ps.c 37.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * MPEG-4 Parametric Stereo decoding functions
 * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdint.h>
#include "libavutil/mathematics.h"
#include "avcodec.h"
#include "get_bits.h"
#include "ps.h"
#include "ps_tablegen.h"
#include "psdata.c"

A
Alex Converse 已提交
30 31 32
#define PS_BASELINE 0  //< Operate in Baseline PS mode
                       //< Baseline implies 10 or 20 stereo bands,
                       //< mixing mode A, and no ipd/opd
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

#define numQMFSlots 32 //numTimeSlots * RATE

static const int8_t num_env_tab[2][4] = {
    { 0, 1, 2, 4, },
    { 1, 2, 3, 4, },
};

static const int8_t nr_iidicc_par_tab[] = {
    10, 20, 34, 10, 20, 34,
};

static const int8_t nr_iidopd_par_tab[] = {
     5, 11, 17,  5, 11, 17,
};

enum {
    huff_iid_df1,
    huff_iid_dt1,
    huff_iid_df0,
    huff_iid_dt0,
    huff_icc_df,
    huff_icc_dt,
    huff_ipd_df,
    huff_ipd_dt,
    huff_opd_df,
    huff_opd_dt,
};

static const int huff_iid[] = {
    huff_iid_df0,
    huff_iid_df1,
    huff_iid_dt0,
    huff_iid_dt1,
};

static VLC vlc_ps[10];

/**
72 73 74
 * Read Inter-channel Intensity Difference/Inter-Channel Coherence/
 * Inter-channel Phase Difference/Overall Phase Difference parameters from the
 * bitstream.
75 76 77 78
 *
 * @param avctx contains the current codec context
 * @param gb    pointer to the input bitstream
 * @param ps    pointer to the Parametric Stereo context
79
 * @param par   pointer to the parameter to be read
80 81 82
 * @param e     envelope to decode
 * @param dt    1: time delta-coded, 0: frequency delta-coded
 */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
#define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
static int PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
                        int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
{ \
    int b, num = ps->nr_ ## PAR ## _par; \
    VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
    if (dt) { \
        int e_prev = e ? e - 1 : ps->num_env_old - 1; \
        e_prev = FFMAX(e_prev, 0); \
        for (b = 0; b < num; b++) { \
            int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
            if (MASK) val &= MASK; \
            PAR[e][b] = val; \
            if (ERR_CONDITION) \
                goto err; \
        } \
    } else { \
        int val = 0; \
        for (b = 0; b < num; b++) { \
            val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
            if (MASK) val &= MASK; \
            PAR[e][b] = val; \
            if (ERR_CONDITION) \
                goto err; \
        } \
    } \
    return 0; \
err: \
    av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
    return -1; \
113 114
}

115 116 117
READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
118 119 120 121 122 123 124 125 126 127 128 129 130

static int ps_extension(GetBitContext *gb, PSContext *ps, int ps_extension_id)
{
    int e;
    int count = get_bits_count(gb);

    if (ps_extension_id)
        return 0;

    ps->enable_ipdopd = get_bits1(gb);
    if (ps->enable_ipdopd) {
        for (e = 0; e < ps->num_env; e++) {
            int dt = get_bits1(gb);
131
            ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
132
            dt = get_bits1(gb);
133
            ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        }
    }
    skip_bits1(gb);      //reserved_ps
    return get_bits_count(gb) - count;
}

static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
{
    int i;
    for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
        opd_hist[i] = 0;
        ipd_hist[i] = 0;
    }
}

int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
{
    int e;
    int bit_count_start = get_bits_count(gb_host);
    int header;
    int bits_consumed;
    GetBitContext gbc = *gb_host, *gb = &gbc;

