ordered-data.c 22.7 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/gfp.h>
#include <linux/slab.h>
21
#include <linux/blkdev.h>
22 23
#include <linux/writeback.h>
#include <linux/pagevec.h>
C
Chris Mason 已提交
24 25 26
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
27
#include "extent_io.h"
C
Chris Mason 已提交
28

29
static u64 entry_end(struct btrfs_ordered_extent *entry)
C
Chris Mason 已提交
30
{
31 32 33
	if (entry->file_offset + entry->len < entry->file_offset)
		return (u64)-1;
	return entry->file_offset + entry->len;
C
Chris Mason 已提交
34 35
}

C
Chris Mason 已提交
36 37 38
/* returns NULL if the insertion worked, or it returns the node it did find
 * in the tree
 */
39 40
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
				   struct rb_node *node)
C
Chris Mason 已提交
41
{
C
Chris Mason 已提交
42 43
	struct rb_node **p = &root->rb_node;
	struct rb_node *parent = NULL;
44
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
45

C
Chris Mason 已提交
46
	while (*p) {
C
Chris Mason 已提交
47
		parent = *p;
48
		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
49

50
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
51
			p = &(*p)->rb_left;
52
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
53 54 55 56 57 58 59 60 61 62
			p = &(*p)->rb_right;
		else
			return parent;
	}

	rb_link_node(node, parent, p);
	rb_insert_color(node, root);
	return NULL;
}

C
Chris Mason 已提交
63 64 65 66
/*
 * look for a given offset in the tree, and if it can't be found return the
 * first lesser offset
 */
67 68
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
				     struct rb_node **prev_ret)
C
Chris Mason 已提交
69
{
C
Chris Mason 已提交
70
	struct rb_node *n = root->rb_node;
C
Chris Mason 已提交
71
	struct rb_node *prev = NULL;
72 73 74
	struct rb_node *test;
	struct btrfs_ordered_extent *entry;
	struct btrfs_ordered_extent *prev_entry = NULL;
C
Chris Mason 已提交
75

C
Chris Mason 已提交
76
	while (n) {
77
		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
78 79 80
		prev = n;
		prev_entry = entry;

81
		if (file_offset < entry->file_offset)
C
Chris Mason 已提交
82
			n = n->rb_left;
83
		else if (file_offset >= entry_end(entry))
C
Chris Mason 已提交
84 85 86 87 88 89 90
			n = n->rb_right;
		else
			return n;
	}
	if (!prev_ret)
		return NULL;

C
Chris Mason 已提交
91
	while (prev && file_offset >= entry_end(prev_entry)) {
92 93 94 95 96 97 98 99 100 101 102 103 104
		test = rb_next(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		if (file_offset < entry_end(prev_entry))
			break;

		prev = test;
	}
	if (prev)
		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
				      rb_node);
C
Chris Mason 已提交
105
	while (prev && file_offset < entry_end(prev_entry)) {
106 107 108 109 110 111
		test = rb_prev(prev);
		if (!test)
			break;
		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
				      rb_node);
		prev = test;
C
Chris Mason 已提交
112 113 114 115 116
	}
	*prev_ret = prev;
	return NULL;
}

C
Chris Mason 已提交
117 118 119
/*
 * helper to check if a given offset is inside a given entry
 */
120 121 122 123 124 125 126 127
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
{
	if (file_offset < entry->file_offset ||
	    entry->file_offset + entry->len <= file_offset)
		return 0;
	return 1;
}

C
Chris Mason 已提交
128 129 130 131
/*
 * look find the first ordered struct that has this offset, otherwise
 * the first one less than this offset
 */
132 133
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
					  u64 file_offset)
C
Chris Mason 已提交
134
{
135
	struct rb_root *root = &tree->tree;
C
Chris Mason 已提交
136 137
	struct rb_node *prev;
	struct rb_node *ret;
138 139 140 141 142 143 144 145 146
	struct btrfs_ordered_extent *entry;

	if (tree->last) {
		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
				 rb_node);
		if (offset_in_entry(entry, file_offset))
			return tree->last;
	}
	ret = __tree_search(root, file_offset, &prev);
C
Chris Mason 已提交
147
	if (!ret)
148 149 150
		ret = prev;
	if (ret)
		tree->last = ret;
C
Chris Mason 已提交
151 152 153
	return ret;
}

