提交 14a62c34 编写于 作者: T Thomas Gleixner 提交者: Ingo Molnar

x86: unify ioremap

Signed-off-by: NIngo Molnar <mingo@elte.hu>
Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
上级 a3828064
...@@ -47,10 +47,10 @@ ...@@ -47,10 +47,10 @@
#include <asm/numa.h> #include <asm/numa.h>
#ifndef Dprintk #ifndef Dprintk
#define Dprintk(x...) # define Dprintk(x...)
#endif #endif
const struct dma_mapping_ops* dma_ops; const struct dma_mapping_ops *dma_ops;
EXPORT_SYMBOL(dma_ops); EXPORT_SYMBOL(dma_ops);
static unsigned long dma_reserve __initdata; static unsigned long dma_reserve __initdata;
...@@ -67,22 +67,26 @@ void show_mem(void) ...@@ -67,22 +67,26 @@ void show_mem(void)
{ {
long i, total = 0, reserved = 0; long i, total = 0, reserved = 0;
long shared = 0, cached = 0; long shared = 0, cached = 0;
pg_data_t *pgdat;
struct page *page; struct page *page;
pg_data_t *pgdat;
printk(KERN_INFO "Mem-info:\n"); printk(KERN_INFO "Mem-info:\n");
show_free_areas(); show_free_areas();
printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); printk(KERN_INFO "Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
for_each_online_pgdat(pgdat) { for_each_online_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; ++i) { for (i = 0; i < pgdat->node_spanned_pages; ++i) {
/* this loop can take a while with 256 GB and 4k pages /*
so update the NMI watchdog */ * This loop can take a while with 256 GB and
if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) { * 4k pages so defer the NMI watchdog:
*/
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
touch_nmi_watchdog(); touch_nmi_watchdog();
}
if (!pfn_valid(pgdat->node_start_pfn + i)) if (!pfn_valid(pgdat->node_start_pfn + i))
continue; continue;
page = pfn_to_page(pgdat->node_start_pfn + i); page = pfn_to_page(pgdat->node_start_pfn + i);
total++; total++;
if (PageReserved(page)) if (PageReserved(page))
...@@ -91,32 +95,37 @@ void show_mem(void) ...@@ -91,32 +95,37 @@ void show_mem(void)
cached++; cached++;
else if (page_count(page)) else if (page_count(page))
shared += page_count(page) - 1; shared += page_count(page) - 1;
} }
} }
printk(KERN_INFO "%lu pages of RAM\n", total); printk(KERN_INFO "%lu pages of RAM\n", total);
printk(KERN_INFO "%lu reserved pages\n",reserved); printk(KERN_INFO "%lu reserved pages\n", reserved);
printk(KERN_INFO "%lu pages shared\n",shared); printk(KERN_INFO "%lu pages shared\n", shared);
printk(KERN_INFO "%lu pages swap cached\n",cached); printk(KERN_INFO "%lu pages swap cached\n", cached);
} }
int after_bootmem; int after_bootmem;
static __init void *spp_getpage(void) static __init void *spp_getpage(void)
{ {
void *ptr; void *ptr;
if (after_bootmem) if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC); ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else else
ptr = alloc_bootmem_pages(PAGE_SIZE); ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":""); if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
panic("set_pte_phys: cannot allocate page data %s\n",
after_bootmem ? "after bootmem" : "");
}
Dprintk("spp_getpage %p\n", ptr); Dprintk("spp_getpage %p\n", ptr);
return ptr; return ptr;
} }
static __init void set_pte_phys(unsigned long vaddr, static __init void
unsigned long phys, pgprot_t prot) set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
{ {
pgd_t *pgd; pgd_t *pgd;
pud_t *pud; pud_t *pud;
...@@ -132,10 +141,11 @@ static __init void set_pte_phys(unsigned long vaddr, ...@@ -132,10 +141,11 @@ static __init void set_pte_phys(unsigned long vaddr,
} }
pud = pud_offset(pgd, vaddr); pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) { if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage(); pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER)); set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
if (pmd != pmd_offset(pud, 0)) { if (pmd != pmd_offset(pud, 0)) {
printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0)); printk("PAGETABLE BUG #01! %p <-> %p\n",
pmd, pmd_offset(pud, 0));
return; return;
} }
} }
...@@ -164,8 +174,8 @@ static __init void set_pte_phys(unsigned long vaddr, ...@@ -164,8 +174,8 @@ static __init void set_pte_phys(unsigned long vaddr,
} }
/* NOTE: this is meant to be run only at boot */ /* NOTE: this is meant to be run only at boot */
void __init void __init