    header = get_bits1(gb);
    if (header) {     //enable_ps_header
        ps->enable_iid = get_bits1(gb);
        if (ps->enable_iid) {
161 162
            int iid_mode = get_bits(gb, 3);
            if (iid_mode > 5) {
163
                av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
164
                       iid_mode);
165 166
                goto err;
            }
167 168 169
            ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
            ps->iid_quant     = iid_mode > 2;
            ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        }
        ps->enable_icc = get_bits1(gb);
        if (ps->enable_icc) {
            ps->icc_mode = get_bits(gb, 3);
            if (ps->icc_mode > 5) {
                av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
                       ps->icc_mode);
                goto err;
            }
            ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
        }
        ps->enable_ext = get_bits1(gb);
    }

    ps->frame_class = get_bits1(gb);
    ps->num_env_old = ps->num_env;
    ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];

    ps->border_position[0] = -1;
    if (ps->frame_class) {
        for (e = 1; e <= ps->num_env; e++)
            ps->border_position[e] = get_bits(gb, 5);
    } else
        for (e = 1; e <= ps->num_env; e++)
            ps->border_position[e] = e * numQMFSlots / ps->num_env - 1;

    if (ps->enable_iid) {
        for (e = 0; e < ps->num_env; e++) {
            int dt = get_bits1(gb);
199
            if (iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
200 201 202 203 204 205 206 207
                goto err;
        }
    } else
        memset(ps->iid_par, 0, sizeof(ps->iid_par));

    if (ps->enable_icc)
        for (e = 0; e < ps->num_env; e++) {
            int dt = get_bits1(gb);
208
            if (icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                goto err;
        }
    else
        memset(ps->icc_par, 0, sizeof(ps->icc_par));

    if (ps->enable_ext) {
        int cnt = get_bits(gb, 4);
        if (cnt == 15) {
            cnt += get_bits(gb, 8);
        }
        cnt *= 8;
        while (cnt > 7) {
            int ps_extension_id = get_bits(gb, 2);
            cnt -= 2 + ps_extension(gb, ps, ps_extension_id);
        }
        if (cnt < 0) {
            av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d", cnt);
            goto err;
        }
        skip_bits(gb, cnt);
    }

    ps->enable_ipdopd &= !PS_BASELINE;

    //Fix up envelopes
    if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
        //Create a fake envelope
        int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
        if (source >= 0 && source != ps->num_env) {
238
            if (ps->enable_iid) {
239 240
                memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
            }
241
            if (ps->enable_icc) {
242 243
                memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
            }
244
            if (ps->enable_ipdopd) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
                memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
                memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
            }
        }
        ps->num_env++;
        ps->border_position[ps->num_env] = numQMFSlots - 1;
    }


    ps->is34bands_old = ps->is34bands;
    if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
        ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
                        (ps->enable_icc && ps->nr_icc_par == 34);

    //Baseline
    if (!ps->enable_ipdopd) {
        memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
        memset(ps->opd_par, 0, sizeof(ps->opd_par));
    }

    if (header)
        ps->start = 1;

    bits_consumed = get_bits_count(gb) - bit_count_start;
    if (bits_consumed <= bits_left) {
        skip_bits_long(gb_host, bits_consumed);
        return bits_consumed;
    }
    av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
err:
    ps->start = 0;
    skip_bits_long(gb_host, bits_left);
    return bits_left;
}

/** Split one subband into 2 subsubbands with a symmetric real filter.
 * The filter must have its non-center even coefficients equal to zero. */
static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
{
    int i, j;
    for (i = 0; i < len; i++) {
        float re_in = filter[6] * in[6+i][0];        //real inphase
        float re_op = 0.0f;                          //real out of phase
        float im_in = filter[6] * in[6+i][1];        //imag inphase
        float im_op = 0.0f;                          //imag out of phase
        for (j = 0; j < 6; j += 2) {
            re_op += filter[j+1] * (in[i+j+1][0] + in[12-j-1+i][0]);
            im_op += filter[j+1] * (in[i+j+1][1] + in[12-j-1+i][1]);
        }
        out[ reverse][i][0] = re_in + re_op;
        out[ reverse][i][1] = im_in + im_op;
        out[!reverse][i][0] = re_in - re_op;
        out[!reverse][i][1] = im_in - im_op;
    }
}

