aops.c 40.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <asm/byteorder.h>
27
#include <linux/swap.h>
M
Mark Fasheh 已提交
28
#include <linux/pipe_fs_i.h>
29 30 31 32 33 34 35 36 37 38 39 40 41

#define MLOG_MASK_PREFIX ML_FILE_IO
#include <cluster/masklog.h>

#include "ocfs2.h"

#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "file.h"
#include "inode.h"
#include "journal.h"
42
#include "suballoc.h"
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#include "super.h"
#include "symlink.h"

#include "buffer_head_io.h"

static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create)
{
	int err = -EIO;
	int status;
	struct ocfs2_dinode *fe = NULL;
	struct buffer_head *bh = NULL;
	struct buffer_head *buffer_cache_bh = NULL;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	void *kaddr;

	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
		   (unsigned long long)iblock, bh_result, create);

	BUG_ON(ocfs2_inode_is_fast_symlink(inode));

	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
		     (unsigned long long)iblock);
		goto bail;
	}

	status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
				  OCFS2_I(inode)->ip_blkno,
				  &bh, OCFS2_BH_CACHED, inode);
	if (status < 0) {
		mlog_errno(status);
		goto bail;
	}
	fe = (struct ocfs2_dinode *) bh->b_data;

	if (!OCFS2_IS_VALID_DINODE(fe)) {
80
		mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 82
		     (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
		     fe->i_signature);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		goto bail;
	}

	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
						    le32_to_cpu(fe->i_clusters))) {
		mlog(ML_ERROR, "block offset is outside the allocated size: "
		     "%llu\n", (unsigned long long)iblock);
		goto bail;
	}

	/* We don't use the page cache to create symlink data, so if
	 * need be, copy it over from the buffer cache. */
	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
			    iblock;
		buffer_cache_bh = sb_getblk(osb->sb, blkno);
		if (!buffer_cache_bh) {
			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
			goto bail;
		}

		/* we haven't locked out transactions, so a commit
		 * could've happened. Since we've got a reference on
		 * the bh, even if it commits while we're doing the
		 * copy, the data is still good. */
		if (buffer_jbd(buffer_cache_bh)
		    && ocfs2_inode_is_new(inode)) {
			kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
			if (!kaddr) {
				mlog(ML_ERROR, "couldn't kmap!\n");
				goto bail;
			}
			memcpy(kaddr + (bh_result->b_size * iblock),
			       buffer_cache_bh->b_data,
			       bh_result->b_size);
			kunmap_atomic(kaddr, KM_USER0);
			set_buffer_uptodate(bh_result);
		}
		brelse(buffer_cache_bh);
	}

	map_bh(bh_result, inode->i_sb,
	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);

	err = 0;

bail:
	if (bh)
		brelse(bh);

	mlog_exit(err);
	return err;
}

static int ocfs2_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh_result, int create)
{
	int err = 0;
141
	unsigned int ext_flags;
142
	u64 p_blkno, past_eof;
143
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
144 145 146 147 148 149 150 151 152 153 154 155 156 157

	mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
		   (unsigned long long)iblock, bh_result, create);

	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
		     inode, inode->i_ino);

	if (S_ISLNK(inode->i_mode)) {
		/* this always does I/O for some reason. */
		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
		goto bail;
	}

158 159
	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
					  &ext_flags);
160 161
	if (err) {
		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 163
		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
		     (unsigned long long)p_blkno);
164 165 166
		goto bail;
	}

167 168 169 170 171 172 173 174 175 176
	/*
	 * ocfs2 never allocates in this function - the only time we
	 * need to use BH_New is when we're extending i_size on a file
	 * system which doesn't support holes, in which case BH_New
	 * allows block_prepare_write() to zero.
	 */
	mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
			"ino %lu, iblock %llu\n", inode->i_ino,
			(unsigned long long)iblock);

177 178
	/* Treat the unwritten extent as a hole for zeroing purposes. */
	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 180 181 182 183 184 185 186 187 188 189 190 191
		map_bh(bh_result, inode->i_sb, p_blkno);

	if (!ocfs2_sparse_alloc(osb)) {
		if (p_blkno == 0) {
			err = -EIO;
			mlog(ML_ERROR,
			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
			     (unsigned long long)iblock,
			     (unsigned long long)p_blkno,
			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
			dump_stack();
		}
192

193 194 195
		past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
		mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
		     (unsigned long long)past_eof);
196

197 198 199
		if (create && (iblock >= past_eof))
			set_buffer_new(bh_result);
	}
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

bail:
	if (err < 0)
		err = -EIO;

	mlog_exit(err);
	return err;
}

static int ocfs2_readpage(struct file *file, struct page *page)
{
	struct inode *inode = page->mapping->host;
	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
	int ret, unlock = 1;

	mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));

217
	ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
218 219 220 221 222 223 224
	if (ret != 0) {
		if (ret == AOP_TRUNCATED_PAGE)
			unlock = 0;
		mlog_errno(ret);
		goto out;
	}

M
Mark Fasheh 已提交
225 226 227 228
	if (down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem) == 0) {
		ret = AOP_TRUNCATED_PAGE;
		goto out_meta_unlock;
	}
229 230 231 232 233 234 235 236 237 238 239 240

