builtin-stat.c 8.1 KB
Newer Older
1
/*
2 3 4 5 6 7
 * builtin-stat.c
 *
 * Builtin stat command: Give a precise performance counters summary
 * overview about any workload, CPU or specific PID.
 *
 * Sample output:
8

9 10
   $ perf stat ~/hackbench 10
   Time: 0.104
11

12
    Performance counter stats for '/home/mingo/hackbench':
13

14 15 16 17 18 19 20 21
       1255.538611  task clock ticks     #      10.143 CPU utilization factor
             54011  context switches     #       0.043 M/sec
               385  CPU migrations       #       0.000 M/sec
             17755  pagefaults           #       0.014 M/sec
        3808323185  CPU cycles           #    3033.219 M/sec
        1575111190  instructions         #    1254.530 M/sec
          17367895  cache references     #      13.833 M/sec
           7674421  cache misses         #       6.112 M/sec
22

23
    Wall-clock time elapsed:   123.786620 msecs
24

25 26 27 28 29 30 31 32 33 34 35 36
 *
 * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
 *
 * Improvements and fixes by:
 *
 *   Arjan van de Ven <arjan@linux.intel.com>
 *   Yanmin Zhang <yanmin.zhang@intel.com>
 *   Wu Fengguang <fengguang.wu@intel.com>
 *   Mike Galbraith <efault@gmx.de>
 *   Paul Mackerras <paulus@samba.org>
 *
 * Released under the GPL v2. (and only v2, not any later version)
37 38
 */

39
#include "perf.h"
40
#include "builtin.h"
41
#include "util/util.h"
42 43
#include "util/parse-options.h"
#include "util/parse-events.h"
44 45

#include <sys/prctl.h>
46

47
static struct perf_counter_attr default_attrs[MAX_COUNTERS] = {
48

49 50 51 52
  { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_TASK_CLOCK		},
  { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_CONTEXT_SWITCHES	},
  { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_CPU_MIGRATIONS	},
  { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_PAGE_FAULTS	},
53

54 55 56 57
  { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_CPU_CYCLES		},
  { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_INSTRUCTIONS	},
  { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_CACHE_REFERENCES	},
  { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_CACHE_MISSES	},
58
};
59

60 61
static int			system_wide			=  0;
static int			inherit				=  1;
62
static int			verbose				=  0;
63

64 65
static int			fd[MAX_NR_CPUS][MAX_COUNTERS];

66
static int			target_pid			= -1;
67 68 69
static int			nr_cpus				=  0;
static unsigned int		page_size;

70
static int			scale				=  1;
71 72 73 74 75 76 77 78 79 80

static const unsigned int default_count[] = {
	1000000,
	1000000,
	  10000,
	  10000,
	1000000,
	  10000,
};

81 82 83
static __u64			event_res[MAX_COUNTERS][3];
static __u64			event_scaled[MAX_COUNTERS];

84
static __u64			runtime_nsecs;
85
static __u64			walltime_nsecs;
86

87
static void create_perf_stat_counter(int counter)
88
{
89
	struct perf_counter_attr *attr = attrs + counter;
90

91
	if (scale)
92 93
		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
				    PERF_FORMAT_TOTAL_TIME_RUNNING;
94 95 96 97

	if (system_wide) {
		int cpu;
		for (cpu = 0; cpu < nr_cpus; cpu ++) {
98
			fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
99 100
			if (fd[cpu][counter] < 0 && verbose) {
				printf("Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n", counter, fd[cpu][counter], strerror(errno));
101 102 103
			}
		}
	} else {
104 105
		attr->inherit	= inherit;
		attr->disabled	= 1;
106

107
		fd[0][counter] = sys_perf_counter_open(attr, 0, -1, -1, 0);
108 109
		if (fd[0][counter] < 0 && verbose) {
			printf("Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n", counter, fd[0][counter], strerror(errno));
110 111 112 113
		}
	}
}

114 115 116 117 118
/*
 * Does the counter have nsecs as a unit?
 */
static inline int nsec_counter(int counter)
{
119 120 121 122
	if (attrs[counter].type != PERF_TYPE_SOFTWARE)
		return 0;

	if (attrs[counter].config == PERF_COUNT_CPU_CLOCK)
123
		return 1;
124 125

	if (attrs[counter].config == PERF_COUNT_TASK_CLOCK)
126 127 128 129 130 131
		return 1;

	return 0;
}

/*
132
 * Read out the results of a single counter:
133
 */
134
static void read_counter(int counter)
135
{
136
	__u64 *count, single_count[3];
137 138 139 140
	ssize_t res;
	int cpu, nv;
	int scaled;

141 142
	count = event_res[counter];

143
	count[0] = count[1] = count[2] = 0;
144

145 146
	nv = scale ? 3 : 1;
	for (cpu = 0; cpu < nr_cpus; cpu ++) {
147 148 149
		if (fd[cpu][counter] < 0)
			continue;

150 151 152 153 154 155 156 157 158 159 160 161 162
		res = read(fd[cpu][counter], single_count, nv * sizeof(__u64));
		assert(res == nv * sizeof(__u64));

		count[0] += single_count[0];
		if (scale) {
			count[1] += single_count[1];
			count[2] += single_count[2];
		}
	}

	scaled = 0;
	if (scale) {
		if (count[2] == 0) {
163 164
			event_scaled[counter] = -1;
			count[0] = 0;
165 166
			return;
		}
167

168
		if (count[2] < count[1]) {
169
			event_scaled[counter] = 1;
170 171 172 173
			count[0] = (unsigned long long)
				((double)count[0] * count[1] / count[2] + 0.5);
		}
	}
174 175 176
	/*
	 * Save the full runtime - to allow normalization during printout:
	 */
177 178
	if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
		attrs[counter].config == PERF_COUNT_TASK_CLOCK)
179
		runtime_nsecs = count[0];
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
}

