hrtimer.c 46.1 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55
 *
56 57 58 59
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
60
 */
61
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62
{
63 64

	.clock_base =
65
	{
66 67 68
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
69
			.resolution = KTIME_LOW_RES,
70 71 72 73
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
74
			.resolution = KTIME_LOW_RES,
75
		},
76 77 78 79 80
		{
			.index = CLOCK_BOOTTIME,
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
81
	}
82 83
};

84
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
85 86 87 88
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
};
89 90 91 92 93 94 95

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


96 97 98 99
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
100
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
101
{
102
	ktime_t xtim, mono, boot;
103
	struct timespec xts, tom, slp;
104

105
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
106

J
john stultz 已提交
107
	xtim = timespec_to_ktime(xts);
108 109
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
110
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
111 112
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
113 114
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
133 134 135
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
136
{
137
	struct hrtimer_clock_base *base;
138 139 140 141

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
142
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
143 144 145
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
146
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
147 148 149 150 151
		}
		cpu_relax();
	}
}

152 153 154 155 156 157 158

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
159 160
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

188 189 190
/*
 * Switch the timer base to the current CPU when possible.
 */
191
static inline struct hrtimer_clock_base *
192 193
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
194
{
195 196
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
197 198
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
199
	int basenum = hrtimer_clockid_to_base(base->index);
200

201 202
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
203
	new_base = &new_cpu_base->clock_base[basenum];
204 205 206

	if (base != new_base) {
		/*
207
		 * We are trying to move timer to new_base.
208 209 210 211 212 213 214
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
215
		if (unlikely(hrtimer_callback_running(timer)))
216 217 218 219
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
220 221
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
222

223 224
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
225 226
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
227 228
			timer->base = base;
			goto again;
229
		}
230 231 232 233 234 235 236
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

237
static inline struct hrtimer_clock_base *
238 239
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
240
	struct hrtimer_clock_base *base = timer->base;
241

242
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
243 244 245 246

	return base;
}

247
# define switch_hrtimer_base(t, b, p)	(b)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
278 279

EXPORT_SYMBOL_GPL(ktime_add_ns);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 305 306 307 308
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
309
u64 ktime_divns(const ktime_t kt, s64 div)
310
{
311
	u64 dclc;
312 313
	int sft = 0;

314
	dclc = ktime_to_ns(kt);
315 316 317 318 319 320 321 322
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
323
	return dclc;
324 325 326
}
#endif /* BITS_PER_LONG >= 64 */

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

344 345
EXPORT_SYMBOL_GPL(ktime_add_safe);

346 347 348 349
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

350 351 352 353 354
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
414
	.debug_hint	= hrtimer_debug_hint,
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
449
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
450 451 452 453 454 455 456 457 458 459 460 461

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
519
	return __this_cpu_read(hrtimer_bases.hres_active);
520 521 522 523 524 525 526
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
527 528
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
529 530 531
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
532
	ktime_t expires, expires_next;
533

534
	expires_next.tv64 = KTIME_MAX;
535 536 537

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
538
		struct timerqueue_node *next;
539

540 541
		next = timerqueue_getnext(&base->active);
		if (!next)
542
			continue;
543 544
		timer = container_of(next, struct hrtimer, node);

545
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
546 547 548 549 550 551 552
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
553 554
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
555 556
	}

557 558 559 560 561
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
578
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
579
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
580 581
	int res;

582
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
583

584 585 586
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
587
	 * the callback is executed in the hrtimer_interrupt context. The
588 589 590 591 592 593
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

594 595 596 597 598 599 600 601 602
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

603 604 605 606 607 608 609 610 611 612
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
613 614 615 616 617 618 619
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
620
		cpu_base->expires_next = expires;
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
640 641
					    struct hrtimer_clock_base *base,
					    int wakeup)
642 643
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
644
		if (wakeup) {
645
			raw_spin_unlock(&base->cpu_base->lock);
646
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
647
			raw_spin_lock(&base->cpu_base->lock);
648 649 650
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