/** Split one subband into 6 subsubbands with a complex filter */
static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
{
    int i, j, ssb;
    int N = 8;
    float temp[8][2];

    for (i = 0; i < len; i++) {
        for (ssb = 0; ssb < N; ssb++) {
            float sum_re = filter[ssb][6][0] * in[i+6][0], sum_im = filter[ssb][6][0] * in[i+6][1];
            for (j = 0; j < 6; j++) {
                float in0_re = in[i+j][0];
                float in0_im = in[i+j][1];
                float in1_re = in[i+12-j][0];
                float in1_im = in[i+12-j][1];
                sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
                sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
            }
            temp[ssb][0] = sum_re;
            temp[ssb][1] = sum_im;
        }
        out[0][i][0] = temp[6][0];
        out[0][i][1] = temp[6][1];
        out[1][i][0] = temp[7][0];
        out[1][i][1] = temp[7][1];
        out[2][i][0] = temp[0][0];
        out[2][i][1] = temp[0][1];
        out[3][i][0] = temp[1][0];
        out[3][i][1] = temp[1][1];
        out[4][i][0] = temp[2][0] + temp[5][0];
        out[4][i][1] = temp[2][1] + temp[5][1];
        out[5][i][0] = temp[3][0] + temp[4][0];
        out[5][i][1] = temp[3][1] + temp[4][1];
    }
}

static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
{
    int i, j, ssb;

    for (i = 0; i < len; i++) {
        for (ssb = 0; ssb < N; ssb++) {
            float sum_re = filter[ssb][6][0] * in[i+6][0], sum_im = filter[ssb][6][0] * in[i+6][1];
            for (j = 0; j < 6; j++) {
                float in0_re = in[i+j][0];
                float in0_im = in[i+j][1];
                float in1_re = in[i+12-j][0];
                float in1_im = in[i+12-j][1];
                sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
                sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
            }
            out[ssb][i][0] = sum_re;
            out[ssb][i][1] = sum_im;
        }
    }
}

static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
{
    int i, j;
    for (i = 0; i < 5; i++) {
        for (j = 0; j < 38; j++) {
            in[i][j+6][0] = L[0][j][i];
            in[i][j+6][1] = L[1][j][i];
        }
    }
    if(is34) {
        hybrid4_8_12_cx(in[0], out,    f34_0_12, 12, len);
        hybrid4_8_12_cx(in[1], out+12, f34_1_8,   8, len);
        hybrid4_8_12_cx(in[2], out+20, f34_2_4,   4, len);
        hybrid4_8_12_cx(in[3], out+24, f34_2_4,   4, len);
        hybrid4_8_12_cx(in[4], out+28, f34_2_4,   4, len);
        for (i = 0; i < 59; i++) {
            for (j = 0; j < len; j++) {
                out[i+32][j][0] = L[0][j][i+5];
                out[i+32][j][1] = L[1][j][i+5];
            }
        }
    } else {
        hybrid6_cx(in[0], out, f20_0_8, len);
        hybrid2_re(in[1], out+6, g1_Q2, len, 1);
        hybrid2_re(in[2], out+8, g1_Q2, len, 0);
        for (i = 0; i < 61; i++) {
            for (j = 0; j < len; j++) {
                out[i+10][j][0] = L[0][j][i+3];
                out[i+10][j][1] = L[1][j][i+3];
            }
        }
    }
    //update in_buf
    for (i = 0; i < 5; i++) {
        memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
    }
}

