ieee80211_tx.c 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/******************************************************************************

  Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.

  This program is free software; you can redistribute it and/or modify it
  under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.

  The full GNU General Public License is included in this distribution in the
  file called LICENSE.

  Contact Information:
  James P. Ketrenos <ipw2100-admin@linux.intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************

  Few modifications for Realtek's Wi-Fi drivers by
  Andrea Merello <andreamrl@tiscali.it>

  A special thanks goes to Realtek for their support !

******************************************************************************/

#include <linux/compiler.h>
//#include <linux/config.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/version.h>
#include <linux/wireless.h>
#include <linux/etherdevice.h>
#include <asm/uaccess.h>
#include <linux/if_vlan.h>

#include "ieee80211.h"


/*


802.11 Data Frame


802.11 frame_contorl for data frames - 2 bytes
     ,-----------------------------------------------------------------------------------------.
bits | 0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  a  |  b  |  c  |  d  |  e   |
     |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
val  | 0  |  0  |  0  |  1  |  x  |  0  |  0  |  0  |  1  |  0  |  x  |  x  |  x  |  x  |  x   |
     |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
desc | ^-ver-^  |  ^type-^  |  ^-----subtype-----^  | to  |from |more |retry| pwr |more |wep   |
     |          |           | x=0 data,x=1 data+ack | DS  | DS  |frag |     | mgm |data |      |
     '-----------------------------------------------------------------------------------------'
		                                    /\
                                                    |
802.11 Data Frame                                   |
           ,--------- 'ctrl' expands to >-----------'
          |
      ,--'---,-------------------------------------------------------------.
Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
      |------|------|---------|---------|---------|------|---------|------|
Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
      |      | tion | (BSSID) |         |         | ence |  data   |      |
      `--------------------------------------------------|         |------'
Total: 28 non-data bytes                                 `----.----'
                                                              |
       .- 'Frame data' expands to <---------------------------'
       |
       V
      ,---------------------------------------------------.
Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
      |------|------|---------|----------|------|---------|
Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
      | DSAP | SSAP |         |          |      | Packet  |
      | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
      `-----------------------------------------|         |
Total: 8 non-data bytes                         `----.----'
                                                     |
       .- 'IP Packet' expands, if WEP enabled, to <--'
       |
       V
      ,-----------------------.
Bytes |  4  |   0-2296  |  4  |
      |-----|-----------|-----|
Desc. | IV  | Encrypted | ICV |
      |     | IP Packet |     |
      `-----------------------'
Total: 8 non-data bytes


802.3 Ethernet Data Frame

      ,-----------------------------------------.
Bytes |   6   |   6   |  2   |  Variable |   4  |
      |-------|-------|------|-----------|------|
Desc. | Dest. | Source| Type | IP Packet |  fcs |
      |  MAC  |  MAC  |      |           |      |
      `-----------------------------------------'
Total: 18 non-data bytes

In the event that fragmentation is required, the incoming payload is split into
N parts of size ieee->fts.  The first fragment contains the SNAP header and the
remaining packets are just data.

If encryption is enabled, each fragment payload size is reduced by enough space
to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
So if you have 1500 bytes of payload with ieee->fts set to 500 without
encryption it will take 3 frames.  With WEP it will take 4 frames as the
payload of each frame is reduced to 492 bytes.

* SKB visualization
*
*  ,- skb->data
* |
* |    ETHERNET HEADER        ,-<-- PAYLOAD
* |                           |     14 bytes from skb->data
* |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
* |                       | | |
* |,-Dest.--. ,--Src.---. | | |
* |  6 bytes| | 6 bytes | | | |
* v         | |         | | | |
* 0         | v       1 | v | v           2
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
*     ^     | ^         | ^ |
*     |     | |         | | |
*     |     | |         | `T' <---- 2 bytes for Type
*     |     | |         |
*     |     | '---SNAP--' <-------- 6 bytes for SNAP
*     |     |
*     `-IV--' <-------------------- 4 bytes for IV (WEP)
*
*      SNAP HEADER
*
*/