__set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot) __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{ {
unsigned long address = __fix_to_virt(idx); unsigned long address = __fix_to_virt(idx);
...@@ -180,18 +190,19 @@ static unsigned long __initdata table_start; ...@@ -180,18 +190,19 @@ static unsigned long __initdata table_start;
static unsigned long __meminitdata table_end; static unsigned long __meminitdata table_end;
static __meminit void *alloc_low_page(unsigned long *phys) static __meminit void *alloc_low_page(unsigned long *phys)
{ {
unsigned long pfn = table_end++; unsigned long pfn = table_end++;
void *adr; void *adr;
if (after_bootmem) { if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC); adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr); *phys = __pa(adr);
return adr; return adr;
} }
if (pfn >= end_pfn) if (pfn >= end_pfn)
panic("alloc_low_page: ran out of memory"); panic("alloc_low_page: ran out of memory");
adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE); adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
memset(adr, 0, PAGE_SIZE); memset(adr, 0, PAGE_SIZE);
...@@ -200,44 +211,49 @@ static __meminit void *alloc_low_page(unsigned long *phys) ...@@ -200,44 +211,49 @@ static __meminit void *alloc_low_page(unsigned long *phys)
} }
static __meminit void unmap_low_page(void *adr) static __meminit void unmap_low_page(void *adr)
{ {
if (after_bootmem) if (after_bootmem)
return; return;
early_iounmap(adr, PAGE_SIZE); early_iounmap(adr, PAGE_SIZE);
} }
/* Must run before zap_low_mappings */ /* Must run before zap_low_mappings */
__meminit void *early_ioremap(unsigned long addr, unsigned long size) __meminit void *early_ioremap(unsigned long addr, unsigned long size)
{ {
unsigned long vaddr;
pmd_t *pmd, *last_pmd; pmd_t *pmd, *last_pmd;
unsigned long vaddr;
int i, pmds; int i, pmds;
pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE; pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
vaddr = __START_KERNEL_map; vaddr = __START_KERNEL_map;
pmd = level2_kernel_pgt; pmd = level2_kernel_pgt;
last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1; last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) { for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
for (i = 0; i < pmds; i++) { for (i = 0; i < pmds; i++) {
if (pmd_present(pmd[i])) if (pmd_present(pmd[i]))
goto next; goto continue_outer_loop;
} }
vaddr += addr & ~PMD_MASK; vaddr += addr & ~PMD_MASK;
addr &= PMD_MASK; addr &= PMD_MASK;
for (i = 0; i < pmds; i++, addr += PMD_SIZE) for (i = 0; i < pmds; i++, addr += PMD_SIZE)
set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
__flush_tlb_all(); __flush_tlb_all();
return (void *)vaddr; return (void *)vaddr;
next: continue_outer_loop:
; ;
} }
printk("early_ioremap(0x%lx, %lu) failed\n", addr, size); printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
return NULL; return NULL;
} }
/* To avoid virtual aliases later */ /*
* To avoid virtual aliases later:
*/
__meminit void early_iounmap(void *addr, unsigned long size) __meminit void early_iounmap(void *addr, unsigned long size)
{ {
unsigned long vaddr; unsigned long vaddr;
...@@ -247,8 +263,10 @@ __meminit void early_iounmap(void *addr, unsigned long size) ...@@ -247,8 +263,10 @@ __meminit void early_iounmap(void *addr, unsigned long size)
vaddr = (unsigned long)addr; vaddr = (unsigned long)addr;
pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE; pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
pmd = level2_kernel_pgt + pmd_index(vaddr); pmd = level2_kernel_pgt + pmd_index(vaddr);
for (i = 0; i < pmds; i++) for (i = 0; i < pmds; i++)
pmd_clear(pmd + i); pmd_clear(pmd + i);
__flush_tlb_all(); __flush_tlb_all();
} }
...@@ -262,9 +280,10 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end) ...@@ -262,9 +280,10 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
pmd_t *pmd = pmd_page + pmd_index(address); pmd_t *pmd = pmd_page + pmd_index(address);
if (address >= end) { if (address >= end) {
if (!after_bootmem) if (!after_bootmem) {
for (; i < PTRS_PER_PMD; i++, pmd++) for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0)); set_pmd(pmd, __pmd(0));
}
break; break;
} }
...@@ -280,19 +299,19 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end) ...@@ -280,19 +299,19 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