static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
{
    int i, n;
    if(is34) {
        for (n = 0; n < len; n++) {
            memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
            memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
            for(i = 0; i < 12; i++) {
                out[0][n][0] += in[   i][n][0];
                out[1][n][0] += in[   i][n][1];
            }
            for(i = 0; i < 8; i++) {
                out[0][n][1] += in[12+i][n][0];
                out[1][n][1] += in[12+i][n][1];
            }
            for(i = 0; i < 4; i++) {
                out[0][n][2] += in[20+i][n][0];
                out[1][n][2] += in[20+i][n][1];
                out[0][n][3] += in[24+i][n][0];
                out[1][n][3] += in[24+i][n][1];
                out[0][n][4] += in[28+i][n][0];
                out[1][n][4] += in[28+i][n][1];
            }
        }
        for (i = 0; i < 59; i++) {
            for (n = 0; n < len; n++) {
                out[0][n][i+5] = in[i+32][n][0];
                out[1][n][i+5] = in[i+32][n][1];
            }
        }
    } else {
        for (n = 0; n < len; n++) {
            out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
                           in[3][n][0] + in[4][n][0] + in[5][n][0];
            out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
                           in[3][n][1] + in[4][n][1] + in[5][n][1];
            out[0][n][1] = in[6][n][0] + in[7][n][0];
            out[1][n][1] = in[6][n][1] + in[7][n][1];
            out[0][n][2] = in[8][n][0] + in[9][n][0];
            out[1][n][2] = in[8][n][1] + in[9][n][1];
        }
        for (i = 0; i < 61; i++) {
            for (n = 0; n < len; n++) {
                out[0][n][i+3] = in[i+10][n][0];
                out[1][n][i+3] = in[i+10][n][1];
            }
        }
    }
}

/// All-pass filter decay slope
#define DECAY_SLOPE      0.05f
/// Number of frequency bands that can be addressed by the parameter index, b(k)
static const int   NR_PAR_BANDS[]      = { 20, 34 };
/// Number of frequency bands that can be addressed by the sub subband index, k
static const int   NR_BANDS[]          = { 71, 91 };
/// Start frequency band for the all-pass filter decay slope
static const int   DECAY_CUTOFF[]      = { 10, 32 };
/// Number of all-pass filer bands
static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
/// First stereo band using the short one sample delay
static const int   SHORT_DELAY_BAND[]  = { 42, 62 };

/** Table 8.46 */
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
{
    int b;
    if (full)
        b = 9;
    else {
        b = 4;
        par_mapped[10] = 0;
    }
    for (; b >= 0; b--) {
        par_mapped[2*b+1] = par_mapped[2*b] = par[b];
    }
}

static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
{
    par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
    par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
    par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
    par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
    par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
    par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
    par_mapped[ 6] =    par[10];
    par_mapped[ 7] =    par[11];
    par_mapped[ 8] = (  par[12] +   par[13]) / 2;
    par_mapped[ 9] = (  par[14] +   par[15]) / 2;
    par_mapped[10] =    par[16];
    if (full) {
        par_mapped[11] =    par[17];
        par_mapped[12] =    par[18];
        par_mapped[13] =    par[19];
        par_mapped[14] = (  par[20] +   par[21]) / 2;
        par_mapped[15] = (  par[22] +   par[23]) / 2;
        par_mapped[16] = (  par[24] +   par[25]) / 2;
        par_mapped[17] = (  par[26] +   par[27]) / 2;
        par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
        par_mapped[19] = (  par[32] +   par[33]) / 2;
    }
}

static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
{
    par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
    par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
    par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
    par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
    par[ 4] = (  par[ 6] +   par[ 7]) * 0.5f;
    par[ 5] = (  par[ 8] +   par[ 9]) * 0.5f;
    par[ 6] =    par[10];
    par[ 7] =    par[11];
    par[ 8] = (  par[12] +   par[13]) * 0.5f;
    par[ 9] = (  par[14] +   par[15]) * 0.5f;
    par[10] =    par[16];
    par[11] =    par[17];
    par[12] =    par[18];
    par[13] =    par[19];
    par[14] = (  par[20] +   par[21]) * 0.5f;
    par[15] = (  par[22] +   par[23]) * 0.5f;
    par[16] = (  par[24] +   par[25]) * 0.5f;
    par[17] = (  par[26] +   par[27]) * 0.5f;
    par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
    par[19] = (  par[32] +   par[33]) * 0.5f;
}