	/*
	 * i_size might have just been updated as we grabed the meta lock.  We
	 * might now be discovering a truncate that hit on another node.
	 * block_read_full_page->get_block freaks out if it is asked to read
	 * beyond the end of a file, so we check here.  Callers
	 * (generic_file_read, fault->nopage) are clever enough to check i_size
	 * and notice that the page they just read isn't needed.
	 *
	 * XXX sys_readahead() seems to get that wrong?
	 */
	if (start >= i_size_read(inode)) {
N
Nate Diller 已提交
241
		zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		SetPageUptodate(page);
		ret = 0;
		goto out_alloc;
	}

	ret = ocfs2_data_lock_with_page(inode, 0, page);
	if (ret != 0) {
		if (ret == AOP_TRUNCATED_PAGE)
			unlock = 0;
		mlog_errno(ret);
		goto out_alloc;
	}

	ret = block_read_full_page(page, ocfs2_get_block);
	unlock = 0;

	ocfs2_data_unlock(inode, 0);
out_alloc:
	up_read(&OCFS2_I(inode)->ip_alloc_sem);
M
Mark Fasheh 已提交
261
out_meta_unlock:
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
	ocfs2_meta_unlock(inode, 0);
out:
	if (unlock)
		unlock_page(page);
	mlog_exit(ret);
	return ret;
}

/* Note: Because we don't support holes, our allocation has
 * already happened (allocation writes zeros to the file data)
 * so we don't have to worry about ordered writes in
 * ocfs2_writepage.
 *
 * ->writepage is called during the process of invalidating the page cache
 * during blocked lock processing.  It can't block on any cluster locks
 * to during block mapping.  It's relying on the fact that the block
 * mapping can't have disappeared under the dirty pages that it is
 * being asked to write back.
 */
static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
{
	int ret;

	mlog_entry("(0x%p)\n", page);

	ret = block_write_full_page(page, ocfs2_get_block, wbc);

	mlog_exit(ret);

	return ret;
}

294 295 296 297 298
/*
 * This is called from ocfs2_write_zero_page() which has handled it's
 * own cluster locking and has ensured allocation exists for those
 * blocks to be written.
 */
299 300 301 302 303 304 305 306 307 308 309 310 311 312
int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
			       unsigned from, unsigned to)
{
	int ret;

	down_read(&OCFS2_I(inode)->ip_alloc_sem);

	ret = block_prepare_write(page, from, to, ocfs2_get_block);

	up_read(&OCFS2_I(inode)->ip_alloc_sem);

	return ret;
}

313 314 315 316
/* Taken from ext3. We don't necessarily need the full blown
 * functionality yet, but IMHO it's better to cut and paste the whole
 * thing so we can avoid introducing our own bugs (and easily pick up
 * their fixes when they happen) --Mark */
317 318 319 320 321 322 323
int walk_page_buffers(	handle_t *handle,
			struct buffer_head *head,
			unsigned from,
			unsigned to,
			int *partial,
			int (*fn)(	handle_t *handle,
					struct buffer_head *bh))
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

	for (	bh = head, block_start = 0;
		ret == 0 && (bh != head || !block_start);
	    	block_start = block_end, bh = next)
	{
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

349
handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
350 351 352 353 354
							 struct page *page,
							 unsigned from,
							 unsigned to)
{
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
355
	handle_t *handle = NULL;
356 357
	int ret = 0;

358
	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
359 360 361 362 363 364 365
	if (!handle) {
		ret = -ENOMEM;
		mlog_errno(ret);
		goto out;
	}

	if (ocfs2_should_order_data(inode)) {
366
		ret = walk_page_buffers(handle,
367 368 369 370 371 372 373 374 375
					page_buffers(page),
					from, to, NULL,
					ocfs2_journal_dirty_data);
		if (ret < 0) 
			mlog_errno(ret);
	}
out:
	if (ret) {
		if (handle)
376
			ocfs2_commit_trans(osb, handle);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
		handle = ERR_PTR(ret);
	}
	return handle;
}

static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
{
	sector_t status;
	u64 p_blkno = 0;
	int err = 0;
	struct inode *inode = mapping->host;

	mlog_entry("(block = %llu)\n", (unsigned long long)block);

	/* We don't need to lock journal system files, since they aren't
	 * accessed concurrently from multiple nodes.
	 */
	if (!INODE_JOURNAL(inode)) {
395
		err = ocfs2_meta_lock(inode, NULL, 0);
396 397 398 399 400 401 402 403
		if (err) {
			if (err != -ENOENT)
				mlog_errno(err);
			goto bail;
		}
		down_read(&OCFS2_I(inode)->ip_alloc_sem);
	}

404
	err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

	if (!INODE_JOURNAL(inode)) {
		up_read(&OCFS2_I(inode)->ip_alloc_sem);
		ocfs2_meta_unlock(inode, 0);
	}

	if (err) {
		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
		     (unsigned long long)block);
		mlog_errno(err);
		goto bail;
	}


bail:
	status = err ? 0 : p_blkno;

	mlog_exit((int)status);

	return status;
}

/*
 * TODO: Make this into a generic get_blocks function.
 *
 * From do_direct_io in direct-io.c:
 *  "So what we do is to permit the ->get_blocks function to populate
 *   bh.b_size with the size of IO which is permitted at this offset and
 *   this i_blkbits."
 *
 * This function is called directly from get_more_blocks in direct-io.c.
 *
 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 * 					fs_count, map_bh, dio->rw == WRITE);
 */
static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
				     struct buffer_head *bh_result, int create)
{
	int ret;
444
	u64 p_blkno, inode_blocks, contig_blocks;
445
	unsigned int ext_flags;
446
	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
447
	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
448 449 450 451 452

	/* This function won't even be called if the request isn't all
	 * nicely aligned and of the right size, so there's no need
	 * for us to check any of that. */

453
	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
454 455 456 457 458

	/*
	 * Any write past EOF is not allowed because we'd be extending.
	 */
	if (create && (iblock + max_blocks) > inode_blocks) {
459 460 461 462 463 464
		ret = -EIO;
		goto bail;
	}