static void __meminit static void __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end) phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
{ {
pmd_t *pmd = pmd_offset(pud,0); pmd_t *pmd = pmd_offset(pud, 0);
spin_lock(&init_mm.page_table_lock); spin_lock(&init_mm.page_table_lock);
phys_pmd_init(pmd, address, end); phys_pmd_init(pmd, address, end);
spin_unlock(&init_mm.page_table_lock); spin_unlock(&init_mm.page_table_lock);
__flush_tlb_all(); __flush_tlb_all();
} }
static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end) static void __meminit
{ phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
{
int i = pud_index(addr); int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
unsigned long pmd_phys; unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr); pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd; pmd_t *pmd;
...@@ -300,10 +319,11 @@ static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigne ...@@ -300,10 +319,11 @@ static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigne
if (addr >= end) if (addr >= end)
break; break;
if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) { if (!after_bootmem &&
set_pud(pud, __pud(0)); !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
set_pud(pud, __pud(0));
continue; continue;
} }
if (pud_val(*pud)) { if (pud_val(*pud)) {
phys_pmd_update(pud, addr, end); phys_pmd_update(pud, addr, end);
...@@ -311,14 +331,16 @@ static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigne ...@@ -311,14 +331,16 @@ static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigne
} }
pmd = alloc_low_page(&pmd_phys); pmd = alloc_low_page(&pmd_phys);
spin_lock(&init_mm.page_table_lock); spin_lock(&init_mm.page_table_lock);
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE)); set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
phys_pmd_init(pmd, addr, end); phys_pmd_init(pmd, addr, end);
spin_unlock(&init_mm.page_table_lock); spin_unlock(&init_mm.page_table_lock);
unmap_low_page(pmd); unmap_low_page(pmd);
} }
__flush_tlb_all(); __flush_tlb_all();
} }
static void __init find_early_table_space(unsigned long end) static void __init find_early_table_space(unsigned long end)
{ {
...@@ -329,11 +351,13 @@ static void __init find_early_table_space(unsigned long end) ...@@ -329,11 +351,13 @@ static void __init find_early_table_space(unsigned long end)
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) + tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
round_up(pmds * sizeof(pmd_t), PAGE_SIZE); round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
/* RED-PEN putting page tables only on node 0 could /*
cause a hotspot and fill up ZONE_DMA. The page tables * RED-PEN putting page tables only on node 0 could
need roughly 0.5KB per GB. */ * cause a hotspot and fill up ZONE_DMA. The page tables
start = 0x8000; * need roughly 0.5KB per GB.
table_start = find_e820_area(start, end, tables); */
start = 0x8000;
table_start = find_e820_area(start, end, tables);
if (table_start == -1UL) if (table_start == -1UL)
panic("Cannot find space for the kernel page tables"); panic("Cannot find space for the kernel page tables");
...@@ -345,20 +369,23 @@ static void __init find_early_table_space(unsigned long end) ...@@ -345,20 +369,23 @@ static void __init find_early_table_space(unsigned long end)
(table_start << PAGE_SHIFT) + tables); (table_start << PAGE_SHIFT) + tables);
} }
/* Setup the direct mapping of the physical memory at PAGE_OFFSET. /*
This runs before bootmem is initialized and gets pages directly from the * Setup the direct mapping of the physical memory at PAGE_OFFSET.
physical memory. To access them they are temporarily mapped. */ * This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
void __init_refok init_memory_mapping(unsigned long start, unsigned long end) void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
{ {
unsigned long next; unsigned long next;
Dprintk("init_memory_mapping\n"); Dprintk("init_memory_mapping\n");
/* /*
* Find space for the kernel direct mapping tables. * Find space for the kernel direct mapping tables.
* Later we should allocate these tables in the local node of the memory *
* mapped. Unfortunately this is done currently before the nodes are * Later we should allocate these tables in the local node of the
* discovered. * memory mapped. Unfortunately this is done currently before the
* nodes are discovered.