651
		return 1;
652
	}
653

654 655 656
	return 0;
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
	struct timespec realtime_offset, xtim, wtm, sleep;

	if (!hrtimer_hres_active())
		return;

	/* Optimized out for !HIGH_RES */
	get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);

	/* Adjust CLOCK_REALTIME offset */
	raw_spin_lock(&base->lock);
	base->clock_base[HRTIMER_BASE_REALTIME].offset =
		timespec_to_ktime(realtime_offset);
	base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
		timespec_to_ktime(sleep);

	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
684

685 686 687
/*
 * Switch to high resolution mode
 */
688
static int hrtimer_switch_to_hres(void)
689
{
690
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
691
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
692 693 694
	unsigned long flags;

	if (base->hres_active)
695
		return 1;
696 697 698 699 700

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
701 702
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
703
		return 0;
704 705
	}
	base->hres_active = 1;
706 707
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
708 709 710 711 712 713

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
714
	return 1;
715 716 717 718 719 720
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
721
static inline int hrtimer_switch_to_hres(void) { return 0; }
722 723
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
724
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
725 726
					    struct hrtimer_clock_base *base,
					    int wakeup)
727 728 729 730
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
731
static inline void retrigger_next_event(void *arg) { }
732 733 734

#endif /* CONFIG_HIGH_RES_TIMERS */

735 736 737 738 739 740 741 742 743 744 745 746 747
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
748
#ifdef CONFIG_HIGHRES_TIMERS
749 750
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
751 752
#endif
	timerfd_clock_was_set();
753 754 755 756 757 758 759 760 761 762 763 764
}

/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

	retrigger_next_event(NULL);
765
	timerfd_clock_was_set();
766 767
}

768
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
769
{
770
#ifdef CONFIG_TIMER_STATS
771 772
	if (timer->start_site)
		return;
773
	timer->start_site = __builtin_return_address(0);
774 775
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
776 777 778 779 780 781 782 783
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
784
}
785 786 787 788 789 790 791 792

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
793
#endif
794
}
795

796
/*
797
 * Counterpart to lock_hrtimer_base above:
798 799 800 801
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
802
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
803 804 805 806 807
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
808
 * @now:	forward past this time
809 810 811
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
812
 * Returns the number of overruns.
813
 */
D
Davide Libenzi 已提交
814
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
815
{
D
Davide Libenzi 已提交
816
	u64 orun = 1;
817
	ktime_t delta;
818

819
	delta = ktime_sub(now, hrtimer_get_expires(timer));
820 821 822 823

	if (delta.tv64 < 0)
		return 0;

824 825 826
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

827
	if (unlikely(delta.tv64 >= interval.tv64)) {
828
		s64 incr = ktime_to_ns(interval);
829 830

		orun = ktime_divns(delta, incr);
831 832
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
833 834 835 836 837 838 839
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
840
	hrtimer_add_expires(timer, interval);
841 842 843

	return orun;
}
S
Stas Sergeev 已提交
844
EXPORT_SYMBOL_GPL(hrtimer_forward);
845 846 847 848 849 850

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
851 852
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
853
 */
854 855
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
856
{
857
	debug_activate(timer);
858

859
	timerqueue_add(&base->active, &timer->node);
860

861 862 863 864 865
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
866

867
	return (&timer->node == base->active.next);
868
}
869 870 871 872 873

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
874 875 876 877 878
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
879
 */
880
static void __remove_hrtimer(struct hrtimer *timer,
881
			     struct hrtimer_clock_base *base,
882
			     unsigned long newstate, int reprogram)
883
{
884 885 886
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

887
	if (&timer->node == timerqueue_getnext(&base->active)) {
888 889 890 891 892 893 894 895 896
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
897
		}
898
#endif
899
	}
900
	timerqueue_del(&base->active, &timer->node);
901
out:
902
	timer->state = newstate;
903 904 905 906 907 908
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
909
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
910
{
911
	if (hrtimer_is_queued(timer)) {
912
		unsigned long state;
913 914 915 916 917 918 919 920 921 922
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
923
		debug_deactivate(timer);
924
		timer_stats_hrtimer_clear_start_info(timer);
925
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
926 927 928 929 930 931 932
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
933 934 935 936 937
		return 1;
	}
	return 0;
}