static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
{
    if (full) {
        par_mapped[33] = par[9];
        par_mapped[32] = par[9];
        par_mapped[31] = par[9];
        par_mapped[30] = par[9];
        par_mapped[29] = par[9];
        par_mapped[28] = par[9];
        par_mapped[27] = par[8];
        par_mapped[26] = par[8];
        par_mapped[25] = par[8];
        par_mapped[24] = par[8];
        par_mapped[23] = par[7];
        par_mapped[22] = par[7];
        par_mapped[21] = par[7];
        par_mapped[20] = par[7];
        par_mapped[19] = par[6];
        par_mapped[18] = par[6];
        par_mapped[17] = par[5];
        par_mapped[16] = par[5];
    } else {
        par_mapped[16] =      0;
    }
    par_mapped[15] = par[4];
    par_mapped[14] = par[4];
    par_mapped[13] = par[4];
    par_mapped[12] = par[4];
    par_mapped[11] = par[3];
    par_mapped[10] = par[3];
    par_mapped[ 9] = par[2];
    par_mapped[ 8] = par[2];
    par_mapped[ 7] = par[2];
    par_mapped[ 6] = par[2];
    par_mapped[ 5] = par[1];
    par_mapped[ 4] = par[1];
    par_mapped[ 3] = par[1];
    par_mapped[ 2] = par[0];
    par_mapped[ 1] = par[0];
    par_mapped[ 0] = par[0];
}

static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
{
    if (full) {
        par_mapped[33] =  par[19];
        par_mapped[32] =  par[19];
        par_mapped[31] =  par[18];
        par_mapped[30] =  par[18];
        par_mapped[29] =  par[18];
        par_mapped[28] =  par[18];
        par_mapped[27] =  par[17];
        par_mapped[26] =  par[17];
        par_mapped[25] =  par[16];
        par_mapped[24] =  par[16];
        par_mapped[23] =  par[15];
        par_mapped[22] =  par[15];
        par_mapped[21] =  par[14];
        par_mapped[20] =  par[14];
        par_mapped[19] =  par[13];
        par_mapped[18] =  par[12];
        par_mapped[17] =  par[11];
    }
    par_mapped[16] =  par[10];
    par_mapped[15] =  par[ 9];
    par_mapped[14] =  par[ 9];
    par_mapped[13] =  par[ 8];
    par_mapped[12] =  par[ 8];
    par_mapped[11] =  par[ 7];
    par_mapped[10] =  par[ 6];
    par_mapped[ 9] =  par[ 5];
    par_mapped[ 8] =  par[ 5];
    par_mapped[ 7] =  par[ 4];
    par_mapped[ 6] =  par[ 4];
    par_mapped[ 5] =  par[ 3];
    par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
    par_mapped[ 3] =  par[ 2];
    par_mapped[ 2] =  par[ 1];
    par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
    par_mapped[ 0] =  par[ 0];
}

static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
{
    par[33] =  par[19];
    par[32] =  par[19];
    par[31] =  par[18];
    par[30] =  par[18];
    par[29] =  par[18];
    par[28] =  par[18];
    par[27] =  par[17];
    par[26] =  par[17];
    par[25] =  par[16];
    par[24] =  par[16];
    par[23] =  par[15];
    par[22] =  par[15];
    par[21] =  par[14];
    par[20] =  par[14];
    par[19] =  par[13];
    par[18] =  par[12];
    par[17] =  par[11];
    par[16] =  par[10];
    par[15] =  par[ 9];
    par[14] =  par[ 9];
    par[13] =  par[ 8];
    par[12] =  par[ 8];
    par[11] =  par[ 7];
    par[10] =  par[ 6];
    par[ 9] =  par[ 5];
    par[ 8] =  par[ 5];
    par[ 7] =  par[ 4];
    par[ 6] =  par[ 4];
    par[ 5] =  par[ 3];
    par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
    par[ 3] =  par[ 2];
    par[ 2] =  par[ 1];
    par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
    par[ 0] =  par[ 0];
}