154 155 156 157 158 159 160 161 162 163 164 165 166
/* allocate and add a new ordered_extent into the per-inode tree.
 * file_offset is the logical offset in the file
 *
 * start is the disk block number of an extent already reserved in the
 * extent allocation tree
 *
 * len is the length of the extent
 *
 * This also sets the EXTENT_ORDERED bit on the range in the inode.
 *
 * The tree is given a single reference on the ordered extent that was
 * inserted.
 */
167
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
Y
Yan Zheng 已提交
168
			     u64 start, u64 len, u64 disk_len, int type)
C
Chris Mason 已提交
169 170
{
	struct btrfs_ordered_inode_tree *tree;
171 172
	struct rb_node *node;
	struct btrfs_ordered_extent *entry;
C
Chris Mason 已提交
173

174 175
	tree = &BTRFS_I(inode)->ordered_tree;
	entry = kzalloc(sizeof(*entry), GFP_NOFS);
C
Chris Mason 已提交
176 177 178
	if (!entry)
		return -ENOMEM;

179 180 181 182
	mutex_lock(&tree->mutex);
	entry->file_offset = file_offset;
	entry->start = start;
	entry->len = len;
C
Chris Mason 已提交
183
	entry->disk_len = disk_len;
184
	entry->inode = inode;
Y
Yan Zheng 已提交
185
	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
Y
Yan Zheng 已提交
186
		set_bit(type, &entry->flags);
187

188 189 190 191
	/* one ref for the tree */
	atomic_set(&entry->refs, 1);
	init_waitqueue_head(&entry->wait);
	INIT_LIST_HEAD(&entry->list);
192
	INIT_LIST_HEAD(&entry->root_extent_list);
C
Chris Mason 已提交
193

194 195
	node = tree_insert(&tree->tree, file_offset,
			   &entry->rb_node);
C
Chris Mason 已提交
196 197
	BUG_ON(node);

198 199
	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
			   entry_end(entry) - 1, GFP_NOFS);
200

201 202 203 204 205
	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_add_tail(&entry->root_extent_list,
		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

206 207
	mutex_unlock(&tree->mutex);
	BUG_ON(node);
C
Chris Mason 已提交
208 209 210
	return 0;
}

211 212
/*
 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
213 214
 * when an ordered extent is finished.  If the list covers more than one
 * ordered extent, it is split across multiples.
215
 */
216 217 218
int btrfs_add_ordered_sum(struct inode *inode,
			  struct btrfs_ordered_extent *entry,
			  struct btrfs_ordered_sum *sum)
C
Chris Mason 已提交
219
{
220
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
221

222 223 224 225 226
	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	list_add_tail(&sum->list, &entry->list);
	mutex_unlock(&tree->mutex);
	return 0;
C
Chris Mason 已提交
227 228
}

229 230 231 232 233 234 235 236 237
/*
 * this is used to account for finished IO across a given range
 * of the file.  The IO should not span ordered extents.  If
 * a given ordered_extent is completely done, 1 is returned, otherwise
 * 0.
 *
 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 * to make sure this function only returns 1 once for a given ordered extent.
 */
238 239
int btrfs_dec_test_ordered_pending(struct inode *inode,
				   u64 file_offset, u64 io_size)
C
Chris Mason 已提交
240
{
241
	struct btrfs_ordered_inode_tree *tree;
C
Chris Mason 已提交
242
	struct rb_node *node;
243 244 245 246 247 248 249 250 251
	struct btrfs_ordered_extent *entry;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
	int ret;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
			     GFP_NOFS);
	node = tree_search(tree, file_offset);
C
Chris Mason 已提交
252
	if (!node) {
253 254
		ret = 1;
		goto out;
C
Chris Mason 已提交
255 256
	}

257 258 259 260
	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset)) {
		ret = 1;
		goto out;
C
Chris Mason 已提交
261
	}
262 263 264

	ret = test_range_bit(io_tree, entry->file_offset,
			     entry->file_offset + entry->len - 1,
265
			     EXTENT_ORDERED, 0, NULL);
266 267 268 269 270 271
	if (ret == 0)
		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
out:
	mutex_unlock(&tree->mutex);
	return ret == 0;
}
C
Chris Mason 已提交
272