static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };

static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
{
	struct ieee80211_snap_hdr *snap;
	u8 *oui;

	snap = (struct ieee80211_snap_hdr *)data;
	snap->dsap = 0xaa;
	snap->ssap = 0xaa;
	snap->ctrl = 0x03;

	if (h_proto == 0x8137 || h_proto == 0x80f3)
		oui = P802_1H_OUI;
	else
		oui = RFC1042_OUI;
	snap->oui[0] = oui[0];
	snap->oui[1] = oui[1];
	snap->oui[2] = oui[2];

	*(u16 *)(data + SNAP_SIZE) = htons(h_proto);

	return SNAP_SIZE + sizeof(u16);
}

int ieee80211_encrypt_fragment(
	struct ieee80211_device *ieee,
	struct sk_buff *frag,
	int hdr_len)
{
	struct ieee80211_crypt_data* crypt = ieee->crypt[ieee->tx_keyidx];
	int res;

	if (!(crypt && crypt->ops))
	{
		printk("=========>%s(), crypt is null\n", __FUNCTION__);
		return -1;
	}
#ifdef CONFIG_IEEE80211_CRYPT_TKIP
	struct ieee80211_hdr *header;

	if (ieee->tkip_countermeasures &&
	    crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
		header = (struct ieee80211_hdr *) frag->data;
		if (net_ratelimit()) {
			printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
			       "TX packet to " MAC_FMT "\n",
			       ieee->dev->name, MAC_ARG(header->addr1));
		}
		return -1;
	}
#endif
	/* To encrypt, frame format is:
	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */

	// PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
	/* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
	 * call both MSDU and MPDU encryption functions from here. */
	atomic_inc(&crypt->refcnt);
	res = 0;
	if (crypt->ops->encrypt_msdu)
		res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
	if (res == 0 && crypt->ops->encrypt_mpdu)
		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);

	atomic_dec(&crypt->refcnt);
	if (res < 0) {
		printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
		       ieee->dev->name, frag->len);
		ieee->ieee_stats.tx_discards++;
		return -1;
	}

	return 0;
}


void ieee80211_txb_free(struct ieee80211_txb *txb) {
	//int i;
	if (unlikely(!txb))
		return;
#if 0
	for (i = 0; i < txb->nr_frags; i++)
		if (txb->fragments[i])
			dev_kfree_skb_any(txb->fragments[i]);
#endif
	kfree(txb);
}

struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
					  int gfp_mask)
{
	struct ieee80211_txb *txb;
	int i;
	txb = kmalloc(
		sizeof(struct ieee80211_txb) + (sizeof(u8*) * nr_frags),
		gfp_mask);
	if (!txb)
		return NULL;

	memset(txb, 0, sizeof(struct ieee80211_txb));
	txb->nr_frags = nr_frags;
	txb->frag_size = txb_size;

	for (i = 0; i < nr_frags; i++) {
		txb->fragments[i] = dev_alloc_skb(txb_size);
		if (unlikely(!txb->fragments[i])) {
			i--;
			break;
		}
		memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
	}
	if (unlikely(i != nr_frags)) {
		while (i >= 0)
			dev_kfree_skb_any(txb->fragments[i--]);
		kfree(txb);
		return NULL;
	}
	return txb;
}

// Classify the to-be send data packet
// Need to acquire the sent queue index.
static int
ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
{
	struct ethhdr *eth;
	struct iphdr *ip;
	eth = (struct ethhdr *)skb->data;
	if (eth->h_proto != htons(ETH_P_IP))
		return 0;

//	IEEE80211_DEBUG_DATA(IEEE80211_DL_DATA, skb->data, skb->len);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22))
	ip = ip_hdr(skb);
#else
	ip = (struct iphdr*)(skb->data + sizeof(struct ether_header));
#endif
	switch (ip->tos & 0xfc) {
		case 0x20:
			return 2;
		case 0x40:
			return 1;
		case 0x60:
			return 3;
		case 0x80:
			return 4;
		case 0xa0:
			return 5;
		case 0xc0:
			return 6;
		case 0xe0:
			return 7;
		default:
			return 0;
	}
}