static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
{
    float power[34][PS_QMF_TIME_SLOTS] = {{0}};
    float transient_gain[34][PS_QMF_TIME_SLOTS];
    float *peak_decay_nrg = ps->peak_decay_nrg;
    float *power_smooth = ps->power_smooth;
    float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
    float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
    float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
    const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
    const float peak_decay_factor = 0.76592833836465f;
    const float transient_impact  = 1.5f;
    const float a_smooth          = 0.25f; //< Smoothing coefficient
    int i, k, m, n;
    int n0 = 0, nL = 32;
    static const int link_delay[] = { 3, 4, 5 };
    static const float a[] = { 0.65143905753106f,
                               0.56471812200776f,
                               0.48954165955695f };

    if (is34 != ps->is34bands_old) {
        memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
        memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
        memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
        memset(ps->delay,                  0, sizeof(ps->delay));
        memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
    }

    for (n = n0; n < nL; n++) {
        for (k = 0; k < NR_BANDS[is34]; k++) {
            int i = k_to_i[k];
            power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
        }
    }

    //Transient detection
    for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
        for (n = n0; n < nL; n++) {
            float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
            float denom;
            peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
            power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
            peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
            denom = transient_impact * peak_decay_diff_smooth[i];
            transient_gain[i][n]   = (denom > power_smooth[i]) ?
                                         power_smooth[i] / denom : 1.0f;
        }
    }

    //Decorrelation and transient reduction
    //                         PS_AP_LINKS - 1
    //                               -----
    //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
    //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
    //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
    //                               m = 0
    //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
    for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
        int b = k_to_i[k];
        float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
        float ag[PS_AP_LINKS];
        g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
        memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
        memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
        for (m = 0; m < PS_AP_LINKS; m++) {
            memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
            ag[m] = a[m] * g_decay_slope;
        }
        for (n = n0; n < nL; n++) {
            float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
                          delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
            float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
                          delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
            for (m = 0; m < PS_AP_LINKS; m++) {
                float a_re                = ag[m] * in_re;
                float a_im                = ag[m] * in_im;
                float link_delay_re       = ap_delay[k][m][n+5-link_delay[m]][0];
                float link_delay_im       = ap_delay[k][m][n+5-link_delay[m]][1];
                float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
                float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
                ap_delay[k][m][n+5][0] = in_re;
                ap_delay[k][m][n+5][1] = in_im;
                in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
                in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
                ap_delay[k][m][n+5][0] += ag[m] * in_re;
                ap_delay[k][m][n+5][1] += ag[m] * in_im;
            }
            out[k][n][0] = transient_gain[b][n] * in_re;
            out[k][n][1] = transient_gain[b][n] * in_im;
        }
    }
    for (; k < SHORT_DELAY_BAND[is34]; k++) {
        memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
        memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
        for (n = n0; n < nL; n++) {
            //H = delay 14
            out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
            out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
        }
    }
    for (; k < NR_BANDS[is34]; k++) {
        memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
        memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
        for (n = n0; n < nL; n++) {
            //H = delay 1
            out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
            out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
        }
    }
}

static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
                    int8_t           (*par)[PS_MAX_NR_IIDICC],
                    int num_par, int num_env, int full)
{
    int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
    int e;
    if (num_par == 20 || num_par == 11) {
        for (e = 0; e < num_env; e++) {
            map_idx_20_to_34(par_mapped[e], par[e], full);
        }
    } else if (num_par == 10 || num_par == 5) {
        for (e = 0; e < num_env; e++) {
            map_idx_10_to_34(par_mapped[e], par[e], full);
        }
    } else {
        *p_par_mapped = par;
    }
}

static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
                    int8_t           (*par)[PS_MAX_NR_IIDICC],
                    int num_par, int num_env, int full)
{
    int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
    int e;
    if (num_par == 34 || num_par == 17) {
        for (e = 0; e < num_env; e++) {
            map_idx_34_to_20(par_mapped[e], par[e], full);
        }
    } else if (num_par == 10 || num_par == 5) {
        for (e = 0; e < num_env; e++) {
            map_idx_10_to_20(par_mapped[e], par[e], full);
        }
    } else {
        *p_par_mapped = par;
    }
}

static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
{
    int e, b, k, n;

    float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
    float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
    float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
    float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
    int8_t *opd_hist = ps->opd_hist;
    int8_t *ipd_hist = ps->ipd_hist;
    int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
    int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
    int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
    int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
    int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
    int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
    int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
    int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
    const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
    const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;