273 274 275 276
/*
 * used to drop a reference on an ordered extent.  This will free
 * the extent if the last reference is dropped
 */
277 278
int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
{
279 280 281 282
	struct list_head *cur;
	struct btrfs_ordered_sum *sum;

	if (atomic_dec_and_test(&entry->refs)) {
C
Chris Mason 已提交
283
		while (!list_empty(&entry->list)) {
284 285 286 287 288
			cur = entry->list.next;
			sum = list_entry(cur, struct btrfs_ordered_sum, list);
			list_del(&sum->list);
			kfree(sum);
		}
289
		kfree(entry);
290
	}
291
	return 0;
C
Chris Mason 已提交
292
}
293

294 295 296 297
/*
 * remove an ordered extent from the tree.  No references are dropped
 * but, anyone waiting on this extent is woken up.
 */
298 299
int btrfs_remove_ordered_extent(struct inode *inode,
				struct btrfs_ordered_extent *entry)
300
{
301
	struct btrfs_ordered_inode_tree *tree;
302 303
	struct rb_node *node;

304 305 306
	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = &entry->rb_node;
307
	rb_erase(node, &tree->tree);
308 309
	tree->last = NULL;
	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
310 311 312

	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
	list_del_init(&entry->root_extent_list);
313 314 315 316 317 318 319 320 321 322

	/*
	 * we have no more ordered extents for this inode and
	 * no dirty pages.  We can safely remove it from the
	 * list of ordered extents
	 */
	if (RB_EMPTY_ROOT(&tree->tree) &&
	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
		list_del_init(&BTRFS_I(inode)->ordered_operations);
	}
323 324
	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);

325 326 327
	mutex_unlock(&tree->mutex);
	wake_up(&entry->wait);
	return 0;
328 329
}

C
Chris Mason 已提交
330 331 332 333
/*
 * wait for all the ordered extents in a root.  This is done when balancing
 * space between drives.
 */
334
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
335 336 337 338 339 340 341 342 343 344
{
	struct list_head splice;
	struct list_head *cur;
	struct btrfs_ordered_extent *ordered;
	struct inode *inode;

	INIT_LIST_HEAD(&splice);

	spin_lock(&root->fs_info->ordered_extent_lock);
	list_splice_init(&root->fs_info->ordered_extents, &splice);
345
	while (!list_empty(&splice)) {
346 347 348
		cur = splice.next;
		ordered = list_entry(cur, struct btrfs_ordered_extent,
				     root_extent_list);
349
		if (nocow_only &&
Y
Yan Zheng 已提交
350 351
		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
352 353
			list_move(&ordered->root_extent_list,
				  &root->fs_info->ordered_extents);
354 355 356 357
			cond_resched_lock(&root->fs_info->ordered_extent_lock);
			continue;
		}

358 359 360 361
		list_del_init(&ordered->root_extent_list);
		atomic_inc(&ordered->refs);

		/*
362
		 * the inode may be getting freed (in sys_unlink path).
363
		 */
364 365
		inode = igrab(ordered->inode);

366 367
		spin_unlock(&root->fs_info->ordered_extent_lock);

368 369 370 371 372 373 374
		if (inode) {
			btrfs_start_ordered_extent(inode, ordered, 1);
			btrfs_put_ordered_extent(ordered);
			iput(inode);
		} else {
			btrfs_put_ordered_extent(ordered);
		}
375 376 377 378 379 380 381

		spin_lock(&root->fs_info->ordered_extent_lock);
	}
	spin_unlock(&root->fs_info->ordered_extent_lock);
	return 0;
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/*
 * this is used during transaction commit to write all the inodes
 * added to the ordered operation list.  These files must be fully on
 * disk before the transaction commits.
 *
 * we have two modes here, one is to just start the IO via filemap_flush
 * and the other is to wait for all the io.  When we wait, we have an
 * extra check to make sure the ordered operation list really is empty
 * before we return
 */
int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
{
	struct btrfs_inode *btrfs_inode;
	struct inode *inode;
	struct list_head splice;