#define SN_LESS(a, b)		(((a-b)&0x800)!=0)
void ieee80211_tx_query_agg_cap(struct ieee80211_device* ieee, struct sk_buff* skb, cb_desc* tcb_desc)
{
	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;
	PTX_TS_RECORD			pTxTs = NULL;
	struct ieee80211_hdr_1addr* hdr = (struct ieee80211_hdr_1addr*)skb->data;

	if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
		return;
	if (!IsQoSDataFrame(skb->data))
		return;

	if (is_multicast_ether_addr(hdr->addr1) || is_broadcast_ether_addr(hdr->addr1))
		return;
	//check packet and mode later
#ifdef TO_DO_LIST
	if(pTcb->PacketLength >= 4096)
		return;
	// For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
	if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
		return;
#endif

	if(pHTInfo->IOTAction & HT_IOT_ACT_TX_NO_AGGREGATION)
		return;

#if 1
	if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
	{
		return;
	}
#endif
	if(pHTInfo->bCurrentAMPDUEnable)
	{
		if (!GetTs(ieee, (PTS_COMMON_INFO*)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
		{
			printk("===>can't get TS\n");
			return;
		}
		if (pTxTs->TxAdmittedBARecord.bValid == false)
		{
			//as some AP will refuse our action frame until key handshake has been finished. WB
			if (ieee->wpa_ie_len && (ieee->pairwise_key_type == KEY_TYPE_NA))
			;
			else
			TsStartAddBaProcess(ieee, pTxTs);
			goto FORCED_AGG_SETTING;
		}
		else if (pTxTs->bUsingBa == false)
		{
			if (SN_LESS(pTxTs->TxAdmittedBARecord.BaStartSeqCtrl.field.SeqNum, (pTxTs->TxCurSeq+1)%4096))
				pTxTs->bUsingBa = true;
			else
				goto FORCED_AGG_SETTING;
		}

		if (ieee->iw_mode == IW_MODE_INFRA)
		{
			tcb_desc->bAMPDUEnable = true;
			tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
			tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
		}
	}
FORCED_AGG_SETTING:
	switch(pHTInfo->ForcedAMPDUMode )
	{
		case HT_AGG_AUTO:
			break;

		case HT_AGG_FORCE_ENABLE:
			tcb_desc->bAMPDUEnable = true;
			tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
			tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
			break;

		case HT_AGG_FORCE_DISABLE:
			tcb_desc->bAMPDUEnable = false;
			tcb_desc->ampdu_density = 0;
			tcb_desc->ampdu_factor = 0;
			break;

	}
		return;
}

extern void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device* ieee, cb_desc* tcb_desc)
{
	tcb_desc->bUseShortPreamble = false;
	if (tcb_desc->data_rate == 2)
	{//// 1M can only use Long Preamble. 11B spec
		return;
	}
	else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
	{
		tcb_desc->bUseShortPreamble = true;
	}
	return;
}
extern	void
ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, cb_desc *tcb_desc)
{
	PRT_HIGH_THROUGHPUT		pHTInfo = ieee->pHTInfo;

	tcb_desc->bUseShortGI 		= false;

	if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
		return;

	if(pHTInfo->bForcedShortGI)
	{
		tcb_desc->bUseShortGI = true;
		return;
	}

	if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
		tcb_desc->bUseShortGI = true;
	else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
		tcb_desc->bUseShortGI = true;
}

void ieee80211_query_BandwidthMode(struct ieee80211_device* ieee, cb_desc *tcb_desc)
{
	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;

	tcb_desc->bPacketBW = false;

	if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
		return;

	if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
		return;

	if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
		return;
	//BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
	if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
		tcb_desc->bPacketBW = true;
	return;
}