938 939 940
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
941
{
942
	struct hrtimer_clock_base *base, *new_base;
943
	unsigned long flags;
944
	int ret, leftmost;
945 946 947 948 949 950 951

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
952
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
953

954
	if (mode & HRTIMER_MODE_REL) {
955
		tim = ktime_add_safe(tim, new_base->get_time());
956 957 958 959 960 961 962 963
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
964
		tim = ktime_add_safe(tim, base->resolution);
965 966
#endif
	}
967

968
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
969

970 971
	timer_stats_hrtimer_set_start_info(timer);

972 973
	leftmost = enqueue_hrtimer(timer, new_base);

974 975 976
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
977 978
	 *
	 * XXX send_remote_softirq() ?
979
	 */
980
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
981
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
982 983 984 985 986

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1004 1005 1006
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1007
 * hrtimer_start - (re)start an hrtimer on the current CPU
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1019
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1020
}
1021
EXPORT_SYMBOL_GPL(hrtimer_start);
1022

1023

1024 1025 1026 1027 1028 1029 1030 1031
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1032
 *    cannot be stopped
1033 1034 1035
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1036
	struct hrtimer_clock_base *base;
1037 1038 1039 1040 1041
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1042
	if (!hrtimer_callback_running(timer))
1043 1044 1045 1046 1047 1048 1049
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1050
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1067
		cpu_relax();
1068 1069
	}
}
1070
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1081
	lock_hrtimer_base(timer, &flags);
1082
	rem = hrtimer_expires_remaining(timer);
1083 1084 1085 1086
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1087
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1088

1089
#ifdef CONFIG_NO_HZ
1090 1091 1092 1093 1094 1095 1096 1097
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1098 1099
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1100 1101 1102 1103
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1104
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105

1106 1107 1108
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1109
			struct timerqueue_node *next;
1110

1111 1112
			next = timerqueue_getnext(&base->active);
			if (!next)
1113
				continue;
1114

1115
			timer = container_of(next, struct hrtimer, node);
1116
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1117 1118 1119 1120
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1121
	}
1122

1123
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1124

1125 1126 1127 1128 1129 1130
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1131 1132
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1133
{
1134
	struct hrtimer_cpu_base *cpu_base;
1135
	int base;
1136

1137 1138
	memset(timer, 0, sizeof(struct hrtimer));

1139
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1140

1141
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1142 1143
		clock_id = CLOCK_MONOTONIC;

1144 1145
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1146
	timerqueue_init(&timer->node);
1147 1148 1149 1150 1151 1152

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1153
}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1164
	debug_init(timer, clock_id, mode);
1165 1166
	__hrtimer_init(timer, clock_id, mode);
}
1167
EXPORT_SYMBOL_GPL(hrtimer_init);
1168 1169 1170 1171 1172 1173

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1174 1175
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1176 1177 1178
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1179
	struct hrtimer_cpu_base *cpu_base;
1180
	int base = hrtimer_clockid_to_base(which_clock);
1181

1182
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1183
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1184 1185 1186

	return 0;
}
1187
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1188

1189
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1190 1191 1192 1193 1194 1195
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1196 1197
	WARN_ON(!irqs_disabled());

1198
	debug_deactivate(timer);
1199 1200 1201
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1202 1203 1204 1205 1206 1207

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1208
	raw_spin_unlock(&cpu_base->lock);
1209
	trace_hrtimer_expire_entry(timer, now);
1210
	restart = fn(timer);
1211
	trace_hrtimer_expire_exit(timer);
1212
	raw_spin_lock(&cpu_base->lock);
1213 1214

	/*
T
Thomas Gleixner 已提交
1215 1216 1217
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1218 1219 1220
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1221
		enqueue_hrtimer(timer, base);
1222
	}
1223 1224 1225