	INIT_LIST_HEAD(&splice);

	mutex_lock(&root->fs_info->ordered_operations_mutex);
	spin_lock(&root->fs_info->ordered_extent_lock);
again:
	list_splice_init(&root->fs_info->ordered_operations, &splice);

	while (!list_empty(&splice)) {
		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
				   ordered_operations);

		inode = &btrfs_inode->vfs_inode;

		list_del_init(&btrfs_inode->ordered_operations);

		/*
		 * the inode may be getting freed (in sys_unlink path).
		 */
		inode = igrab(inode);

		if (!wait && inode) {
			list_add_tail(&BTRFS_I(inode)->ordered_operations,
			      &root->fs_info->ordered_operations);
		}
		spin_unlock(&root->fs_info->ordered_extent_lock);

		if (inode) {
			if (wait)
				btrfs_wait_ordered_range(inode, 0, (u64)-1);
			else
				filemap_flush(inode->i_mapping);
			iput(inode);
		}

		cond_resched();
		spin_lock(&root->fs_info->ordered_extent_lock);
	}
	if (wait && !list_empty(&root->fs_info->ordered_operations))
		goto again;

	spin_unlock(&root->fs_info->ordered_extent_lock);
	mutex_unlock(&root->fs_info->ordered_operations_mutex);

	return 0;
}

444 445 446 447 448 449 450 451 452 453
/*
 * Used to start IO or wait for a given ordered extent to finish.
 *
 * If wait is one, this effectively waits on page writeback for all the pages
 * in the extent, and it waits on the io completion code to insert
 * metadata into the btree corresponding to the extent
 */
void btrfs_start_ordered_extent(struct inode *inode,
				       struct btrfs_ordered_extent *entry,
				       int wait)
454 455 456
{
	u64 start = entry->file_offset;
	u64 end = start + entry->len - 1;
457

458 459 460 461 462
	/*
	 * pages in the range can be dirty, clean or writeback.  We
	 * start IO on any dirty ones so the wait doesn't stall waiting
	 * for pdflush to find them
	 */
463
	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
C
Chris Mason 已提交
464
	if (wait) {
465 466
		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
						 &entry->flags));
C
Chris Mason 已提交
467
	}
468
}
469

470 471 472
/*
 * Used to wait on ordered extents across a large range of bytes.
 */
473
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
474 475
{
	u64 end;
476 477
	u64 orig_end;
	u64 wait_end;
478
	struct btrfs_ordered_extent *ordered;
479 480

	if (start + len < start) {
481
		orig_end = INT_LIMIT(loff_t);
482 483
	} else {
		orig_end = start + len - 1;
484 485
		if (orig_end > INT_LIMIT(loff_t))
			orig_end = INT_LIMIT(loff_t);
486
	}
487
	wait_end = orig_end;
C
Chris Mason 已提交
488
again:
489 490 491
	/* start IO across the range first to instantiate any delalloc
	 * extents
	 */
492
	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
493

494 495 496 497 498 499
	/* The compression code will leave pages locked but return from
	 * writepage without setting the page writeback.  Starting again
	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
	 */
	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);

500 501 502
	btrfs_wait_on_page_writeback_range(inode->i_mapping,
					   start >> PAGE_CACHE_SHIFT,
					   orig_end >> PAGE_CACHE_SHIFT);
503

504
	end = orig_end;
C
Chris Mason 已提交
505
	while (1) {
506
		ordered = btrfs_lookup_first_ordered_extent(inode, end);
C
Chris Mason 已提交
507
		if (!ordered)
508
			break;
509
		if (ordered->file_offset > orig_end) {
510 511 512 513 514 515 516
			btrfs_put_ordered_extent(ordered);
			break;
		}
		if (ordered->file_offset + ordered->len < start) {
			btrfs_put_ordered_extent(ordered);
			break;
		}
517
		btrfs_start_ordered_extent(inode, ordered, 1);
518 519
		end = ordered->file_offset;
		btrfs_put_ordered_extent(ordered);
520
		if (end == 0 || end == start)
521 522 523
			break;
		end--;
	}
C
Chris Mason 已提交
524
	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
525
			   EXTENT_ORDERED | EXTENT_DELALLOC, 0, NULL)) {
526
		schedule_timeout(1);
C
Chris Mason 已提交
527 528
		goto again;
	}
529
	return 0;
530 531
}