void ieee80211_query_protectionmode(struct ieee80211_device* ieee, cb_desc* tcb_desc, struct sk_buff* skb)
{
	// Common Settings
	tcb_desc->bRTSSTBC			= false;
	tcb_desc->bRTSUseShortGI		= false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
	tcb_desc->bCTSEnable			= false; // Most of protection using RTS/CTS
	tcb_desc->RTSSC				= 0;		// 20MHz: Don't care;  40MHz: Duplicate.
	tcb_desc->bRTSBW			= false; // RTS frame bandwidth is always 20MHz

	if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
		return;

	if (is_broadcast_ether_addr(skb->data+16))  //check addr3 as infrastructure add3 is DA.
		return;

	if (ieee->mode < IEEE_N_24G) //b, g mode
	{
			// (1) RTS_Threshold is compared to the MPDU, not MSDU.
			// (2) If there are more than one frag in  this MSDU, only the first frag uses protection frame.
			//		Other fragments are protected by previous fragment.
			//		So we only need to check the length of first fragment.
		if (skb->len > ieee->rts)
		{
			tcb_desc->bRTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
		}
		else if (ieee->current_network.buseprotection)
		{
			// Use CTS-to-SELF in protection mode.
			tcb_desc->bRTSEnable = true;
			tcb_desc->bCTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
		}
		//otherwise return;
		return;
	}
	else
	{// 11n High throughput case.
		PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
		while (true)
		{
			//check IOT action
			if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
			{
				tcb_desc->bCTSEnable	= true;
				tcb_desc->rts_rate  = 	MGN_24M;
#if defined(RTL8192SE) || defined(RTL8192SU)
				tcb_desc->bRTSEnable = false;
#else
				tcb_desc->bRTSEnable = true;
#endif
				break;
			}
			else if(pHTInfo->IOTAction & (HT_IOT_ACT_FORCED_RTS|HT_IOT_ACT_PURE_N_MODE))
			{
				tcb_desc->bRTSEnable = true;
				tcb_desc->rts_rate  = 	MGN_24M;
				break;
			}
			//check ERP protection
			if (ieee->current_network.buseprotection)
			{// CTS-to-SELF
				tcb_desc->bRTSEnable = true;
				tcb_desc->bCTSEnable = true;
				tcb_desc->rts_rate = MGN_24M;
				break;
			}
			//check HT op mode
			if(pHTInfo->bCurrentHTSupport  && pHTInfo->bEnableHT)
			{
				u8 HTOpMode = pHTInfo->CurrentOpMode;
				if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
							(!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
				{
					tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
					tcb_desc->bRTSEnable = true;
					break;
				}
			}
			//check rts
			if (skb->len > ieee->rts)
			{
				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
				tcb_desc->bRTSEnable = true;
				break;
			}
			//to do list: check MIMO power save condition.
			//check AMPDU aggregation for TXOP
			if(tcb_desc->bAMPDUEnable)
			{
				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
				// According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
				// throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
				tcb_desc->bRTSEnable = false;
				break;
			}
			// Totally no protection case!!
			goto NO_PROTECTION;
		}
		}
	// For test , CTS replace with RTS
	if( 0 )
	{
		tcb_desc->bCTSEnable	= true;
		tcb_desc->rts_rate = MGN_24M;
		tcb_desc->bRTSEnable 	= true;
	}
	if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
		tcb_desc->bUseShortPreamble = true;
	if (ieee->mode == IW_MODE_MASTER)
			goto NO_PROTECTION;
	return;
NO_PROTECTION:
	tcb_desc->bRTSEnable	= false;
	tcb_desc->bCTSEnable	= false;
	tcb_desc->rts_rate		= 0;
	tcb_desc->RTSSC		= 0;
	tcb_desc->bRTSBW		= false;
}