	/* This figures out the size of the next contiguous block, and
	 * our logical offset */
465
	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
466
					  &contig_blocks, &ext_flags);
467 468 469 470 471 472 473
	if (ret) {
		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
		     (unsigned long long)iblock);
		ret = -EIO;
		goto bail;
	}

474 475 476 477 478 479 480 481 482 483 484 485
	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
		ocfs2_error(inode->i_sb,
			    "Inode %llu has a hole at block %llu\n",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
			    (unsigned long long)iblock);
		ret = -EROFS;
		goto bail;
	}

	/*
	 * get_more_blocks() expects us to describe a hole by clearing
	 * the mapped bit on bh_result().
486 487
	 *
	 * Consider an unwritten extent as a hole.
488
	 */
489
	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		map_bh(bh_result, inode->i_sb, p_blkno);
	else {
		/*
		 * ocfs2_prepare_inode_for_write() should have caught
		 * the case where we'd be filling a hole and triggered
		 * a buffered write instead.
		 */
		if (create) {
			ret = -EIO;
			mlog_errno(ret);
			goto bail;
		}

		clear_buffer_mapped(bh_result);
	}
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

	/* make sure we don't map more than max_blocks blocks here as
	   that's all the kernel will handle at this point. */
	if (max_blocks < contig_blocks)
		contig_blocks = max_blocks;
	bh_result->b_size = contig_blocks << blocksize_bits;
bail:
	return ret;
}

/* 
 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 * particularly interested in the aio/dio case.  Like the core uses
 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
 * truncation on another.
 */
static void ocfs2_dio_end_io(struct kiocb *iocb,
			     loff_t offset,
			     ssize_t bytes,
			     void *private)
{
J
Josef Sipek 已提交
526
	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
527
	int level;
528 529 530

	/* this io's submitter should not have unlocked this before we could */
	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
531

532
	ocfs2_iocb_clear_rw_locked(iocb);
533 534 535 536 537

	level = ocfs2_iocb_rw_locked_level(iocb);
	if (!level)
		up_read(&inode->i_alloc_sem);
	ocfs2_rw_unlock(inode, level);
538 539
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
/*
 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 * do journalled data.
 */
static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
{
	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;

	journal_invalidatepage(journal, page, offset);
}

static int ocfs2_releasepage(struct page *page, gfp_t wait)
{
	journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;

	if (!page_has_buffers(page))
		return 0;
	return journal_try_to_free_buffers(journal, page, wait);
}

561 562 563 564 565 566 567
static ssize_t ocfs2_direct_IO(int rw,
			       struct kiocb *iocb,
			       const struct iovec *iov,
			       loff_t offset,
			       unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
J
Josef Sipek 已提交
568
	struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
569 570 571
	int ret;

	mlog_entry_void();
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
		/*
		 * We get PR data locks even for O_DIRECT.  This
		 * allows concurrent O_DIRECT I/O but doesn't let
		 * O_DIRECT with extending and buffered zeroing writes
		 * race.  If they did race then the buffered zeroing
		 * could be written back after the O_DIRECT I/O.  It's
		 * one thing to tell people not to mix buffered and
		 * O_DIRECT writes, but expecting them to understand
		 * that file extension is also an implicit buffered
		 * write is too much.  By getting the PR we force
		 * writeback of the buffered zeroing before
		 * proceeding.
		 */
		ret = ocfs2_data_lock(inode, 0);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
		ocfs2_data_unlock(inode, 0);
593 594
	}

595 596 597 598 599
	ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
					    inode->i_sb->s_bdev, iov, offset,
					    nr_segs, 
					    ocfs2_direct_IO_get_blocks,
					    ocfs2_dio_end_io);
600
out:
601 602 603 604
	mlog_exit(ret);
	return ret;
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
					    u32 cpos,
					    unsigned int *start,
					    unsigned int *end)
{
	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;

	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
		unsigned int cpp;

		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);

		cluster_start = cpos % cpp;
		cluster_start = cluster_start << osb->s_clustersize_bits;

		cluster_end = cluster_start + osb->s_clustersize;
	}

	BUG_ON(cluster_start > PAGE_SIZE);
	BUG_ON(cluster_end > PAGE_SIZE);

	if (start)
		*start = cluster_start;
	if (end)
		*end = cluster_end;
}

/*
 * 'from' and 'to' are the region in the page to avoid zeroing.
 *
 * If pagesize > clustersize, this function will avoid zeroing outside
 * of the cluster boundary.
 *
 * from == to == 0 is code for "zero the entire cluster region"
 */
static void ocfs2_clear_page_regions(struct page *page,
				     struct ocfs2_super *osb, u32 cpos,
				     unsigned from, unsigned to)
{
	void *kaddr;
	unsigned int cluster_start, cluster_end;

	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);

	kaddr = kmap_atomic(page, KM_USER0);

	if (from || to) {
		if (from > cluster_start)
			memset(kaddr + cluster_start, 0, from - cluster_start);
		if (to < cluster_end)
			memset(kaddr + to, 0, cluster_end - to);
	} else {
		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
	}

	kunmap_atomic(kaddr, KM_USER0);
}

/*
 * Some of this taken from block_prepare_write(). We already have our
 * mapping by now though, and the entire write will be allocating or
 * it won't, so not much need to use BH_New.
 *
 * This will also skip zeroing, which is handled externally.
 */
670 671 672
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
			  struct inode *inode, unsigned int from,
			  unsigned int to, int new)
673 674 675 676 677 678 679 680 681 682 683 684 685 686
{
	int ret = 0;
	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
	unsigned int block_end, block_start;
	unsigned int bsize = 1 << inode->i_blkbits;

	if (!page_has_buffers(page))
		create_empty_buffers(page, bsize, 0);

	head = page_buffers(page);
	for (bh = head, block_start = 0; bh != head || !block_start;
	     bh = bh->b_this_page, block_start += bsize) {
		block_end = block_start + bsize;