    //Remapping
815 816 817 818 819 820 821 822
    memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
    memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
    memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
    memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
    memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
    memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
    memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
    memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    if (is34) {
        remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
        remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
        if (ps->enable_ipdopd) {
            remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
            remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
        }
        if (!ps->is34bands_old) {
            map_val_20_to_34(H11[0][0]);
            map_val_20_to_34(H11[1][0]);
            map_val_20_to_34(H12[0][0]);
            map_val_20_to_34(H12[1][0]);
            map_val_20_to_34(H21[0][0]);
            map_val_20_to_34(H21[1][0]);
            map_val_20_to_34(H22[0][0]);
            map_val_20_to_34(H22[1][0]);
            ipdopd_reset(ipd_hist, opd_hist);
        }
    } else {
        remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
        remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
        if (ps->enable_ipdopd) {
            remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
            remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
        }
        if (ps->is34bands_old) {
            map_val_34_to_20(H11[0][0]);
            map_val_34_to_20(H11[1][0]);
            map_val_34_to_20(H12[0][0]);
            map_val_34_to_20(H12[1][0]);
            map_val_34_to_20(H21[0][0]);
            map_val_34_to_20(H21[1][0]);
            map_val_34_to_20(H22[0][0]);
            map_val_34_to_20(H22[1][0]);
            ipdopd_reset(ipd_hist, opd_hist);
        }
    }

    //Mixing
    for (e = 0; e < ps->num_env; e++) {
        for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
            float h11, h12, h21, h22;
            h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
            h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
            h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
            h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
            if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
                //The spec say says to only run this smoother when enable_ipdopd
                //is set but the reference decoder appears to run it constantly
                float h11i, h12i, h21i, h22i;
                float ipd_adj_re, ipd_adj_im;
                int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
                int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
                float opd_re = pd_re_smooth[opd_idx];
                float opd_im = pd_im_smooth[opd_idx];
                float ipd_re = pd_re_smooth[ipd_idx];
                float ipd_im = pd_im_smooth[ipd_idx];
                opd_hist[b] = opd_idx & 0x3F;
                ipd_hist[b] = ipd_idx & 0x3F;

                ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
                ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
                h11i = h11 * opd_im;
                h11  = h11 * opd_re;
                h12i = h12 * ipd_adj_im;
                h12  = h12 * ipd_adj_re;
                h21i = h21 * opd_im;
                h21  = h21 * opd_re;
                h22i = h22 * ipd_adj_im;
                h22  = h22 * ipd_adj_re;
                H11[1][e+1][b] = h11i;
                H12[1][e+1][b] = h12i;
                H21[1][e+1][b] = h21i;
                H22[1][e+1][b] = h22i;
            }
            H11[0][e+1][b] = h11;
            H12[0][e+1][b] = h12;
            H21[0][e+1][b] = h21;
            H22[0][e+1][b] = h22;
        }
        for (k = 0; k < NR_BANDS[is34]; k++) {
            float h11r, h12r, h21r, h22r;
            float h11i, h12i, h21i, h22i;
            float h11r_step, h12r_step, h21r_step, h22r_step;
            float h11i_step, h12i_step, h21i_step, h22i_step;
            int start = ps->border_position[e];
            int stop  = ps->border_position[e+1];
            float width = 1.f / (stop - start);
            b = k_to_i[k];
            h11r = H11[0][e][b];
            h12r = H12[0][e][b];
            h21r = H21[0][e][b];
            h22r = H22[0][e][b];
            if (!PS_BASELINE && ps->enable_ipdopd) {
            //Is this necessary? ps_04_new seems unchanged
            if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
                h11i = -H11[1][e][b];
                h12i = -H12[1][e][b];
                h21i = -H21[1][e][b];
                h22i = -H22[1][e][b];
            } else {
                h11i = H11[1][e][b];
                h12i = H12[1][e][b];
                h21i = H21[1][e][b];
                h22i = H22[1][e][b];
            }
            }
            //Interpolation
            h11r_step = (H11[0][e+1][b] - h11r) * width;
            h12r_step = (H12[0][e+1][b] - h12r) * width;
            h21r_step = (H21[0][e+1][b] - h21r) * width;
            h22r_step = (H22[0][e+1][b] - h22r) * width;
            if (!PS_BASELINE && ps->enable_ipdopd) {
                h11i_step = (H11[1][e+1][b] - h11i) * width;
                h12i_step = (H12[1][e+1][b] - h12i) * width;
                h21i_step = (H21[1][e+1][b] - h21i) * width;
                h22i_step = (H22[1][e+1][b] - h22i) * width;
            }
            for (n = start + 1; n <= stop; n++) {
                //l is s, r is d
                float l_re = l[k][n][0];
                float l_im = l[k][n][1];
                float r_re = r[k][n][0];
                float r_im = r[k][n][1];
                h11r += h11r_step;
                h12r += h12r_step;
                h21r += h21r_step;
                h22r += h22r_step;
                if (!PS_BASELINE && ps->enable_ipdopd) {
                h11i += h11i_step;
                h12i += h12i_step;
                h21i += h21i_step;
                h22i += h22i_step;

