (current->master_channel >= channels) {
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
            return -1;
        }

        if (current->master_channel != c) {
            current->time_diff_flag = get_bits1(gb);
            current->weighting[0]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
            current->weighting[1]   = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 32)];
            current->weighting[2]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];

            if (current->time_diff_flag) {
                current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
                current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
                current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];

                current->time_diff_sign  = get_bits1(gb);
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
            }
        }

        current++;
        entries++;
    }

    if (entries == channels) {
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
        return -1;
    }

    align_get_bits(gb);
    return 0;
}


/** Recursively reverts the inter-channel correlation for a block.
 */
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
                                       ALSChannelData **cd, int *reverted,
                                       unsigned int offset, int c)
{
    ALSChannelData *ch = cd[c];
    unsigned int   dep = 0;
    unsigned int channels = ctx->avctx->channels;

    if (reverted[c])
        return 0;

    reverted[c] = 1;

    while (dep < channels && !ch[dep].stop_flag) {
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
                                   ch[dep].master_channel);

        dep++;
    }

    if (dep == channels) {
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
        return -1;
    }

    bd->use_ltp     = ctx->use_ltp + c;
    bd->ltp_lag     = ctx->ltp_lag + c;
    bd->ltp_gain    = ctx->ltp_gain[c];
    bd->lpc_cof     = ctx->lpc_cof[c];
    bd->quant_cof   = ctx->quant_cof[c];
    bd->raw_samples = ctx->raw_samples[c] + offset;

    dep = 0;
    while (!ch[dep].stop_flag) {
        unsigned int smp;
        unsigned int begin = 1;
        unsigned int end   = bd->block_length - 1;
        int64_t y;
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;

        if (ch[dep].time_diff_flag) {
            int t = ch[dep].time_diff_index;

            if (ch[dep].time_diff_sign) {
                t      = -t;
                begin -= t;
            } else {
                end   -= t;
            }

            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);

                bd->raw_samples[smp] += y >> 7;
            }
        } else {
            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1]);

                bd->raw_samples[smp] += y >> 7;
            }
        }

        dep++;
    }

    return 0;
}


1264
/** Read the frame data.
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
 */
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb = &ctx->gb;
    unsigned int div_blocks[32];                ///< block sizes.
    unsigned int c;
    unsigned int js_blocks[2];

    uint32_t bs_info = 0;

    // skip the size of the ra unit if present in the frame
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
        skip_bits_long(gb, 32);

    if (sconf->mc_coding && sconf->joint_stereo) {
        ctx->js_switch = get_bits1(gb);
        align_get_bits(gb);
    }

    if (!sconf->mc_coding || ctx->js_switch) {
        int independent_bs = !sconf->joint_stereo;

        for (c = 0; c < avctx->channels; c++) {
            js_blocks[0] = 0;
            js_blocks[1] = 0;

            get_block_sizes(ctx, div_blocks, &bs_info);

            // if joint_stereo and block_switching is set, independent decoding
            // is signaled via the first bit of bs_info
            if (sconf->joint_stereo && sconf->block_switching)
                if (bs_info >> 31)
                    independent_bs = 2;

            // if this is the last channel, it has to be decoded independently
            if (c == avctx->channels - 1)
                independent_bs = 1;

            if (independent_bs) {
                if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
                    return -1;

                independent_bs--;
            } else {
                if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
                    return -1;

                c++;
            }

            // store carryover raw samples
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
        }
    } else { // multi-channel coding
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
        ALSBlockData   bd;
        int            b;
        int            *reverted_channels = ctx->reverted_channels;
        unsigned int   offset             = 0;

        for (c = 0; c < avctx->channels; c++)
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
                return -1;
            }

        memset(&bd,               0, sizeof(ALSBlockData));
        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);

        bd.ra_block         = ra_frame;
        bd.prev_raw_samples = ctx->prev_raw_samples;

1340 1341
        get_block_sizes(ctx, div_blocks, &bs_info);

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        for (b = 0; b < ctx->num_blocks; b++) {
            bd.shift_lsbs   = 0;
            bd.block_length = div_blocks[b];

            for (c = 0; c < avctx->channels; c++) {
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
                bd.raw_other   = NULL;

                read_block(ctx, &bd);
                if (read_channel_data(ctx, ctx->chan_data[c], c))
                    return -1;
            }

            for (c = 0; c < avctx->channels; c++)
                if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
                                               reverted_channels, offset, c))
                    return -1;

            for (c = 0; c < avctx->channels; c++) {
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
                decode_block(ctx, &bd);
            }

            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
            offset      += div_blocks[b];
            bd.ra_block  = 0;
        }

        // store carryover raw samples
        for (c = 0; c < avctx->channels; c++)
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1385 1386 1387 1388 1389 1390 1391 1392
    }