687 688
		clear_buffer_new(bh);

689 690 691 692
		/*
		 * Ignore blocks outside of our i/o range -
		 * they may belong to unallocated clusters.
		 */
693
		if (block_start >= to || block_end <= from) {
694 695 696 697 698 699 700 701 702
			if (PageUptodate(page))
				set_buffer_uptodate(bh);
			continue;
		}

		/*
		 * For an allocating write with cluster size >= page
		 * size, we always write the entire page.
		 */
703 704
		if (new)
			set_buffer_new(bh);
705 706 707 708 709 710 711 712 713 714

		if (!buffer_mapped(bh)) {
			map_bh(bh, inode->i_sb, *p_blkno);
			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
		}

		if (PageUptodate(page)) {
			if (!buffer_uptodate(bh))
				set_buffer_uptodate(bh);
		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
715 716
			   !buffer_new(bh) &&
			   (block_start < from || block_end > to)) {
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
			ll_rw_block(READ, 1, &bh);
			*wait_bh++=bh;
		}

		*p_blkno = *p_blkno + 1;
	}

	/*
	 * If we issued read requests - let them complete.
	 */
	while(wait_bh > wait) {
		wait_on_buffer(*--wait_bh);
		if (!buffer_uptodate(*wait_bh))
			ret = -EIO;
	}

	if (ret == 0 || !new)
		return ret;

	/*
	 * If we get -EIO above, zero out any newly allocated blocks
	 * to avoid exposing stale data.
	 */
	bh = head;
	block_start = 0;
	do {
		void *kaddr;

		block_end = block_start + bsize;
		if (block_end <= from)
			goto next_bh;
		if (block_start >= to)
			break;

		kaddr = kmap_atomic(page, KM_USER0);
		memset(kaddr+block_start, 0, bh->b_size);
		flush_dcache_page(page);
		kunmap_atomic(kaddr, KM_USER0);
		set_buffer_uptodate(bh);
		mark_buffer_dirty(bh);

next_bh:
		block_start = block_end;
		bh = bh->b_this_page;
	} while (bh != head);

	return ret;
}

766 767 768 769 770 771 772 773
#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
#define OCFS2_MAX_CTXT_PAGES	1
#else
#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
#endif

#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)

M
Mark Fasheh 已提交
774
/*
775
 * Describe the state of a single cluster to be written to.
M
Mark Fasheh 已提交
776
 */
777 778 779 780 781 782 783 784
struct ocfs2_write_cluster_desc {
	u32		c_cpos;
	u32		c_phys;
	/*
	 * Give this a unique field because c_phys eventually gets
	 * filled.
	 */
	unsigned	c_new;
785
	unsigned	c_unwritten;
786
};
M
Mark Fasheh 已提交
787

788 789 790 791 792
static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
{
	return d->c_new || d->c_unwritten;
}

793 794 795 796
struct ocfs2_write_ctxt {
	/* Logical cluster position / len of write */
	u32				w_cpos;
	u32				w_clen;
M
Mark Fasheh 已提交
797

798
	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
M
Mark Fasheh 已提交
799

800 801 802 803 804 805 806
	/*
	 * This is true if page_size > cluster_size.
	 *
	 * It triggers a set of special cases during write which might
	 * have to deal with allocating writes to partial pages.
	 */
	unsigned int			w_large_pages;
M
Mark Fasheh 已提交
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	/*
	 * Pages involved in this write.
	 *
	 * w_target_page is the page being written to by the user.
	 *
	 * w_pages is an array of pages which always contains
	 * w_target_page, and in the case of an allocating write with
	 * page_size < cluster size, it will contain zero'd and mapped
	 * pages adjacent to w_target_page which need to be written
	 * out in so that future reads from that region will get
	 * zero's.
	 */
	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
	unsigned int			w_num_pages;
	struct page			*w_target_page;
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837
	/*
	 * ocfs2_write_end() uses this to know what the real range to
	 * write in the target should be.
	 */
	unsigned int			w_target_from;
	unsigned int			w_target_to;

	/*
	 * We could use journal_current_handle() but this is cleaner,
	 * IMHO -Mark
	 */
	handle_t			*w_handle;

	struct buffer_head		*w_di_bh;
838 839

	struct ocfs2_cached_dealloc_ctxt w_dealloc;
840 841 842 843 844 845 846 847 848 849 850 851 852
};

static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
{
	int i;

	for(i = 0; i < wc->w_num_pages; i++) {
		if (wc->w_pages[i] == NULL)
			continue;

		unlock_page(wc->w_pages[i]);
		mark_page_accessed(wc->w_pages[i]);
		page_cache_release(wc->w_pages[i]);
M
Mark Fasheh 已提交
853 854
	}

855 856 857 858 859 860
	brelse(wc->w_di_bh);
	kfree(wc);
}

static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
				  struct ocfs2_super *osb, loff_t pos,
861
				  unsigned len, struct buffer_head *di_bh)
862 863 864 865 866 867
{
	struct ocfs2_write_ctxt *wc;

	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
	if (!wc)
		return -ENOMEM;
M
Mark Fasheh 已提交
868

869 870
	wc->w_cpos = pos >> osb->s_clustersize_bits;
	wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
871 872
	get_bh(di_bh);
	wc->w_di_bh = di_bh;
M
Mark Fasheh 已提交
873