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1226 1227 1228
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
1239 1240
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1241 1242 1243 1244 1245

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1246 1247
	entry_time = now = ktime_get();
retry:
1248 1249
	expires_next.tv64 = KTIME_MAX;

1250
	raw_spin_lock(&cpu_base->lock);
1251 1252 1253 1254 1255 1256 1257 1258 1259
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1260 1261 1262 1263
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
1264
		struct timerqueue_node *node;
1265 1266 1267

		basenow = ktime_add(now, base->offset);

1268
		while ((node = timerqueue_getnext(&base->active))) {
1269 1270
			struct hrtimer *timer;

1271
			timer = container_of(node, struct hrtimer, node);
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1287 1288
				ktime_t expires;

1289
				expires = ktime_sub(hrtimer_get_expires(timer),
1290 1291 1292 1293 1294 1295
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1296
			__run_hrtimer(timer, &basenow);
1297 1298 1299 1300
		}
		base++;
	}

1301 1302 1303 1304
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1305
	cpu_base->expires_next = expires_next;
1306
	raw_spin_unlock(&cpu_base->lock);
1307 1308

	/* Reprogramming necessary ? */
1309 1310 1311 1312
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1313
	}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1380
	unsigned long flags;
1381

1382
	local_irq_save(flags);
1383
	__hrtimer_peek_ahead_timers();
1384 1385 1386
	local_irq_restore(flags);
}

1387 1388 1389 1390 1391
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1392 1393 1394 1395 1396
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1420 1421
}

1422
/*
1423
 * Called from hardirq context every jiffy
1424
 */
1425
void hrtimer_run_queues(void)
1426
{
1427
	struct timerqueue_node *node;
1428 1429 1430
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1431

1432
	if (hrtimer_hres_active())
1433 1434
		return;

1435 1436
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1437
		if (!timerqueue_getnext(&base->active))
1438
			continue;
1439

1440
		if (gettime) {
1441 1442
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1443
		}
1444

1445
		raw_spin_lock(&cpu_base->lock);
1446

1447
		while ((node = timerqueue_getnext(&base->active))) {
1448
			struct hrtimer *timer;
1449

1450
			timer = container_of(node, struct hrtimer, node);
1451 1452
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1453 1454
				break;

1455
			__run_hrtimer(timer, &base->softirq_time);
1456
		}
1457
		raw_spin_unlock(&cpu_base->lock);
1458
	}
1459 1460
}

1461 1462 1463
/*
 * Sleep related functions:
 */
1464
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1477
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1478 1479 1480 1481
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1482
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1483

1484
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1485
{
1486
	hrtimer_init_sleeper(t, current);
1487

1488 1489
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1490
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1491 1492
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1493

1494 1495
		if (likely(t->task))
			schedule();
1496

1497
		hrtimer_cancel(&t->timer);
1498
		mode = HRTIMER_MODE_ABS;
1499 1500

	} while (t->task && !signal_pending(current));
1501

1502 1503
	__set_current_state(TASK_RUNNING);

1504
	return t->task == NULL;
1505 1506
}

1507 1508 1509 1510 1511
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1512
	rem = hrtimer_expires_remaining(timer);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1523
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1524
{
1525
	struct hrtimer_sleeper t;
1526
	struct timespec __user  *rmtp;
1527
	int ret = 0;
1528

1529 1530
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1531
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1532

1533
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1534
		goto out;
1535

1536
	rmtp = restart->nanosleep.rmtp;
1537
	if (rmtp) {
1538
		ret = update_rmtp(&t.timer, rmtp);
1539
		if (ret <= 0)
1540
			goto out;
1541
	}
1542 1543

	/* The other values in restart are already filled in */
1544 1545 1546 1547
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1548 1549
}

1550
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1551 1552 1553
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1554
	struct hrtimer_sleeper t;
1555
	int ret = 0;
1556 1557 1558 1559 1560
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1561

