timer.c 13.1 KB
Newer Older
1
/*
2
 * linux/arch/arm/mach-omap2/timer.c
3 4 5
 *
 * OMAP2 GP timer support.
 *
6 7
 * Copyright (C) 2009 Nokia Corporation
 *
8 9 10 11 12
 * Update to use new clocksource/clockevent layers
 * Author: Kevin Hilman, MontaVista Software, Inc. <source@mvista.com>
 * Copyright (C) 2007 MontaVista Software, Inc.
 *
 * Original driver:
13 14
 * Copyright (C) 2005 Nokia Corporation
 * Author: Paul Mundt <paul.mundt@nokia.com>
15
 *         Juha Yrjölä <juha.yrjola@nokia.com>
16
 * OMAP Dual-mode timer framework support by Timo Teras
17 18 19
 *
 * Some parts based off of TI's 24xx code:
 *
20
 * Copyright (C) 2004-2009 Texas Instruments, Inc.
21 22
 *
 * Roughly modelled after the OMAP1 MPU timer code.
23
 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
24 25 26 27 28 29 30 31 32
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License. See the file "COPYING" in the main directory of this archive
 * for more details.
 */
#include <linux/init.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/err.h>
33
#include <linux/clk.h>
34
#include <linux/delay.h>
35
#include <linux/irq.h>
36 37
#include <linux/clocksource.h>
#include <linux/clockchips.h>
38
#include <linux/slab.h>
39

40
#include <asm/mach/time.h>
41
#include <plat/dmtimer.h>
42
#include <asm/localtimer.h>
43
#include <asm/sched_clock.h>
44 45
#include <plat/common.h>
#include <plat/omap_hwmod.h>
46
#include <plat/omap_device.h>
47 48 49
#include <plat/omap-pm.h>

#include "powerdomain.h"
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* Parent clocks, eventually these will come from the clock framework */

#define OMAP2_MPU_SOURCE	"sys_ck"
#define OMAP3_MPU_SOURCE	OMAP2_MPU_SOURCE
#define OMAP4_MPU_SOURCE	"sys_clkin_ck"
#define OMAP2_32K_SOURCE	"func_32k_ck"
#define OMAP3_32K_SOURCE	"omap_32k_fck"
#define OMAP4_32K_SOURCE	"sys_32k_ck"

#ifdef CONFIG_OMAP_32K_TIMER
#define OMAP2_CLKEV_SOURCE	OMAP2_32K_SOURCE
#define OMAP3_CLKEV_SOURCE	OMAP3_32K_SOURCE
#define OMAP4_CLKEV_SOURCE	OMAP4_32K_SOURCE
#define OMAP3_SECURE_TIMER	12
#else
#define OMAP2_CLKEV_SOURCE	OMAP2_MPU_SOURCE
#define OMAP3_CLKEV_SOURCE	OMAP3_MPU_SOURCE
#define OMAP4_CLKEV_SOURCE	OMAP4_MPU_SOURCE
#define OMAP3_SECURE_TIMER	1
#endif
71

72 73 74
/* MAX_GPTIMER_ID: number of GPTIMERs on the chip */
#define MAX_GPTIMER_ID		12

75
static u32 sys_timer_reserved;
76

77 78 79
/* Clockevent code */

static struct omap_dm_timer clkev;
80
static struct clock_event_device clockevent_gpt;
81

82
static irqreturn_t omap2_gp_timer_interrupt(int irq, void *dev_id)
83
{
84 85
	struct clock_event_device *evt = &clockevent_gpt;

86
	__omap_dm_timer_write_status(&clkev, OMAP_TIMER_INT_OVERFLOW);
87

88
	evt->event_handler(evt);
89 90 91 92 93
	return IRQ_HANDLED;
}

static struct irqaction omap2_gp_timer_irq = {
	.name		= "gp timer",
B
Bernhard Walle 已提交
94
	.flags		= IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
95 96 97
	.handler	= omap2_gp_timer_interrupt,
};

98 99
static int omap2_gp_timer_set_next_event(unsigned long cycles,
					 struct clock_event_device *evt)
100
{
101
	__omap_dm_timer_load_start(&clkev, OMAP_TIMER_CTRL_ST,
102
						0xffffffff - cycles, 1);
103 104 105 106 107 108 109 110 111

	return 0;
}

static void omap2_gp_timer_set_mode(enum clock_event_mode mode,
				    struct clock_event_device *evt)
{
	u32 period;