874 875 876 877 878
	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
		wc->w_large_pages = 1;
	else
		wc->w_large_pages = 0;

879 880
	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);

881
	*wcp = wc;
M
Mark Fasheh 已提交
882

883
	return 0;
M
Mark Fasheh 已提交
884 885
}

886
/*
887 888 889
 * If a page has any new buffers, zero them out here, and mark them uptodate
 * and dirty so they'll be written out (in order to prevent uninitialised
 * block data from leaking). And clear the new bit.
890
 */
891
static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
892
{
893 894
	unsigned int block_start, block_end;
	struct buffer_head *head, *bh;
895

896 897 898
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		return;
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
	bh = head = page_buffers(page);
	block_start = 0;
	do {
		block_end = block_start + bh->b_size;

		if (buffer_new(bh)) {
			if (block_end > from && block_start < to) {
				if (!PageUptodate(page)) {
					unsigned start, end;
					void *kaddr;

					start = max(from, block_start);
					end = min(to, block_end);

					kaddr = kmap_atomic(page, KM_USER0);
					memset(kaddr+start, 0, end - start);
					flush_dcache_page(page);
					kunmap_atomic(kaddr, KM_USER0);
					set_buffer_uptodate(bh);
				}

				clear_buffer_new(bh);
				mark_buffer_dirty(bh);
			}
		}
925

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		block_start = block_end;
		bh = bh->b_this_page;
	} while (bh != head);
}

/*
 * Only called when we have a failure during allocating write to write
 * zero's to the newly allocated region.
 */
static void ocfs2_write_failure(struct inode *inode,
				struct ocfs2_write_ctxt *wc,
				loff_t user_pos, unsigned user_len)
{
	int i;
	unsigned from, to;
	struct page *tmppage;

	ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
944 945

	if (wc->w_large_pages) {
946 947
		from = wc->w_target_from;
		to = wc->w_target_to;
948
	} else {
949 950
		from = 0;
		to = PAGE_CACHE_SIZE;
951 952
	}

953 954
	for(i = 0; i < wc->w_num_pages; i++) {
		tmppage = wc->w_pages[i];
955

956 957 958 959
		if (ocfs2_should_order_data(inode))
			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
					  from, to, NULL,
					  ocfs2_journal_dirty_data);
960

961
		block_commit_write(tmppage, from, to);
962 963 964
	}
}

965 966 967 968 969
static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
					struct ocfs2_write_ctxt *wc,
					struct page *page, u32 cpos,
					loff_t user_pos, unsigned user_len,
					int new)
970
{
971 972
	int ret;
	unsigned int map_from = 0, map_to = 0;
973
	unsigned int cluster_start, cluster_end;
974
	unsigned int user_data_from = 0, user_data_to = 0;
975

976
	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
977 978
					&cluster_start, &cluster_end);

979 980 981 982 983 984 985 986 987 988 989 990
	if (page == wc->w_target_page) {
		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
		map_to = map_from + user_len;

		if (new)
			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
						    cluster_start, cluster_end,
						    new);
		else
			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
						    map_from, map_to, new);
		if (ret) {
991 992 993 994
			mlog_errno(ret);
			goto out;
		}

995 996
		user_data_from = map_from;
		user_data_to = map_to;
997
		if (new) {
998 999
			map_from = cluster_start;
			map_to = cluster_end;
1000
		}
1001 1002 1003

		wc->w_target_from = map_from;
		wc->w_target_to = map_to;
1004 1005 1006 1007 1008 1009 1010 1011
	} else {
		/*
		 * If we haven't allocated the new page yet, we
		 * shouldn't be writing it out without copying user
		 * data. This is likely a math error from the caller.
		 */
		BUG_ON(!new);

1012 1013
		map_from = cluster_start;
		map_to = cluster_end;
1014 1015

		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1016
					    cluster_start, cluster_end, new);
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
	}

	/*
	 * Parts of newly allocated pages need to be zero'd.
	 *
	 * Above, we have also rewritten 'to' and 'from' - as far as
	 * the rest of the function is concerned, the entire cluster
	 * range inside of a page needs to be written.
	 *
	 * We can skip this if the page is up to date - it's already
	 * been zero'd from being read in as a hole.
	 */
	if (new && !PageUptodate(page))
		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1035
					 cpos, user_data_from, user_data_to);
1036 1037 1038 1039

	flush_dcache_page(page);

out:
1040
	return ret;
1041 1042 1043
}

/*
1044
 * This function will only grab one clusters worth of pages.
1045
 */
1046 1047
static int ocfs2_grab_pages_for_write(struct address_space *mapping,
				      struct ocfs2_write_ctxt *wc,
M
Mark Fasheh 已提交
1048 1049
				      u32 cpos, loff_t user_pos, int new,
				      struct page *mmap_page)
1050
{
1051 1052
	int ret = 0, i;
	unsigned long start, target_index, index;
1053 1054
	struct inode *inode = mapping->host;

1055
	target_index = user_pos >> PAGE_CACHE_SHIFT;
1056 1057 1058

	/*
	 * Figure out how many pages we'll be manipulating here. For
1059 1060
	 * non allocating write, we just change the one
	 * page. Otherwise, we'll need a whole clusters worth.
1061 1062
	 */
	if (new) {
1063 1064
		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1065
	} else {
1066 1067
		wc->w_num_pages = 1;
		start = target_index;
1068 1069
	}

1070
	for(i = 0; i < wc->w_num_pages; i++) {
1071 1072
		index = start + i;