    // TODO: read_diff_float_data

    return 0;
}


1393
/** Decode an ALS frame.
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
 */
static int decode_frame(AVCodecContext *avctx,
                        void *data, int *data_size,
                        AVPacket *avpkt)
{
    ALSDecContext *ctx       = avctx->priv_data;
    ALSSpecificConfig *sconf = &ctx->sconf;
    const uint8_t *buffer    = avpkt->data;
    int buffer_size          = avpkt->size;
    int invalid_frame, size;
    unsigned int c, sample, ra_frame, bytes_read, shift;

    init_get_bits(&ctx->gb, buffer, buffer_size * 8);

    // In the case that the distance between random access frames is set to zero
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    // For the first frame, if prediction is used, all samples used from the
    // previous frame are assumed to be zero.
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);

    // the last frame to decode might have a different length
    if (sconf->samples != 0xFFFFFFFF)
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
                                      sconf->frame_length);
    else
        ctx->cur_frame_length = sconf->frame_length;

    // decode the frame data
    if ((invalid_frame = read_frame_data(ctx, ra_frame) < 0))
        av_log(ctx->avctx, AV_LOG_WARNING,
               "Reading frame data failed. Skipping RA unit.\n");

    ctx->frame_id++;

    // check for size of decoded data
    size = ctx->cur_frame_length * avctx->channels *
1430
           (av_get_bits_per_sample_fmt(avctx->sample_fmt) >> 3);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

    if (size > *data_size) {
        av_log(avctx, AV_LOG_ERROR, "Decoded data exceeds buffer size.\n");
        return -1;
    }

    *data_size = size;

    // transform decoded frame into output format
    #define INTERLEAVE_OUTPUT(bps)                                 \
    {                                                              \
        int##bps##_t *dest = (int##bps##_t*) data;                 \
        shift = bps - ctx->avctx->bits_per_raw_sample;             \
        for (sample = 0; sample < ctx->cur_frame_length; sample++) \
            for (c = 0; c < avctx->channels; c++)                  \
                *dest++ = ctx->raw_samples[c][sample] << shift;    \
    }

    if (ctx->avctx->bits_per_raw_sample <= 16) {
        INTERLEAVE_OUTPUT(16)
    } else {
        INTERLEAVE_OUTPUT(32)
    }

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
    // update CRC
    if (sconf->crc_enabled && avctx->error_recognition >= FF_ER_CAREFUL) {
        int swap = HAVE_BIGENDIAN != sconf->msb_first;

        if (ctx->avctx->bits_per_raw_sample == 24) {
            int32_t *src = data;

            for (sample = 0;
                 sample < ctx->cur_frame_length * avctx->channels;
                 sample++) {
                int32_t v;

                if (swap)
M
Måns Rullgård 已提交
1468
                    v = av_bswap32(src[sample]);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                else
                    v = src[sample];
                if (!HAVE_BIGENDIAN)
                    v >>= 8;

                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
            }
        } else {
            uint8_t *crc_source;

            if (swap) {
                if (ctx->avctx->bits_per_raw_sample <= 16) {
                    int16_t *src  = (int16_t*) data;
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
                    for (sample = 0;
                         sample < ctx->cur_frame_length * avctx->channels;
                         sample++)
M
Måns Rullgård 已提交
1486
                        *dest++ = av_bswap16(src[sample]);
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                } else {
                    ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer, data,
                                       ctx->cur_frame_length * avctx->channels);
                }
                crc_source = ctx->crc_buffer;
            } else {
                crc_source = data;
            }

            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source, size);
        }


        // check CRC sums if this is the last frame
        if (ctx->cur_frame_length != sconf->frame_length &&
            ctx->crc_org != ctx->crc) {
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
        }
    }


1508 1509 1510 1511 1512 1513 1514
    bytes_read = invalid_frame ? buffer_size :
                                 (get_bits_count(&ctx->gb) + 7) >> 3;

    return bytes_read;
}


1515
/** Uninitialize the ALS decoder.
1516 1517 1518 1519 1520 1521 1522
 */
static av_cold int decode_end(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    av_freep(&ctx->sconf.chan_pos);

1523 1524
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);

1525 1526 1527 1528
    av_freep(&ctx->use_ltp);
    av_freep(&ctx->ltp_lag);
    av_freep(&ctx->ltp_gain);
    av_freep(&ctx->ltp_gain_buffer);
1529 1530
    av_freep(&ctx->quant_cof);
    av_freep(&ctx->lpc_cof);
1531 1532
    av_freep(&ctx->quant_cof_buffer);
    av_freep(&ctx->lpc_cof_buffer);
1533
    av_freep(&ctx->lpc_cof_reversed_buffer);
1534 1535 1536
    av_freep(&ctx->prev_raw_samples);
    av_freep(&ctx->raw_samples);
    av_freep(&ctx->raw_buffer);
1537 1538 1539
    av_freep(&ctx->chan_data);
    av_freep(&ctx->chan_data_buffer);
    av_freep(&ctx->reverted_channels);
1540 1541 1542 1543 1544

    return 0;
}


1545
/** Initialize the ALS decoder.
1546 1547 1548 1549 1550
 */
static av_cold int decode_init(AVCodecContext *avctx)
{
    unsigned int c;
    unsigned int channel_size;
1551
    int num_buffers;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
    ALSDecContext *ctx = avctx->priv_data;
    ALSSpecificConfig *sconf = &ctx->sconf;
    ctx->avctx = avctx;

    if (!avctx->extradata) {
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
        return -1;
    }

    if (read_specific_config(ctx)) {
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
        decode_end(avctx);
        return -1;
    }

    if (check_specific_config(ctx)) {
        decode_end(avctx);
        return -1;
    }