                l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
                l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
                r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
                r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
                } else {
                l[k][n][0] = h11r*l_re + h21r*r_re;
                l[k][n][1] = h11r*l_im + h21r*r_im;
                r[k][n][0] = h12r*l_re + h22r*r_re;
                r[k][n][1] = h12r*l_im + h22r*r_im;
                }
            }
        }
    }
}

int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
{
    float Lbuf[91][32][2];
    float Rbuf[91][32][2];
    const int len = 32;
    int is34 = ps->is34bands;

    top += NR_BANDS[is34] - 64;
    memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
    if (top < NR_ALLPASS_BANDS[is34])
        memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));

    hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
    decorrelation(ps, Rbuf, Lbuf, is34);
    stereo_processing(ps, Lbuf, Rbuf, is34);
    hybrid_synthesis(L, Lbuf, is34, len);
    hybrid_synthesis(R, Rbuf, is34, len);

    return 0;
}

#define PS_INIT_VLC_STATIC(num, size) \
    INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size,    \
                    ps_tmp[num].ps_bits, 1, 1,                                          \
                    ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
                    size);

#define PS_VLC_ROW(name) \
    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }

av_cold void ff_ps_init(void) {
    // Syntax initialization
    static const struct {
        const void *ps_codes, *ps_bits;
        const unsigned int table_size, elem_size;
    } ps_tmp[] = {
        PS_VLC_ROW(huff_iid_df1),
        PS_VLC_ROW(huff_iid_dt1),
        PS_VLC_ROW(huff_iid_df0),
        PS_VLC_ROW(huff_iid_dt0),
        PS_VLC_ROW(huff_icc_df),
        PS_VLC_ROW(huff_icc_dt),
        PS_VLC_ROW(huff_ipd_df),
        PS_VLC_ROW(huff_ipd_dt),
        PS_VLC_ROW(huff_opd_df),
        PS_VLC_ROW(huff_opd_dt),
    };

    PS_INIT_VLC_STATIC(0, 1544);
    PS_INIT_VLC_STATIC(1,  832);
    PS_INIT_VLC_STATIC(2, 1024);
    PS_INIT_VLC_STATIC(3, 1036);
    PS_INIT_VLC_STATIC(4,  544);
    PS_INIT_VLC_STATIC(5,  544);
    PS_INIT_VLC_STATIC(6,  512);
    PS_INIT_VLC_STATIC(7,  512);
    PS_INIT_VLC_STATIC(8,  512);
    PS_INIT_VLC_STATIC(9,  512);

    ps_tableinit();
}

av_cold void ff_ps_ctx_init(PSContext *ps)
{
    ipdopd_reset(ps->ipd_hist, ps->opd_hist);
}