M
Mark Fasheh 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
		if (index == target_index && mmap_page) {
			/*
			 * ocfs2_pagemkwrite() is a little different
			 * and wants us to directly use the page
			 * passed in.
			 */
			lock_page(mmap_page);

			if (mmap_page->mapping != mapping) {
				unlock_page(mmap_page);
				/*
				 * Sanity check - the locking in
				 * ocfs2_pagemkwrite() should ensure
				 * that this code doesn't trigger.
				 */
				ret = -EINVAL;
				mlog_errno(ret);
				goto out;
			}

			page_cache_get(mmap_page);
			wc->w_pages[i] = mmap_page;
		} else {
			wc->w_pages[i] = find_or_create_page(mapping, index,
							     GFP_NOFS);
			if (!wc->w_pages[i]) {
				ret = -ENOMEM;
				mlog_errno(ret);
				goto out;
			}
1103
		}
1104 1105 1106

		if (index == target_index)
			wc->w_target_page = wc->w_pages[i];
1107
	}
1108 1109 1110 1111 1112 1113 1114 1115
out:
	return ret;
}

/*
 * Prepare a single cluster for write one cluster into the file.
 */
static int ocfs2_write_cluster(struct address_space *mapping,
1116 1117
			       u32 phys, unsigned int unwritten,
			       struct ocfs2_alloc_context *data_ac,
1118 1119 1120 1121
			       struct ocfs2_alloc_context *meta_ac,
			       struct ocfs2_write_ctxt *wc, u32 cpos,
			       loff_t user_pos, unsigned user_len)
{
1122
	int ret, i, new, should_zero = 0;
1123 1124 1125 1126
	u64 v_blkno, p_blkno;
	struct inode *inode = mapping->host;

	new = phys == 0 ? 1 : 0;
1127 1128
	if (new || unwritten)
		should_zero = 1;
1129 1130

	if (new) {
1131 1132
		u32 tmp_pos;

1133 1134 1135 1136
		/*
		 * This is safe to call with the page locks - it won't take
		 * any additional semaphores or cluster locks.
		 */
1137
		tmp_pos = cpos;
1138
		ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1139 1140 1141
						 &tmp_pos, 1, wc->w_di_bh,
						 wc->w_handle, data_ac,
						 meta_ac, NULL);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		/*
		 * This shouldn't happen because we must have already
		 * calculated the correct meta data allocation required. The
		 * internal tree allocation code should know how to increase
		 * transaction credits itself.
		 *
		 * If need be, we could handle -EAGAIN for a
		 * RESTART_TRANS here.
		 */
		mlog_bug_on_msg(ret == -EAGAIN,
				"Inode %llu: EAGAIN return during allocation.\n",
				(unsigned long long)OCFS2_I(inode)->ip_blkno);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
1158 1159 1160 1161 1162 1163 1164 1165 1166
	} else if (unwritten) {
		ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
						wc->w_handle, cpos, 1, phys,
						meta_ac, &wc->w_dealloc);
		if (ret < 0) {
			mlog_errno(ret);
			goto out;
		}
	}
1167

1168
	if (should_zero)
1169
		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1170
	else
1171
		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1172

1173 1174 1175 1176
	/*
	 * The only reason this should fail is due to an inability to
	 * find the extent added.
	 */
1177 1178
	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
					  NULL);
1179
	if (ret < 0) {
1180 1181 1182 1183
		ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
			    "at logical block %llu",
			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
			    (unsigned long long)v_blkno);
1184 1185 1186 1187 1188
		goto out;
	}

	BUG_ON(p_blkno == 0);

1189 1190
	for(i = 0; i < wc->w_num_pages; i++) {
		int tmpret;
1191

1192 1193
		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
						      wc->w_pages[i], cpos,
1194 1195
						      user_pos, user_len,
						      should_zero);
1196 1197 1198 1199 1200
		if (tmpret) {
			mlog_errno(tmpret);
			if (ret == 0)
				tmpret = ret;
		}
1201 1202
	}

1203 1204 1205 1206 1207 1208
	/*
	 * We only have cleanup to do in case of allocating write.
	 */
	if (ret && new)
		ocfs2_write_failure(inode, wc, user_pos, user_len);

1209 1210
out:

1211
	return ret;
1212 1213
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
				       struct ocfs2_alloc_context *data_ac,
				       struct ocfs2_alloc_context *meta_ac,
				       struct ocfs2_write_ctxt *wc,
				       loff_t pos, unsigned len)
{
	int ret, i;
	struct ocfs2_write_cluster_desc *desc;

	for (i = 0; i < wc->w_clen; i++) {
		desc = &wc->w_desc[i];

1226 1227 1228
		ret = ocfs2_write_cluster(mapping, desc->c_phys,
					  desc->c_unwritten, data_ac, meta_ac,
					  wc, desc->c_cpos, pos, len);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		if (ret) {
			mlog_errno(ret);
			goto out;
		}
	}

	ret = 0;
out:
	return ret;
}

1240 1241 1242 1243 1244 1245 1246 1247
/*
 * ocfs2_write_end() wants to know which parts of the target page it
 * should complete the write on. It's easiest to compute them ahead of
 * time when a more complete view of the write is available.
 */
static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
					struct ocfs2_write_ctxt *wc,
					loff_t pos, unsigned len, int alloc)
1248
{
1249
	struct ocfs2_write_cluster_desc *desc;
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
	wc->w_target_to = wc->w_target_from + len;

	if (alloc == 0)
		return;

	/*
	 * Allocating write - we may have different boundaries based
	 * on page size and cluster size.
	 *
	 * NOTE: We can no longer compute one value from the other as
	 * the actual write length and user provided length may be
	 * different.
	 */
1265

