semaphore.c 4.6 KB
Newer Older
H
Haavard Skinnemoen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * AVR32 sempahore implementation.
 *
 * Copyright (C) 2004-2006 Atmel Corporation
 *
 * Based on linux/arch/i386/kernel/semaphore.c
 *  Copyright (C) 1999 Linus Torvalds
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/module.h>

#include <asm/semaphore.h>
#include <asm/atomic.h>

/*
 * Semaphores are implemented using a two-way counter:
 * The "count" variable is decremented for each process
 * that tries to acquire the semaphore, while the "sleeping"
 * variable is a count of such acquires.
 *
 * Notably, the inline "up()" and "down()" functions can
 * efficiently test if they need to do any extra work (up
 * needs to do something only if count was negative before
 * the increment operation.
 *
 * "sleeping" and the contention routine ordering is protected
 * by the spinlock in the semaphore's waitqueue head.
 *
 * Note that these functions are only called when there is
 * contention on the lock, and as such all this is the
 * "non-critical" part of the whole semaphore business. The
 * critical part is the inline stuff in <asm/semaphore.h>
 * where we want to avoid any extra jumps and calls.
 */

/*
 * Logic:
 *  - only on a boundary condition do we need to care. When we go
 *    from a negative count to a non-negative, we wake people up.
 *  - when we go from a non-negative count to a negative do we
 *    (a) synchronize with the "sleeper" count and (b) make sure
 *    that we're on the wakeup list before we synchronize so that
 *    we cannot lose wakeup events.
 */

void __up(struct semaphore *sem)
{
	wake_up(&sem->wait);
}
EXPORT_SYMBOL(__up);

void __sched __down(struct semaphore *sem)
{
	struct task_struct *tsk = current;
        DECLARE_WAITQUEUE(wait, tsk);
        unsigned long flags;

        tsk->state = TASK_UNINTERRUPTIBLE;
        spin_lock_irqsave(&sem->wait.lock, flags);
        add_wait_queue_exclusive_locked(&sem->wait, &wait);

        sem->sleepers++;
        for (;;) {
                int sleepers = sem->sleepers;

                /*
                 * Add "everybody else" into it. They aren't
                 * playing, because we own the spinlock in
                 * the wait_queue_head.
                 */
                if (atomic_add_return(sleepers - 1, &sem->count) >= 0) {
                        sem->sleepers = 0;
                        break;
                }
                sem->sleepers = 1;      /* us - see -1 above */
                spin_unlock_irqrestore(&sem->wait.lock, flags);

                schedule();

                spin_lock_irqsave(&sem->wait.lock, flags);
                tsk->state = TASK_UNINTERRUPTIBLE;
        }
        remove_wait_queue_locked(&sem->wait, &wait);
        wake_up_locked(&sem->wait);
        spin_unlock_irqrestore(&sem->wait.lock, flags);
        tsk->state = TASK_RUNNING;
}
EXPORT_SYMBOL(__down);

int __sched __down_interruptible(struct semaphore *sem)
{
	int retval = 0;
	struct task_struct *tsk = current;
        DECLARE_WAITQUEUE(wait, tsk);
        unsigned long flags;

        tsk->state = TASK_INTERRUPTIBLE;
        spin_lock_irqsave(&sem->wait.lock, flags);
        add_wait_queue_exclusive_locked(&sem->wait, &wait);

        sem->sleepers++;
        for (;;) {
                int sleepers = sem->sleepers;

		/*
		 * With signals pending, this turns into the trylock
		 * failure case - we won't be sleeping, and we can't
		 * get the lock as it has contention. Just correct the
		 * count and exit.
		 */
		if (signal_pending(current)) {
			retval = -EINTR;
			sem->sleepers = 0;
			atomic_add(sleepers, &sem->count);
			break;
		}

                /*
                 * Add "everybody else" into it. They aren't
                 * playing, because we own the spinlock in
                 * the wait_queue_head.
                 */
                if (atomic_add_return(sleepers - 1, &sem->count) >= 0) {
                        sem->sleepers = 0;
                        break;
                }
                sem->sleepers = 1;      /* us - see -1 above */
                spin_unlock_irqrestore(&sem->wait.lock, flags);

                schedule();

                spin_lock_irqsave(&sem->wait.lock, flags);
                tsk->state = TASK_INTERRUPTIBLE;
        }
        remove_wait_queue_locked(&sem->wait, &wait);
        wake_up_locked(&sem->wait);
        spin_unlock_irqrestore(&sem->wait.lock, flags);

        tsk->state = TASK_RUNNING;
	return retval;
}
EXPORT_SYMBOL(__down_interruptible);