*/ */
if (!after_bootmem) if (!after_bootmem)
find_early_table_space(end); find_early_table_space(end);
...@@ -367,8 +394,8 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end) ...@@ -367,8 +394,8 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
end = (unsigned long)__va(end); end = (unsigned long)__va(end);
for (; start < end; start = next) { for (; start < end; start = next) {
unsigned long pud_phys;
pgd_t *pgd = pgd_offset_k(start); pgd_t *pgd = pgd_offset_k(start);
unsigned long pud_phys;
pud_t *pud; pud_t *pud;
if (after_bootmem) if (after_bootmem)
...@@ -377,13 +404,13 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end) ...@@ -377,13 +404,13 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
pud = alloc_low_page(&pud_phys); pud = alloc_low_page(&pud_phys);
next = start + PGDIR_SIZE; next = start + PGDIR_SIZE;
if (next > end) if (next > end)
next = end; next = end;
phys_pud_init(pud, __pa(start), __pa(next)); phys_pud_init(pud, __pa(start), __pa(next));
if (!after_bootmem) if (!after_bootmem)
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys)); set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
unmap_low_page(pud); unmap_low_page(pud);
} }
if (!after_bootmem) if (!after_bootmem)
mmu_cr4_features = read_cr4(); mmu_cr4_features = read_cr4();
...@@ -396,6 +423,7 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end) ...@@ -396,6 +423,7 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
void __init paging_init(void) void __init paging_init(void)
{ {
unsigned long max_zone_pfns[MAX_NR_ZONES]; unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
...@@ -407,39 +435,48 @@ void __init paging_init(void) ...@@ -407,39 +435,48 @@ void __init paging_init(void)
} }
#endif #endif
/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches /*
from the CPU leading to inconsistent cache lines. address and size * Unmap a kernel mapping if it exists. This is useful to avoid
must be aligned to 2MB boundaries. * prefetches from the CPU leading to inconsistent cache lines.
Does nothing when the mapping doesn't exist. */ * address and size must be aligned to 2MB boundaries.
void __init clear_kernel_mapping(unsigned long address, unsigned long size) * Does nothing when the mapping doesn't exist.
*/
void __init clear_kernel_mapping(unsigned long address, unsigned long size)
{ {
unsigned long end = address + size; unsigned long end = address + size;
BUG_ON(address & ~LARGE_PAGE_MASK); BUG_ON(address & ~LARGE_PAGE_MASK);
BUG_ON(size & ~LARGE_PAGE_MASK); BUG_ON(size & ~LARGE_PAGE_MASK);
for (; address < end; address += LARGE_PAGE_SIZE) { for (; address < end; address += LARGE_PAGE_SIZE) {
pgd_t *pgd = pgd_offset_k(address); pgd_t *pgd = pgd_offset_k(address);
pud_t *pud; pud_t *pud;
pmd_t *pmd; pmd_t *pmd;
if (pgd_none(*pgd)) if (pgd_none(*pgd))
continue; continue;
pud = pud_offset(pgd, address); pud = pud_offset(pgd, address);
if (pud_none(*pud)) if (pud_none(*pud))
continue; continue;
pmd = pmd_offset(pud, address); pmd = pmd_offset(pud, address);
if (!pmd || pmd_none(*pmd)) if (!pmd || pmd_none(*pmd))
continue; continue;
if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
/* Could handle this, but it should not happen currently. */ if (!(pmd_val(*pmd) & _PAGE_PSE)) {
printk(KERN_ERR /*
"clear_kernel_mapping: mapping has been split. will leak memory\n"); * Could handle this, but it should not happen
pmd_ERROR(*pmd); * currently:
*/
printk(KERN_ERR "clear_kernel_mapping: "
"mapping has been split. will leak memory\n");
pmd_ERROR(*pmd);
} }
set_pmd(pmd, __pmd(0)); set_pmd(pmd, __pmd(0));
} }
__flush_tlb_all(); __flush_tlb_all();
} }
/* /*
* Memory hotplug specific functions * Memory hotplug specific functions
...@@ -466,16 +503,13 @@ int arch_add_memory(int nid, u64 start, u64 size) ...@@ -466,16 +503,13 @@ int arch_add_memory(int nid, u64 start, u64 size)
unsigned long nr_pages = size >> PAGE_SHIFT; unsigned long nr_pages = size >> PAGE_SHIFT;
int ret; int ret;
init_memory_mapping(start, (start + size -1)); init_memory_mapping(start, start + size-1);
ret = __add_pages(zone, start_pfn, nr_pages); ret = __add_pages(zone, start_pfn, nr_pages);
if (ret) if (ret)
goto error; printk("%s: Problem encountered in __add_pages!\n", __func__);
return ret; return ret;
error:
printk("%s: Problem encountered in __add_pages!\n", __func__);
return ret;
} }
EXPORT_SYMBOL_GPL(arch_add_memory); EXPORT_SYMBOL_GPL(arch_add_memory);
...@@ -489,8 +523,8 @@ EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); ...@@ -489,8 +523,8 @@ EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif /* CONFIG_MEMORY_HOTPLUG */ #endif /* CONFIG_MEMORY_HOTPLUG */