1266 1267 1268
	if (wc->w_large_pages) {
		/*
		 * We only care about the 1st and last cluster within
1269
		 * our range and whether they should be zero'd or not. Either
1270 1271 1272 1273
		 * value may be extended out to the start/end of a
		 * newly allocated cluster.
		 */
		desc = &wc->w_desc[0];
1274
		if (ocfs2_should_zero_cluster(desc))
1275 1276 1277 1278 1279 1280
			ocfs2_figure_cluster_boundaries(osb,
							desc->c_cpos,
							&wc->w_target_from,
							NULL);

		desc = &wc->w_desc[wc->w_clen - 1];
1281
		if (ocfs2_should_zero_cluster(desc))
1282 1283 1284 1285 1286 1287 1288 1289
			ocfs2_figure_cluster_boundaries(osb,
							desc->c_cpos,
							NULL,
							&wc->w_target_to);
	} else {
		wc->w_target_from = 0;
		wc->w_target_to = PAGE_CACHE_SIZE;
	}
1290 1291
}

1292 1293 1294
/*
 * Populate each single-cluster write descriptor in the write context
 * with information about the i/o to be done.
1295 1296 1297 1298
 *
 * Returns the number of clusters that will have to be allocated, as
 * well as a worst case estimate of the number of extent records that
 * would have to be created during a write to an unwritten region.
1299 1300 1301
 */
static int ocfs2_populate_write_desc(struct inode *inode,
				     struct ocfs2_write_ctxt *wc,
1302 1303
				     unsigned int *clusters_to_alloc,
				     unsigned int *extents_to_split)
1304
{
1305
	int ret;
1306
	struct ocfs2_write_cluster_desc *desc;
1307
	unsigned int num_clusters = 0;
1308
	unsigned int ext_flags = 0;
1309 1310
	u32 phys = 0;
	int i;
1311

1312 1313 1314
	*clusters_to_alloc = 0;
	*extents_to_split = 0;

1315 1316 1317 1318 1319
	for (i = 0; i < wc->w_clen; i++) {
		desc = &wc->w_desc[i];
		desc->c_cpos = wc->w_cpos + i;

		if (num_clusters == 0) {
1320 1321 1322
			/*
			 * Need to look up the next extent record.
			 */
1323
			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1324
						 &num_clusters, &ext_flags);
1325 1326
			if (ret) {
				mlog_errno(ret);
1327
				goto out;
1328
			}
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

			/*
			 * Assume worst case - that we're writing in
			 * the middle of the extent.
			 *
			 * We can assume that the write proceeds from
			 * left to right, in which case the extent
			 * insert code is smart enough to coalesce the
			 * next splits into the previous records created.
			 */
			if (ext_flags & OCFS2_EXT_UNWRITTEN)
				*extents_to_split = *extents_to_split + 2;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		} else if (phys) {
			/*
			 * Only increment phys if it doesn't describe
			 * a hole.
			 */
			phys++;
		}

		desc->c_phys = phys;
		if (phys == 0) {
			desc->c_new = 1;
1352
			*clusters_to_alloc = *clusters_to_alloc + 1;
1353
		}
1354 1355
		if (ext_flags & OCFS2_EXT_UNWRITTEN)
			desc->c_unwritten = 1;
1356 1357

		num_clusters--;
1358 1359
	}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	ret = 0;
out:
	return ret;
}

int ocfs2_write_begin_nolock(struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned flags,
			     struct page **pagep, void **fsdata,
			     struct buffer_head *di_bh, struct page *mmap_page)
{
	int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1371
	unsigned int clusters_to_alloc, extents_to_split;
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	struct ocfs2_write_ctxt *wc;
	struct inode *inode = mapping->host;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_dinode *di;
	struct ocfs2_alloc_context *data_ac = NULL;
	struct ocfs2_alloc_context *meta_ac = NULL;
	handle_t *handle;

	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
	if (ret) {
		mlog_errno(ret);
		return ret;
	}

1386 1387
	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
					&extents_to_split);
1388 1389 1390 1391 1392 1393 1394
	if (ret) {
		mlog_errno(ret);
		goto out;
	}

	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;

1395 1396 1397 1398 1399 1400
	/*
	 * We set w_target_from, w_target_to here so that
	 * ocfs2_write_end() knows which range in the target page to
	 * write out. An allocation requires that we write the entire
	 * cluster range.
	 */
1401
	if (clusters_to_alloc || extents_to_split) {
1402 1403
		/*
		 * XXX: We are stretching the limits of
1404
		 * ocfs2_lock_allocators(). It greatly over-estimates
1405 1406 1407
		 * the work to be done.
		 */
		ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1408
					    extents_to_split, &data_ac, &meta_ac);
1409 1410
		if (ret) {
			mlog_errno(ret);
1411
			goto out;
1412 1413
		}

1414 1415 1416
		credits = ocfs2_calc_extend_credits(inode->i_sb, di,
						    clusters_to_alloc);

1417 1418
	}

1419 1420
	ocfs2_set_target_boundaries(osb, wc, pos, len,
				    clusters_to_alloc + extents_to_split);
1421

1422 1423 1424 1425
	handle = ocfs2_start_trans(osb, credits);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		mlog_errno(ret);
1426
		goto out;
1427 1428
	}

1429 1430 1431 1432 1433 1434 1435 1436 1437
	wc->w_handle = handle;

	/*
	 * We don't want this to fail in ocfs2_write_end(), so do it
	 * here.
	 */
	ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
				   OCFS2_JOURNAL_ACCESS_WRITE);
	if (ret) {
1438 1439 1440 1441
		mlog_errno(ret);
		goto out_commit;
	}