112
	__omap_dm_timer_stop(&clkev, 1, clkev.rate);
113 114 115

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
116
		period = clkev.rate / HZ;
117
		period -= 1;
118
		/* Looks like we need to first set the load value separately */
119
		__omap_dm_timer_write(&clkev, OMAP_TIMER_LOAD_REG,
120
					0xffffffff - period, 1);
121
		__omap_dm_timer_load_start(&clkev,
122 123
					OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST,
						0xffffffff - period, 1);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
		break;
	case CLOCK_EVT_MODE_ONESHOT:
		break;
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_RESUME:
		break;
	}
}

static struct clock_event_device clockevent_gpt = {
	.name		= "gp timer",
	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
	.shift		= 32,
	.set_next_event	= omap2_gp_timer_set_next_event,
	.set_mode	= omap2_gp_timer_set_mode,
};

142 143 144
static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer,
						int gptimer_id,
						const char *fck_source)
145
{
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	char name[10]; /* 10 = sizeof("gptXX_Xck0") */
	struct omap_hwmod *oh;
	size_t size;
	int res = 0;

	sprintf(name, "timer%d", gptimer_id);
	omap_hwmod_setup_one(name);
	oh = omap_hwmod_lookup(name);
	if (!oh)
		return -ENODEV;

	timer->irq = oh->mpu_irqs[0].irq;
	timer->phys_base = oh->slaves[0]->addr->pa_start;
	size = oh->slaves[0]->addr->pa_end - timer->phys_base;

	/* Static mapping, never released */
	timer->io_base = ioremap(timer->phys_base, size);
	if (!timer->io_base)
		return -ENXIO;

	/* After the dmtimer is using hwmod these clocks won't be needed */
	sprintf(name, "gpt%d_fck", gptimer_id);
	timer->fclk = clk_get(NULL, name);
	if (IS_ERR(timer->fclk))
		return -ENODEV;

	sprintf(name, "gpt%d_ick", gptimer_id);
	timer->iclk = clk_get(NULL, name);
	if (IS_ERR(timer->iclk)) {
		clk_put(timer->fclk);
		return -ENODEV;
	}
178

179 180
	omap_hwmod_enable(oh);

181 182
	sys_timer_reserved |= (1 << (gptimer_id - 1));

183 184 185 186 187 188 189 190 191 192 193 194 195 196
	if (gptimer_id != 12) {
		struct clk *src;

		src = clk_get(NULL, fck_source);
		if (IS_ERR(src)) {
			res = -EINVAL;
		} else {
			res = __omap_dm_timer_set_source(timer->fclk, src);
			if (IS_ERR_VALUE(res))
				pr_warning("%s: timer%i cannot set source\n",
						__func__, gptimer_id);
			clk_put(src);
		}
	}
197 198
	__omap_dm_timer_init_regs(timer);
	__omap_dm_timer_reset(timer, 1, 1);
199 200 201
	timer->posted = 1;

	timer->rate = clk_get_rate(timer->fclk);
202

203
	timer->reserved = 1;
204

205 206
	return res;
}
207

208 209 210 211
static void __init omap2_gp_clockevent_init(int gptimer_id,
						const char *fck_source)
{
	int res;
212

213 214
	res = omap_dm_timer_init_one(&clkev, gptimer_id, fck_source);
	BUG_ON(res);
215

216
	omap2_gp_timer_irq.dev_id = (void *)&clkev;
217
	setup_irq(clkev.irq, &omap2_gp_timer_irq);
218

219
	__omap_dm_timer_int_enable(&clkev, OMAP_TIMER_INT_OVERFLOW);
220 221

	clockevent_gpt.mult = div_sc(clkev.rate, NSEC_PER_SEC,
222 223 224 225
				     clockevent_gpt.shift);
	clockevent_gpt.max_delta_ns =
		clockevent_delta2ns(0xffffffff, &clockevent_gpt);
	clockevent_gpt.min_delta_ns =
226 227
		clockevent_delta2ns(3, &clockevent_gpt);
		/* Timer internal resynch latency. */
228

229
	clockevent_gpt.cpumask = cpumask_of(0);
230
	clockevents_register_device(&clockevent_gpt);
231 232 233

	pr_info("OMAP clockevent source: GPTIMER%d at %lu Hz\n",
		gptimer_id, clkev.rate);
234 235
}