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules, static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
kcore_vsyscall; kcore_modules, kcore_vsyscall;
void __init mem_init(void) void __init mem_init(void)
{ {
...@@ -518,7 +552,6 @@ void __init mem_init(void) ...@@ -518,7 +552,6 @@ void __init mem_init(void)
#endif #endif
reservedpages = end_pfn - totalram_pages - reservedpages = end_pfn - totalram_pages -
absent_pages_in_range(0, end_pfn); absent_pages_in_range(0, end_pfn);
after_bootmem = 1; after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text; codesize = (unsigned long) &_etext - (unsigned long) &_text;
...@@ -526,15 +559,16 @@ void __init mem_init(void) ...@@ -526,15 +559,16 @@ void __init mem_init(void)
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */ /* Register memory areas for /proc/kcore */
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START); VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext); kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START); VSYSCALL_END - VSYSCALL_START);
printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n", printk("Memory: %luk/%luk available (%ldk kernel code, "
"%ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10), (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
end_pfn << (PAGE_SHIFT-10), end_pfn << (PAGE_SHIFT-10),
codesize >> 10, codesize >> 10,
...@@ -561,6 +595,7 @@ void free_init_pages(char *what, unsigned long begin, unsigned long end) ...@@ -561,6 +595,7 @@ void free_init_pages(char *what, unsigned long begin, unsigned long end)
set_memory_np(begin, (end - begin) >> PAGE_SHIFT); set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else #else
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (addr = begin; addr < end; addr += PAGE_SIZE) { for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr)); ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr)); init_page_count(virt_to_page(addr));
...@@ -596,7 +631,7 @@ void mark_rodata_ro(void) ...@@ -596,7 +631,7 @@ void mark_rodata_ro(void)
#ifdef CONFIG_KPROBES #ifdef CONFIG_KPROBES
start = (unsigned long)__start_rodata; start = (unsigned long)__start_rodata;
#endif #endif
end = (unsigned long)__end_rodata; end = (unsigned long)__end_rodata;
start = (start + PAGE_SIZE - 1) & PAGE_MASK; start = (start + PAGE_SIZE - 1) & PAGE_MASK;
end &= PAGE_MASK; end &= PAGE_MASK;
...@@ -627,17 +662,21 @@ void free_initrd_mem(unsigned long start, unsigned long end) ...@@ -627,17 +662,21 @@ void free_initrd_mem(unsigned long start, unsigned long end)
} }
#endif #endif
void __init reserve_bootmem_generic(unsigned long phys, unsigned len) void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
{ {
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
int nid = phys_to_nid(phys); int nid = phys_to_nid(phys);
#endif #endif
unsigned long pfn = phys >> PAGE_SHIFT; unsigned long pfn = phys >> PAGE_SHIFT;
if (pfn >= end_pfn) { if (pfn >= end_pfn) {
/* This can happen with kdump kernels when accessing firmware /*
tables. */ * This can happen with kdump kernels when accessing
* firmware tables:
*/
if (pfn < end_pfn_map) if (pfn < end_pfn_map)
return; return;
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n", printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
phys, len); phys, len);
return; return;
...@@ -645,9 +684,9 @@ void __init reserve_bootmem_generic(unsigned long phys, unsigned len) ...@@ -645,9 +684,9 @@ void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
/* Should check here against the e820 map to avoid double free */ /* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
reserve_bootmem_node(NODE_DATA(nid), phys, len); reserve_bootmem_node(NODE_DATA(nid), phys, len);
#else #else
reserve_bootmem(phys, len); reserve_bootmem(phys, len);
#endif #endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE; dma_reserve += len / PAGE_SIZE;
...@@ -655,46 +694,49 @@ void __init reserve_bootmem_generic(unsigned long phys, unsigned len) ...@@ -655,46 +694,49 @@ void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
} }
} }
int kern_addr_valid(unsigned long addr) int kern_addr_valid(unsigned long addr)
{ {
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd; pgd_t *pgd;
pud_t *pud; pud_t *pud;
pmd_t *pmd; pmd_t *pmd;
pte_t *pte; pte_t *pte;
if (above != 0 && above != -1UL) if (above != 0 && above != -1UL)
return 0; return 0;