/*
 * Print out the results of a single counter:
 */
static void print_counter(int counter)
{
	__u64 *count;
	int scaled;

	count = event_res[counter];
	scaled = event_scaled[counter];

	if (scaled == -1) {
		fprintf(stderr, " %14s  %-20s\n",
			"<not counted>", event_name(counter));
		return;
	}
198 199 200 201

	if (nsec_counter(counter)) {
		double msecs = (double)count[0] / 1000000;

202
		fprintf(stderr, " %14.6f  %-20s",
203
			msecs, event_name(counter));
204 205
		if (attrs[counter].type == PERF_TYPE_SOFTWARE &&
			attrs[counter].config == PERF_COUNT_TASK_CLOCK) {
206

207 208 209
			if (walltime_nsecs)
				fprintf(stderr, " # %11.3f CPU utilization factor",
					(double)count[0] / (double)walltime_nsecs);
210
		}
211
	} else {
212
		fprintf(stderr, " %14Ld  %-20s",
213
			count[0], event_name(counter));
214
		if (runtime_nsecs)
215
			fprintf(stderr, " # %11.3f M/sec",
216
				(double)count[0]/runtime_nsecs*1000.0);
217 218 219 220 221 222 223
	}
	if (scaled)
		fprintf(stderr, "  (scaled from %.2f%%)",
			(double) count[2] / count[1] * 100);
	fprintf(stderr, "\n");
}

224
static int do_perf_stat(int argc, const char **argv)
225 226 227 228 229
{
	unsigned long long t0, t1;
	int counter;
	int status;
	int pid;
I
Ingo Molnar 已提交
230
	int i;
231 232 233 234 235

	if (!system_wide)
		nr_cpus = 1;

	for (counter = 0; counter < nr_counters; counter++)
236
		create_perf_stat_counter(counter);
237 238 239 240 241 242 243 244 245

	/*
	 * Enable counters and exec the command:
	 */
	t0 = rdclock();
	prctl(PR_TASK_PERF_COUNTERS_ENABLE);

	if ((pid = fork()) < 0)
		perror("failed to fork");
I
Ingo Molnar 已提交
246

247
	if (!pid) {
248
		if (execvp(argv[0], (char **)argv)) {
249 250 251 252
			perror(argv[0]);
			exit(-1);
		}
	}
I
Ingo Molnar 已提交
253

254 255
	while (wait(&status) >= 0)
		;
I
Ingo Molnar 已提交
256

257 258 259
	prctl(PR_TASK_PERF_COUNTERS_DISABLE);
	t1 = rdclock();

260 261
	walltime_nsecs = t1 - t0;

262 263 264
	fflush(stdout);

	fprintf(stderr, "\n");
I
Ingo Molnar 已提交
265 266 267 268 269 270
	fprintf(stderr, " Performance counter stats for \'%s", argv[0]);

	for (i = 1; i < argc; i++)
		fprintf(stderr, " %s", argv[i]);

	fprintf(stderr, "\':\n");
271 272
	fprintf(stderr, "\n");

273 274 275
	for (counter = 0; counter < nr_counters; counter++)
		read_counter(counter);

276 277
	for (counter = 0; counter < nr_counters; counter++)
		print_counter(counter);
278 279 280 281 282 283 284 285 286 287


	fprintf(stderr, "\n");
	fprintf(stderr, " Wall-clock time elapsed: %12.6f msecs\n",
			(double)(t1-t0)/1e6);
	fprintf(stderr, "\n");

	return 0;
}

288
static void skip_signal(int signo)
289
{
290 291 292 293 294 295 296 297 298
}

static const char * const stat_usage[] = {
	"perf stat [<options>] <command>",
	NULL
};

static const struct option options[] = {
	OPT_CALLBACK('e', "event", NULL, "event",
299 300
		     "event selector. use 'perf list' to list available events",
		     parse_events),
301 302 303 304 305 306
	OPT_BOOLEAN('i', "inherit", &inherit,
		    "child tasks inherit counters"),
	OPT_INTEGER('p', "pid", &target_pid,
		    "stat events on existing pid"),
	OPT_BOOLEAN('a', "all-cpus", &system_wide,
			    "system-wide collection from all CPUs"),
307
	OPT_BOOLEAN('S', "scale", &scale,
308
			    "scale/normalize counters"),
309 310
	OPT_BOOLEAN('v', "verbose", &verbose,
		    "be more verbose (show counter open errors, etc)"),
311 312 313 314 315 316 317
	OPT_END()
};

int cmd_stat(int argc, const char **argv, const char *prefix)
{
	page_size = sysconf(_SC_PAGE_SIZE);

318
	memcpy(attrs, default_attrs, sizeof(attrs));
319 320 321 322

	argc = parse_options(argc, argv, options, stat_usage, 0);
	if (!argc)
		usage_with_options(stat_usage, options);
323

324
	if (!nr_counters)
325 326 327 328 329 330
		nr_counters = 8;

	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
	assert(nr_cpus <= MAX_NR_CPUS);
	assert(nr_cpus >= 0);

I
Ingo Molnar 已提交
331 332 333 334 335 336 337 338 339 340
	/*
	 * We dont want to block the signals - that would cause
	 * child tasks to inherit that and Ctrl-C would not work.
	 * What we want is for Ctrl-C to work in the exec()-ed
	 * task, but being ignored by perf stat itself:
	 */
	signal(SIGINT,  skip_signal);
	signal(SIGALRM, skip_signal);
	signal(SIGABRT, skip_signal);

341
	return do_perf_stat(argc, argv);
342
}