1572 1573 1574
    if (sconf->bgmc)
        ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);

1575 1576 1577 1578 1579 1580 1581 1582 1583
    if (sconf->floating) {
        avctx->sample_fmt          = SAMPLE_FMT_FLT;
        avctx->bits_per_raw_sample = 32;
    } else {
        avctx->sample_fmt          = sconf->resolution > 1
                                     ? SAMPLE_FMT_S32 : SAMPLE_FMT_S16;
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    }

1584 1585 1586 1587 1588
    // set maximum Rice parameter for progressive decoding based on resolution
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;

1589 1590 1591 1592
    // set lag value for long-term prediction
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
                              (avctx->sample_rate >= 192000);

1593 1594 1595
    // allocate quantized parcor coefficient buffer
    num_buffers = sconf->mc_coding ? avctx->channels : 1;

1596 1597 1598 1599 1600 1601
    ctx->quant_cof        = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
    ctx->lpc_cof          = av_malloc(sizeof(*ctx->lpc_cof)   * num_buffers);
    ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
                                      num_buffers * sconf->max_order);
    ctx->lpc_cof_buffer   = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                      num_buffers * sconf->max_order);
1602 1603
    ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                             sconf->max_order);
1604

T
Thilo Borgmann 已提交
1605 1606
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
1607
        !ctx->lpc_cof_reversed_buffer) {
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
        return AVERROR(ENOMEM);
    }

    // assign quantized parcor coefficient buffers
    for (c = 0; c < num_buffers; c++) {
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    }

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    // allocate and assign lag and gain data buffer for ltp mode
    ctx->use_ltp         = av_mallocz(sizeof(*ctx->use_ltp)  * num_buffers);
    ctx->ltp_lag         = av_malloc (sizeof(*ctx->ltp_lag)  * num_buffers);
    ctx->ltp_gain        = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
    ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
                                      num_buffers * 5);

    if (!ctx->use_ltp  || !ctx->ltp_lag ||
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    for (c = 0; c < num_buffers; c++)
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;

1635 1636 1637
    // allocate and assign channel data buffer for mcc mode
    if (sconf->mc_coding) {
        ctx->chan_data_buffer  = av_malloc(sizeof(*ctx->chan_data_buffer) *
1638
                                           num_buffers * num_buffers);
1639
        ctx->chan_data         = av_malloc(sizeof(*ctx->chan_data) *
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
                                           num_buffers);
        ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
                                           num_buffers);

        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
            decode_end(avctx);
            return AVERROR(ENOMEM);
        }

        for (c = 0; c < num_buffers; c++)
1651
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1652 1653 1654 1655 1656 1657
    } else {
        ctx->chan_data         = NULL;
        ctx->chan_data_buffer  = NULL;
        ctx->reverted_channels = NULL;
    }

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
    avctx->frame_size = sconf->frame_length;
    channel_size      = sconf->frame_length + sconf->max_order;

    ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
    ctx->raw_buffer       = av_mallocz(sizeof(*ctx->     raw_buffer)  * avctx->channels * channel_size);
    ctx->raw_samples      = av_malloc (sizeof(*ctx->     raw_samples) * avctx->channels);

    // allocate previous raw sample buffer
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    // assign raw samples buffers
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    for (c = 1; c < avctx->channels; c++)
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;

1677 1678 1679 1680 1681 1682
    // allocate crc buffer
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
        avctx->error_recognition >= FF_ER_CAREFUL) {
        ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
                                    ctx->cur_frame_length *
                                    avctx->channels *
1683
                                    (av_get_bits_per_sample_fmt(avctx->sample_fmt) >> 3));
1684 1685 1686 1687 1688 1689 1690 1691 1692
        if (!ctx->crc_buffer) {
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
            decode_end(avctx);
            return AVERROR(ENOMEM);
        }
    }

    dsputil_init(&ctx->dsp, avctx);

1693 1694 1695 1696
    return 0;
}


1697
/** Flush (reset) the frame ID after seeking.
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
 */
static av_cold void flush(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    ctx->frame_id = 0;
}


AVCodec als_decoder = {
    "als",
1709
    AVMEDIA_TYPE_AUDIO,
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    CODEC_ID_MP4ALS,
    sizeof(ALSDecContext),
    decode_init,
    NULL,
    decode_end,
    decode_frame,
    .flush = flush,
    .capabilities = CODEC_CAP_SUBFRAMES,
    .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
};