pgd = pgd_offset_k(addr); pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) if (pgd_none(*pgd))
return 0; return 0;
pud = pud_offset(pgd, addr); pud = pud_offset(pgd, addr);
if (pud_none(*pud)) if (pud_none(*pud))
return 0; return 0;
pmd = pmd_offset(pud, addr); pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) if (pmd_none(*pmd))
return 0; return 0;
if (pmd_large(*pmd)) if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd)); return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr); pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte)) if (pte_none(*pte))
return 0; return 0;
return pfn_valid(pte_pfn(*pte)); return pfn_valid(pte_pfn(*pte));
} }
/* A pseudo VMA to allow ptrace access for the vsyscall page. This only /*
covers the 64bit vsyscall page now. 32bit has a real VMA now and does * A pseudo VMA to allow ptrace access for the vsyscall page. This only
not need special handling anymore. */ * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
* not need special handling anymore:
*/
static struct vm_area_struct gate_vma = { static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START, .vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT), .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
.vm_page_prot = PAGE_READONLY_EXEC, .vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC .vm_flags = VM_READ | VM_EXEC
}; };
struct vm_area_struct *get_gate_vma(struct task_struct *tsk) struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
...@@ -709,14 +751,17 @@ struct vm_area_struct *get_gate_vma(struct task_struct *tsk) ...@@ -709,14 +751,17 @@ struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
int in_gate_area(struct task_struct *task, unsigned long addr) int in_gate_area(struct task_struct *task, unsigned long addr)
{ {
struct vm_area_struct *vma = get_gate_vma(task); struct vm_area_struct *vma = get_gate_vma(task);
if (!vma) if (!vma)
return 0; return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end); return (addr >= vma->vm_start) && (addr < vma->vm_end);
} }
/* Use this when you have no reliable task/vma, typically from interrupt /*
* context. It is less reliable than using the task's vma and may give * Use this when you have no reliable task/vma, typically from interrupt
* false positives. * context. It is less reliable than using the task's vma and may give
* false positives:
*/ */
int in_gate_area_no_task(unsigned long addr) int in_gate_area_no_task(unsigned long addr)
{ {
...@@ -736,8 +781,8 @@ const char *arch_vma_name(struct vm_area_struct *vma) ...@@ -736,8 +781,8 @@ const char *arch_vma_name(struct vm_area_struct *vma)
/* /*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/ */
int __meminit vmemmap_populate(struct page *start_page, int __meminit
unsigned long size, int node) vmemmap_populate(struct page *start_page, unsigned long size, int node)
{ {
unsigned long addr = (unsigned long)start_page; unsigned long addr = (unsigned long)start_page;
unsigned long end = (unsigned long)(start_page + size); unsigned long end = (unsigned long)(start_page + size);
...@@ -752,6 +797,7 @@ int __meminit vmemmap_populate(struct page *start_page, ...@@ -752,6 +797,7 @@ int __meminit vmemmap_populate(struct page *start_page,
pgd = vmemmap_pgd_populate(addr, node); pgd = vmemmap_pgd_populate(addr, node);
if (!pgd) if (!pgd)
return -ENOMEM; return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node); pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud) if (!pud)
return -ENOMEM; return -ENOMEM;
...@@ -759,19 +805,22 @@ int __meminit vmemmap_populate(struct page *start_page, ...@@ -759,19 +805,22 @@ int __meminit vmemmap_populate(struct page *start_page,
pmd = pmd_offset(pud, addr); pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) { if (pmd_none(*pmd)) {
pte_t entry; pte_t entry;
void *p = vmemmap_alloc_block(PMD_SIZE, node); void *p;
p = vmemmap_alloc_block(PMD_SIZE, node);
if (!p) if (!p)
return -ENOMEM; return -ENOMEM;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE); entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
PAGE_KERNEL_LARGE);
set_pmd(pmd, __pmd(pte_val(entry))); set_pmd(pmd, __pmd(pte_val(entry)));
printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n", printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
addr, addr + PMD_SIZE - 1, p, node); addr, addr + PMD_SIZE - 1, p, node);
} else } else {
vmemmap_verify((pte_t *)pmd, node, addr, next); vmemmap_verify((pte_t *)pmd, node, addr, next);
}
} }
return 0; return 0;
} }
#endif #endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册