void ieee80211_txrate_selectmode(struct ieee80211_device* ieee, cb_desc* tcb_desc)
{
#ifdef TO_DO_LIST
	if(!IsDataFrame(pFrame))
	{
		pTcb->bTxDisableRateFallBack = TRUE;
		pTcb->bTxUseDriverAssingedRate = TRUE;
		pTcb->RATRIndex = 7;
		return;
	}

	if(pMgntInfo->ForcedDataRate!= 0)
	{
		pTcb->bTxDisableRateFallBack = TRUE;
		pTcb->bTxUseDriverAssingedRate = TRUE;
		return;
	}
#endif
	if(ieee->bTxDisableRateFallBack)
		tcb_desc->bTxDisableRateFallBack = true;

	if(ieee->bTxUseDriverAssingedRate)
		tcb_desc->bTxUseDriverAssingedRate = true;
	if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
	{
		if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
			tcb_desc->RATRIndex = 0;
	}
}

void ieee80211_query_seqnum(struct ieee80211_device*ieee, struct sk_buff* skb, u8* dst)
{
	if (is_multicast_ether_addr(dst) || is_broadcast_ether_addr(dst))
		return;
	if (IsQoSDataFrame(skb->data)) //we deal qos data only
	{
		PTX_TS_RECORD pTS = NULL;
		if (!GetTs(ieee, (PTS_COMMON_INFO*)(&pTS), dst, skb->priority, TX_DIR, true))
		{
			return;
		}
		pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096;
	}
}

621
int rtl8192_ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0))
	struct ieee80211_device *ieee = netdev_priv(dev);
#else
	struct ieee80211_device *ieee = (struct ieee80211_device *)dev->priv;
#endif
	struct ieee80211_txb *txb = NULL;
	struct ieee80211_hdr_3addrqos *frag_hdr;
	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
	unsigned long flags;
	struct net_device_stats *stats = &ieee->stats;
	int ether_type = 0, encrypt;
	int bytes, fc, qos_ctl = 0, hdr_len;
	struct sk_buff *skb_frag;
	struct ieee80211_hdr_3addrqos header = { /* Ensure zero initialized */
		.duration_id = 0,
		.seq_ctl = 0,
		.qos_ctl = 0
	};
	u8 dest[ETH_ALEN], src[ETH_ALEN];
	int qos_actived = ieee->current_network.qos_data.active;

	struct ieee80211_crypt_data* crypt;

	cb_desc *tcb_desc;

	spin_lock_irqsave(&ieee->lock, flags);

	/* If there is no driver handler to take the TXB, dont' bother
	 * creating it... */
	if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
	   ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
		printk(KERN_WARNING "%s: No xmit handler.\n",
		       ieee->dev->name);
		goto success;
	}


	if(likely(ieee->raw_tx == 0)){
		if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
			printk(KERN_WARNING "%s: skb too small (%d).\n",
			ieee->dev->name, skb->len);
			goto success;
		}

		memset(skb->cb, 0, sizeof(skb->cb));
		ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);

		crypt = ieee->crypt[ieee->tx_keyidx];

		encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
			ieee->host_encrypt && crypt && crypt->ops;

		if (!encrypt && ieee->ieee802_1x &&
		ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
			stats->tx_dropped++;
			goto success;
		}
	#ifdef CONFIG_IEEE80211_DEBUG
		if (crypt && !encrypt && ether_type == ETH_P_PAE) {
			struct eapol *eap = (struct eapol *)(skb->data +
				sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
			IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
				eap_get_type(eap->type));
		}
	#endif

		/* Save source and destination addresses */
		memcpy(&dest, skb->data, ETH_ALEN);
		memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);

                /* Advance the SKB to the start of the payload */
                skb_pull(skb, sizeof(struct ethhdr));

                /* Determine total amount of storage required for TXB packets */
                bytes = skb->len + SNAP_SIZE + sizeof(u16);

		if (encrypt)
			fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
		else

                        fc = IEEE80211_FTYPE_DATA;