1442 1443 1444 1445 1446 1447
	/*
	 * Fill our page array first. That way we've grabbed enough so
	 * that we can zero and flush if we error after adding the
	 * extent.
	 */
	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1448 1449
					 clusters_to_alloc + extents_to_split,
					 mmap_page);
1450 1451 1452 1453 1454
	if (ret) {
		mlog_errno(ret);
		goto out_commit;
	}

1455 1456 1457 1458 1459
	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
					  len);
	if (ret) {
		mlog_errno(ret);
		goto out_commit;
1460 1461
	}

1462 1463 1464 1465
	if (data_ac)
		ocfs2_free_alloc_context(data_ac);
	if (meta_ac)
		ocfs2_free_alloc_context(meta_ac);
1466

1467 1468 1469
	*pagep = wc->w_target_page;
	*fsdata = wc;
	return 0;
1470 1471 1472 1473
out_commit:
	ocfs2_commit_trans(osb, handle);

out:
1474 1475
	ocfs2_free_write_ctxt(wc);

1476 1477 1478 1479
	if (data_ac)
		ocfs2_free_alloc_context(data_ac);
	if (meta_ac)
		ocfs2_free_alloc_context(meta_ac);
1480 1481 1482
	return ret;
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
int ocfs2_write_begin(struct file *file, struct address_space *mapping,
		      loff_t pos, unsigned len, unsigned flags,
		      struct page **pagep, void **fsdata)
{
	int ret;
	struct buffer_head *di_bh = NULL;
	struct inode *inode = mapping->host;

	ret = ocfs2_meta_lock(inode, &di_bh, 1);
	if (ret) {
		mlog_errno(ret);
		return ret;
	}

	/*
	 * Take alloc sem here to prevent concurrent lookups. That way
	 * the mapping, zeroing and tree manipulation within
	 * ocfs2_write() will be safe against ->readpage(). This
	 * should also serve to lock out allocation from a shared
	 * writeable region.
	 */
	down_write(&OCFS2_I(inode)->ip_alloc_sem);

	ret = ocfs2_data_lock(inode, 1);
	if (ret) {
		mlog_errno(ret);
		goto out_fail;
	}

	ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
M
Mark Fasheh 已提交
1513
				       fsdata, di_bh, NULL);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	if (ret) {
		mlog_errno(ret);
		goto out_fail_data;
	}

	brelse(di_bh);

	return 0;

out_fail_data:
	ocfs2_data_unlock(inode, 1);
out_fail:
	up_write(&OCFS2_I(inode)->ip_alloc_sem);

	brelse(di_bh);
	ocfs2_meta_unlock(inode, 1);

	return ret;
}

M
Mark Fasheh 已提交
1534 1535 1536
int ocfs2_write_end_nolock(struct address_space *mapping,
			   loff_t pos, unsigned len, unsigned copied,
			   struct page *page, void *fsdata)
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	int i;
	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
	struct inode *inode = mapping->host;
	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
	struct ocfs2_write_ctxt *wc = fsdata;
	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
	handle_t *handle = wc->w_handle;
	struct page *tmppage;

	if (unlikely(copied < len)) {
		if (!PageUptodate(wc->w_target_page))
			copied = 0;

		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
				       start+len);
	}
	flush_dcache_page(wc->w_target_page);

	for(i = 0; i < wc->w_num_pages; i++) {
		tmppage = wc->w_pages[i];

		if (tmppage == wc->w_target_page) {
			from = wc->w_target_from;
			to = wc->w_target_to;

			BUG_ON(from > PAGE_CACHE_SIZE ||
			       to > PAGE_CACHE_SIZE ||
			       to < from);
		} else {
			/*
			 * Pages adjacent to the target (if any) imply
			 * a hole-filling write in which case we want
			 * to flush their entire range.
			 */
			from = 0;
			to = PAGE_CACHE_SIZE;
		}

		if (ocfs2_should_order_data(inode))
			walk_page_buffers(wc->w_handle, page_buffers(tmppage),
					  from, to, NULL,
					  ocfs2_journal_dirty_data);

		block_commit_write(tmppage, from, to);
	}

	pos += copied;
	if (pos > inode->i_size) {
		i_size_write(inode, pos);
		mark_inode_dirty(inode);
	}
	inode->i_blocks = ocfs2_inode_sector_count(inode);
	di->i_size = cpu_to_le64((u64)i_size_read(inode));
	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
	ocfs2_journal_dirty(handle, wc->w_di_bh);

	ocfs2_commit_trans(osb, handle);
1597

1598 1599
	ocfs2_run_deallocs(osb, &wc->w_dealloc);

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	ocfs2_free_write_ctxt(wc);

	return copied;
}

int ocfs2_write_end(struct file *file, struct address_space *mapping,
		    loff_t pos, unsigned len, unsigned copied,
		    struct page *page, void *fsdata)
{
	int ret;
	struct inode *inode = mapping->host;

	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);

1614 1615 1616
	ocfs2_data_unlock(inode, 1);
	up_write(&OCFS2_I(inode)->ip_alloc_sem);
	ocfs2_meta_unlock(inode, 1);
1617

1618
	return ret;
1619 1620
}

1621
const struct address_space_operations ocfs2_aops = {
1622 1623 1624 1625
	.readpage	= ocfs2_readpage,
	.writepage	= ocfs2_writepage,
	.bmap		= ocfs2_bmap,
	.sync_page	= block_sync_page,
1626 1627 1628 1629
	.direct_IO	= ocfs2_direct_IO,
	.invalidatepage	= ocfs2_invalidatepage,
	.releasepage	= ocfs2_releasepage,
	.migratepage	= buffer_migrate_page,
1630
};