532 533 534 535
/*
 * find an ordered extent corresponding to file_offset.  return NULL if
 * nothing is found, otherwise take a reference on the extent and return it
 */
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
							 u64 file_offset)
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	if (!offset_in_entry(entry, file_offset))
		entry = NULL;
	if (entry)
		atomic_inc(&entry->refs);
out:
	mutex_unlock(&tree->mutex);
	return entry;
}

559 560 561 562
/*
 * lookup and return any extent before 'file_offset'.  NULL is returned
 * if none is found
 */
563
struct btrfs_ordered_extent *
C
Chris Mason 已提交
564
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
{
	struct btrfs_ordered_inode_tree *tree;
	struct rb_node *node;
	struct btrfs_ordered_extent *entry = NULL;

	tree = &BTRFS_I(inode)->ordered_tree;
	mutex_lock(&tree->mutex);
	node = tree_search(tree, file_offset);
	if (!node)
		goto out;

	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
	atomic_inc(&entry->refs);
out:
	mutex_unlock(&tree->mutex);
	return entry;
581
}
582

583 584 585 586
/*
 * After an extent is done, call this to conditionally update the on disk
 * i_size.  i_size is updated to cover any fully written part of the file.
 */
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
int btrfs_ordered_update_i_size(struct inode *inode,
				struct btrfs_ordered_extent *ordered)
{
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
	u64 disk_i_size;
	u64 new_i_size;
	u64 i_size_test;
	struct rb_node *node;
	struct btrfs_ordered_extent *test;

	mutex_lock(&tree->mutex);
	disk_i_size = BTRFS_I(inode)->disk_i_size;

	/*
	 * if the disk i_size is already at the inode->i_size, or
	 * this ordered extent is inside the disk i_size, we're done
	 */
	if (disk_i_size >= inode->i_size ||
	    ordered->file_offset + ordered->len <= disk_i_size) {
		goto out;
	}

	/*
	 * we can't update the disk_isize if there are delalloc bytes
	 * between disk_i_size and  this ordered extent
	 */
	if (test_range_bit(io_tree, disk_i_size,
			   ordered->file_offset + ordered->len - 1,
616
			   EXTENT_DELALLOC, 0, NULL)) {
617 618 619 620 621 622 623
		goto out;
	}
	/*
	 * walk backward from this ordered extent to disk_i_size.
	 * if we find an ordered extent then we can't update disk i_size
	 * yet
	 */
624
	node = &ordered->rb_node;
C
Chris Mason 已提交
625
	while (1) {
626
		node = rb_prev(node);
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
		if (!node)
			break;
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
		if (test->file_offset + test->len <= disk_i_size)
			break;
		if (test->file_offset >= inode->i_size)
			break;
		if (test->file_offset >= disk_i_size)
			goto out;
	}
	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));

	/*
	 * at this point, we know we can safely update i_size to at least
	 * the offset from this ordered extent.  But, we need to
	 * walk forward and see if ios from higher up in the file have
	 * finished.
	 */
	node = rb_next(&ordered->rb_node);
	i_size_test = 0;
	if (node) {
		/*
		 * do we have an area where IO might have finished
		 * between our ordered extent and the next one.
		 */
		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
C
Chris Mason 已提交
653
		if (test->file_offset > entry_end(ordered))
Y
Yan Zheng 已提交
654
			i_size_test = test->file_offset;
655 656 657 658 659 660 661 662 663 664 665
	} else {
		i_size_test = i_size_read(inode);
	}

	/*
	 * i_size_test is the end of a region after this ordered
	 * extent where there are no ordered extents.  As long as there
	 * are no delalloc bytes in this area, it is safe to update
	 * disk_i_size to the end of the region.
	 */
	if (i_size_test > entry_end(ordered) &&
Y
Yan Zheng 已提交
666
	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
667
			   EXTENT_DELALLOC, 0, NULL)) {
668 669 670 671 672 673 674
		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
	}
	BTRFS_I(inode)->disk_i_size = new_i_size;
out:
	mutex_unlock(&tree->mutex);
	return 0;
}
675