236 237
/* Clocksource code */

238
#ifdef CONFIG_OMAP_32K_TIMER
239
/*
240 241
 * When 32k-timer is enabled, don't use GPTimer for clocksource
 * instead, just leave default clocksource which uses the 32k
242
 * sync counter.  See clocksource setup in plat-omap/counter_32k.c
243 244
 */

245
static void __init omap2_gp_clocksource_init(int unused, const char *dummy)
246 247 248 249
{
	omap_init_clocksource_32k();
}

250
#else
251 252 253

static struct omap_dm_timer clksrc;

254 255 256
/*
 * clocksource
 */
257
static DEFINE_CLOCK_DATA(cd);
258
static cycle_t clocksource_read_cycles(struct clocksource *cs)
259
{
260
	return (cycle_t)__omap_dm_timer_read_counter(&clksrc, 1);
261 262 263 264 265 266 267 268 269 270
}

static struct clocksource clocksource_gpt = {
	.name		= "gp timer",
	.rating		= 300,
	.read		= clocksource_read_cycles,
	.mask		= CLOCKSOURCE_MASK(32),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
};

271 272 273 274
static void notrace dmtimer_update_sched_clock(void)
{
	u32 cyc;

275
	cyc = __omap_dm_timer_read_counter(&clksrc, 1);
276 277 278 279

	update_sched_clock(&cd, cyc, (u32)~0);
}

280
unsigned long long notrace sched_clock(void)
281
{
282
	u32 cyc = 0;
283

284
	if (clksrc.reserved)
285
		cyc = __omap_dm_timer_read_counter(&clksrc, 1);
286

287 288 289 290 291 292 293 294 295 296 297
	return cyc_to_sched_clock(&cd, cyc, (u32)~0);
}

/* Setup free-running counter for clocksource */
static void __init omap2_gp_clocksource_init(int gptimer_id,
						const char *fck_source)
{
	int res;

	res = omap_dm_timer_init_one(&clksrc, gptimer_id, fck_source);
	BUG_ON(res);
298

299 300
	pr_info("OMAP clocksource: GPTIMER%d at %lu Hz\n",
		gptimer_id, clksrc.rate);
301

302
	__omap_dm_timer_load_start(&clksrc,
303
			OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, 1);
304
	init_sched_clock(&cd, dmtimer_update_sched_clock, 32, clksrc.rate);
305

306 307 308
	if (clocksource_register_hz(&clocksource_gpt, clksrc.rate))
		pr_err("Could not register clocksource %s\n",
			clocksource_gpt.name);
309 310 311
}
#endif

312 313
#define OMAP_SYS_TIMER_INIT(name, clkev_nr, clkev_src,			\
				clksrc_nr, clksrc_src)			\
314 315
static void __init omap##name##_timer_init(void)			\
{									\
316
	omap2_gp_clockevent_init((clkev_nr), clkev_src);		\
317
	omap2_gp_clocksource_init((clksrc_nr), clksrc_src);		\
318 319 320 321 322 323 324 325
}

#define OMAP_SYS_TIMER(name)						\
struct sys_timer omap##name##_timer = {					\
	.init	= omap##name##_timer_init,				\
};

#ifdef CONFIG_ARCH_OMAP2
326
OMAP_SYS_TIMER_INIT(2, 1, OMAP2_CLKEV_SOURCE, 2, OMAP2_MPU_SOURCE)
327 328 329 330
OMAP_SYS_TIMER(2)
#endif

#ifdef CONFIG_ARCH_OMAP3
331
OMAP_SYS_TIMER_INIT(3, 1, OMAP3_CLKEV_SOURCE, 2, OMAP3_MPU_SOURCE)
332
OMAP_SYS_TIMER(3)
333 334
OMAP_SYS_TIMER_INIT(3_secure, OMAP3_SECURE_TIMER, OMAP3_CLKEV_SOURCE,
			2, OMAP3_MPU_SOURCE)
335 336 337 338 339
OMAP_SYS_TIMER(3_secure)
#endif

#ifdef CONFIG_ARCH_OMAP4
static void __init omap4_timer_init(void)
340
{
341
#ifdef CONFIG_LOCAL_TIMERS
342 343
	twd_base = ioremap(OMAP44XX_LOCAL_TWD_BASE, SZ_256);
	BUG_ON(!twd_base);
344
#endif
345
	omap2_gp_clockevent_init(1, OMAP4_CLKEV_SOURCE);
346
	omap2_gp_clocksource_init(2, OMAP4_MPU_SOURCE);
347
}
348 349
OMAP_SYS_TIMER(4)
#endif
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