1562
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1563
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1564
	if (do_nanosleep(&t, mode))
1565
		goto out;
1566

1567
	/* Absolute timers do not update the rmtp value and restart: */
1568 1569 1570 1571
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1572

1573
	if (rmtp) {
1574
		ret = update_rmtp(&t.timer, rmtp);
1575
		if (ret <= 0)
1576
			goto out;
1577
	}
1578 1579

	restart = &current_thread_info()->restart_block;
1580
	restart->fn = hrtimer_nanosleep_restart;
1581 1582
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1583
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1584

1585 1586 1587 1588
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1589 1590
}

1591 1592
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1593
{
1594
	struct timespec tu;
1595 1596 1597 1598 1599 1600 1601

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1602
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1603 1604
}

1605 1606 1607
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1608
static void __cpuinit init_hrtimers_cpu(int cpu)
1609
{
1610
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1611 1612
	int i;

1613
	raw_spin_lock_init(&cpu_base->lock);
1614

1615
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1616
		cpu_base->clock_base[i].cpu_base = cpu_base;
1617 1618
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1619

1620
	hrtimer_init_hres(cpu_base);
1621 1622 1623 1624
}

#ifdef CONFIG_HOTPLUG_CPU

1625
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1626
				struct hrtimer_clock_base *new_base)
1627 1628
{
	struct hrtimer *timer;
1629
	struct timerqueue_node *node;
1630

1631 1632
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1633
		BUG_ON(hrtimer_callback_running(timer));
1634
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1635 1636 1637 1638 1639 1640 1641

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1642
		timer->base = new_base;
1643
		/*
T
Thomas Gleixner 已提交
1644 1645 1646 1647 1648 1649
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1650
		 */
1651
		enqueue_hrtimer(timer, new_base);
1652

T
Thomas Gleixner 已提交
1653 1654
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1655 1656 1657
	}
}

1658
static void migrate_hrtimers(int scpu)
1659
{
1660
	struct hrtimer_cpu_base *old_base, *new_base;
1661
	int i;
1662

1663 1664
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1665 1666 1667 1668

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1669 1670 1671 1672
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1673 1674
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1675

1676
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1677
		migrate_hrtimer_list(&old_base->clock_base[i],
1678
				     &new_base->clock_base[i]);
1679 1680
	}

1681 1682
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1683

1684 1685 1686
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1687
}
1688

1689 1690
#endif /* CONFIG_HOTPLUG_CPU */

1691
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1692 1693
					unsigned long action, void *hcpu)
{
1694
	int scpu = (long)hcpu;
1695 1696 1697 1698

	switch (action) {

	case CPU_UP_PREPARE:
1699
	case CPU_UP_PREPARE_FROZEN:
1700
		init_hrtimers_cpu(scpu);
1701 1702 1703
		break;

#ifdef CONFIG_HOTPLUG_CPU
1704 1705 1706 1707
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1708
	case CPU_DEAD:
1709
	case CPU_DEAD_FROZEN:
1710
	{
1711
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1712
		migrate_hrtimers(scpu);
1713
		break;
1714
	}
1715 1716 1717 1718 1719 1720 1721 1722 1723
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1724
static struct notifier_block __cpuinitdata hrtimers_nb = {
1725 1726 1727 1728 1729 1730 1731 1732
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1733 1734 1735
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1736 1737
}

1738
/**
1739
 * schedule_hrtimeout_range_clock - sleep until timeout
1740
 * @expires:	timeout value (ktime_t)
1741
 * @delta:	slack in expires timeout (ktime_t)
1742
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1743
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1744
 */
1745 1746 1747
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1761
	 * A NULL parameter means "infinite"
1762 1763 1764 1765 1766 1767 1768
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1769
	hrtimer_init_on_stack(&t.timer, clock, mode);
1770
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1771 1772 1773

	hrtimer_init_sleeper(&t, current);

1774
	hrtimer_start_expires(&t.timer, mode);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1852
EXPORT_SYMBOL_GPL(schedule_hrtimeout);