676 677 678 679 680
/*
 * search the ordered extents for one corresponding to 'offset' and
 * try to find a checksum.  This is used because we allow pages to
 * be reclaimed before their checksum is actually put into the btree
 */
681 682
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
			   u32 *sum)
683 684 685 686 687
{
	struct btrfs_ordered_sum *ordered_sum;
	struct btrfs_sector_sum *sector_sums;
	struct btrfs_ordered_extent *ordered;
	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
688 689 690
	unsigned long num_sectors;
	unsigned long i;
	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
691 692 693 694 695 696 697
	int ret = 1;

	ordered = btrfs_lookup_ordered_extent(inode, offset);
	if (!ordered)
		return 1;

	mutex_lock(&tree->mutex);
Q
Qinghuang Feng 已提交
698
	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
699
		if (disk_bytenr >= ordered_sum->bytenr) {
700
			num_sectors = ordered_sum->len / sectorsize;
701
			sector_sums = ordered_sum->sums;
702
			for (i = 0; i < num_sectors; i++) {
703
				if (sector_sums[i].bytenr == disk_bytenr) {
704 705 706 707 708
					*sum = sector_sums[i].sum;
					ret = 0;
					goto out;
				}
			}
709 710 711 712
		}
	}
out:
	mutex_unlock(&tree->mutex);
713
	btrfs_put_ordered_extent(ordered);
714 715 716
	return ret;
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

/**
 * taken from mm/filemap.c because it isn't exported
 *
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 * @mapping:	address space structure to write
 * @start:	offset in bytes where the range starts
 * @end:	offset in bytes where the range ends (inclusive)
 * @sync_mode:	enable synchronous operation
 *
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 * opposed to a regular memory cleansing writeback.  The difference between
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
			   loff_t end, int sync_mode)
{
	struct writeback_control wbc = {
		.sync_mode = sync_mode,
		.nr_to_write = mapping->nrpages * 2,
		.range_start = start,
		.range_end = end,
		.for_writepages = 1,
	};
	return btrfs_writepages(mapping, &wbc);
}

/**
 * taken from mm/filemap.c because it isn't exported
 *
 * wait_on_page_writeback_range - wait for writeback to complete
 * @mapping:	target address_space
 * @start:	beginning page index
 * @end:	ending page index
 *
 * Wait for writeback to complete against pages indexed by start->end
 * inclusive
 */
int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
				       pgoff_t start, pgoff_t end)
{
	struct pagevec pvec;
	int nr_pages;
	int ret = 0;
	pgoff_t index;

	if (end < start)
		return 0;

	pagevec_init(&pvec, 0);
	index = start;
	while ((index <= end) &&
			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
			PAGECACHE_TAG_WRITEBACK,
			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
		unsigned i;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/* until radix tree lookup accepts end_index */
			if (page->index > end)
				continue;

			wait_on_page_writeback(page);
			if (PageError(page))
				ret = -EIO;
		}
		pagevec_release(&pvec);
		cond_resched();
	}

	/* Check for outstanding write errors */
	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
		ret = -ENOSPC;
	if (test_and_clear_bit(AS_EIO, &mapping->flags))
		ret = -EIO;

	return ret;
}
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

/*
 * add a given inode to the list of inodes that must be fully on
 * disk before a transaction commit finishes.
 *
 * This basically gives us the ext3 style data=ordered mode, and it is mostly
 * used to make sure renamed files are fully on disk.
 *
 * It is a noop if the inode is already fully on disk.
 *
 * If trans is not null, we'll do a friendly check for a transaction that
 * is already flushing things and force the IO down ourselves.
 */
int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
				struct btrfs_root *root,
				struct inode *inode)
{
	u64 last_mod;

	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);

	/*
	 * if this file hasn't been changed since the last transaction
	 * commit, we can safely return without doing anything
	 */
	if (last_mod < root->fs_info->last_trans_committed)
		return 0;

	/*
	 * the transaction is already committing.  Just start the IO and
	 * don't bother with all of this list nonsense
	 */
	if (trans && root->fs_info->running_transaction->blocked) {
		btrfs_wait_ordered_range(inode, 0, (u64)-1);
		return 0;
	}

	spin_lock(&root->fs_info->ordered_extent_lock);
	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
		list_add_tail(&BTRFS_I(inode)->ordered_operations,
			      &root->fs_info->ordered_operations);
	}
	spin_unlock(&root->fs_info->ordered_extent_lock);

	return 0;
}