		//if(ieee->current_network.QoS_Enable)
		if(qos_actived)
			fc |= IEEE80211_STYPE_QOS_DATA;
		else
			fc |= IEEE80211_STYPE_DATA;

		if (ieee->iw_mode == IW_MODE_INFRA) {
			fc |= IEEE80211_FCTL_TODS;
			/* To DS: Addr1 = BSSID, Addr2 = SA,
			Addr3 = DA */
			memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
			memcpy(&header.addr2, &src, ETH_ALEN);
			memcpy(&header.addr3, &dest, ETH_ALEN);
		} else if (ieee->iw_mode == IW_MODE_ADHOC) {
			/* not From/To DS: Addr1 = DA, Addr2 = SA,
			Addr3 = BSSID */
			memcpy(&header.addr1, dest, ETH_ALEN);
			memcpy(&header.addr2, src, ETH_ALEN);
			memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
		}

                header.frame_ctl = cpu_to_le16(fc);

		/* Determine fragmentation size based on destination (multicast
		* and broadcast are not fragmented) */
		if (is_multicast_ether_addr(header.addr1) ||
		is_broadcast_ether_addr(header.addr1)) {
			frag_size = MAX_FRAG_THRESHOLD;
			qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
		}
		else {
			frag_size = ieee->fts;//default:392
			qos_ctl = 0;
		}

		//if (ieee->current_network.QoS_Enable)
		if(qos_actived)
		{
			hdr_len = IEEE80211_3ADDR_LEN + 2;

			skb->priority = ieee80211_classify(skb, &ieee->current_network);
			qos_ctl |= skb->priority; //set in the ieee80211_classify
			header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
		} else {
			hdr_len = IEEE80211_3ADDR_LEN;
		}
		/* Determine amount of payload per fragment.  Regardless of if
		* this stack is providing the full 802.11 header, one will
		* eventually be affixed to this fragment -- so we must account for
		* it when determining the amount of payload space. */
		bytes_per_frag = frag_size - hdr_len;
		if (ieee->config &
		(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
			bytes_per_frag -= IEEE80211_FCS_LEN;

		/* Each fragment may need to have room for encryptiong pre/postfix */
		if (encrypt)
			bytes_per_frag -= crypt->ops->extra_prefix_len +
				crypt->ops->extra_postfix_len;

		/* Number of fragments is the total bytes_per_frag /
		* payload_per_fragment */
		nr_frags = bytes / bytes_per_frag;
		bytes_last_frag = bytes % bytes_per_frag;
		if (bytes_last_frag)
			nr_frags++;
		else
			bytes_last_frag = bytes_per_frag;

		/* When we allocate the TXB we allocate enough space for the reserve
		* and full fragment bytes (bytes_per_frag doesn't include prefix,
		* postfix, header, FCS, etc.) */
		txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
		if (unlikely(!txb)) {
			printk(KERN_WARNING "%s: Could not allocate TXB\n",
			ieee->dev->name);
			goto failed;
		}
		txb->encrypted = encrypt;
		txb->payload_size = bytes;

		//if (ieee->current_network.QoS_Enable)
		if(qos_actived)
		{
			txb->queue_index = UP2AC(skb->priority);
		} else {
			txb->queue_index = WME_AC_BK;;
		}



		for (i = 0; i < nr_frags; i++) {
			skb_frag = txb->fragments[i];
			tcb_desc = (cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
			if(qos_actived){
				skb_frag->priority = skb->priority;//UP2AC(skb->priority);
				tcb_desc->queue_index =  UP2AC(skb->priority);
			} else {
				skb_frag->priority = WME_AC_BK;
				tcb_desc->queue_index = WME_AC_BK;
			}
			skb_reserve(skb_frag, ieee->tx_headroom);

			if (encrypt){
				if (ieee->hwsec_active)
					tcb_desc->bHwSec = 1;
				else
					tcb_desc->bHwSec = 0;
				skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
			}
			else
			{
				tcb_desc->bHwSec = 0;
			}
			frag_hdr = (struct ieee80211_hdr_3addrqos *)skb_put(skb_frag, hdr_len);
			memcpy(frag_hdr, &header, hdr_len);

			/* If this is not the last fragment, then add the MOREFRAGS
			* bit to the frame control */
			if (i != nr_frags - 1) {
				frag_hdr->frame_ctl = cpu_to_le16(
					fc | IEEE80211_FCTL_MOREFRAGS);
				bytes = bytes_per_frag;

			} else {
				/* The last fragment takes the remaining length */
				bytes = bytes_last_frag;
			}
			//if(ieee->current_network.QoS_Enable)
			if(qos_actived)
			{
				// add 1 only indicate to corresponding seq number control 2006/7/12
				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
			} else {
				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
			}

			/* Put a SNAP header on the first fragment */
			if (i == 0) {
				ieee80211_put_snap(
					skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
					ether_type);
				bytes -= SNAP_SIZE + sizeof(u16);
			}

			memcpy(skb_put(skb_frag, bytes), skb->data, bytes);

			/* Advance the SKB... */
			skb_pull(skb, bytes);

			/* Encryption routine will move the header forward in order
			* to insert the IV between the header and the payload */
			if (encrypt)
				ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
			if (ieee->config &
			(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
				skb_put(skb_frag, 4);
		}

		if(qos_actived)
		{
		  if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
			ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
		  else
			ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
		} else {
  		  if (ieee->seq_ctrl[0] == 0xFFF)
			ieee->seq_ctrl[0] = 0;
		  else
			ieee->seq_ctrl[0]++;
		}
	}else{
		if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
			printk(KERN_WARNING "%s: skb too small (%d).\n",
			ieee->dev->name, skb->len);
			goto success;
		}

		txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
		if(!txb){
			printk(KERN_WARNING "%s: Could not allocate TXB\n",
			ieee->dev->name);
			goto failed;
		}

		txb->encrypted = 0;
		txb->payload_size = skb->len;
		memcpy(skb_put(txb->fragments[0],skb->len), skb->data, skb->len);
	}

 success:
//WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
	if (txb)
	{
#if 1
		cb_desc *tcb_desc = (cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
		tcb_desc->bTxEnableFwCalcDur = 1;
		if (is_multicast_ether_addr(header.addr1))
			tcb_desc->bMulticast = 1;
		if (is_broadcast_ether_addr(header.addr1))
			tcb_desc->bBroadcast = 1;
		ieee80211_txrate_selectmode(ieee, tcb_desc);
		if ( tcb_desc->bMulticast ||  tcb_desc->bBroadcast)
			tcb_desc->data_rate = ieee->basic_rate;
		else
			//tcb_desc->data_rate = CURRENT_RATE(ieee->current_network.mode, ieee->rate, ieee->HTCurrentOperaRate);
			tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
		ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
		ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
		ieee80211_query_HTCapShortGI(ieee, tcb_desc);
		ieee80211_query_BandwidthMode(ieee, tcb_desc);
		ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
		ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
//		IEEE80211_DEBUG_DATA(IEEE80211_DL_DATA, txb->fragments[0]->data, txb->fragments[0]->len);
		//IEEE80211_DEBUG_DATA(IEEE80211_DL_DATA, tcb_desc, sizeof(cb_desc));
#endif
	}
	spin_unlock_irqrestore(&ieee->lock, flags);
	dev_kfree_skb_any(skb);
	if (txb) {
		if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
			ieee80211_softmac_xmit(txb, ieee);
		}else{
			if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
				stats->tx_packets++;
				stats->tx_bytes += txb->payload_size;
				return 0;
			}
			ieee80211_txb_free(txb);
		}
	}

	return 0;

 failed:
	spin_unlock_irqrestore(&ieee->lock, flags);
	netif_stop_queue(dev);
	stats->tx_errors++;
	return 1;

}
946
EXPORT_SYMBOL(rtl8192_ieee80211_xmit);
947 948

EXPORT_SYMBOL(ieee80211_txb_free);