/**
 * omap2_dm_timer_set_src - change the timer input clock source
 * @pdev:	timer platform device pointer
 * @source:	array index of parent clock source
 */
static int omap2_dm_timer_set_src(struct platform_device *pdev, int source)
{
	int ret;
	struct dmtimer_platform_data *pdata = pdev->dev.platform_data;
	struct clk *fclk, *parent;
	char *parent_name = NULL;

	fclk = clk_get(&pdev->dev, "fck");
	if (IS_ERR_OR_NULL(fclk)) {
		dev_err(&pdev->dev, "%s: %d: clk_get() FAILED\n",
				__func__, __LINE__);
		return -EINVAL;
	}

	switch (source) {
	case OMAP_TIMER_SRC_SYS_CLK:
		parent_name = "sys_ck";
		break;

	case OMAP_TIMER_SRC_32_KHZ:
		parent_name = "32k_ck";
		break;

	case OMAP_TIMER_SRC_EXT_CLK:
		if (pdata->timer_ip_version == OMAP_TIMER_IP_VERSION_1) {
			parent_name = "alt_ck";
			break;
		}
		dev_err(&pdev->dev, "%s: %d: invalid clk src.\n",
			__func__, __LINE__);
		clk_put(fclk);
		return -EINVAL;
	}

	parent = clk_get(&pdev->dev, parent_name);
	if (IS_ERR_OR_NULL(parent)) {
		dev_err(&pdev->dev, "%s: %d: clk_get() %s FAILED\n",
			__func__, __LINE__, parent_name);
		clk_put(fclk);
		return -EINVAL;
	}

	ret = clk_set_parent(fclk, parent);
	if (IS_ERR_VALUE(ret)) {
		dev_err(&pdev->dev, "%s: clk_set_parent() to %s FAILED\n",
			__func__, parent_name);
		ret = -EINVAL;
	}

	clk_put(parent);
	clk_put(fclk);

	return ret;
}

struct omap_device_pm_latency omap2_dmtimer_latency[] = {
	{
		.deactivate_func = omap_device_idle_hwmods,
		.activate_func   = omap_device_enable_hwmods,
		.flags = OMAP_DEVICE_LATENCY_AUTO_ADJUST,
	},
};

/**
 * omap_timer_init - build and register timer device with an
 * associated timer hwmod
 * @oh:	timer hwmod pointer to be used to build timer device
 * @user:	parameter that can be passed from calling hwmod API
 *
 * Called by omap_hwmod_for_each_by_class to register each of the timer
 * devices present in the system. The number of timer devices is known
 * by parsing through the hwmod database for a given class name. At the
 * end of function call memory is allocated for timer device and it is
 * registered to the framework ready to be proved by the driver.
 */
static int __init omap_timer_init(struct omap_hwmod *oh, void *unused)
{
	int id;
	int ret = 0;
	char *name = "omap_timer";
	struct dmtimer_platform_data *pdata;
437
	struct platform_device *pdev;
438
	struct omap_timer_capability_dev_attr *timer_dev_attr;
439
	struct powerdomain *pwrdm;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	pr_debug("%s: %s\n", __func__, oh->name);

	/* on secure device, do not register secure timer */
	timer_dev_attr = oh->dev_attr;
	if (omap_type() != OMAP2_DEVICE_TYPE_GP && timer_dev_attr)
		if (timer_dev_attr->timer_capability == OMAP_TIMER_SECURE)
			return ret;

	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
	if (!pdata) {
		pr_err("%s: No memory for [%s]\n", __func__, oh->name);
		return -ENOMEM;
	}

	/*
	 * Extract the IDs from name field in hwmod database
	 * and use the same for constructing ids' for the
	 * timer devices. In a way, we are avoiding usage of
	 * static variable witin the function to do the same.
	 * CAUTION: We have to be careful and make sure the
	 * name in hwmod database does not change in which case
	 * we might either make corresponding change here or
	 * switch back static variable mechanism.
	 */
	sscanf(oh->name, "timer%2d", &id);

	pdata->set_timer_src = omap2_dm_timer_set_src;
	pdata->timer_ip_version = oh->class->rev;

470 471 472 473
	/* Mark clocksource and clockevent timers as reserved */
	if ((sys_timer_reserved >> (id - 1)) & 0x1)
		pdata->reserved = 1;

474 475 476 477 478
	pwrdm = omap_hwmod_get_pwrdm(oh);
	pdata->loses_context = pwrdm_can_ever_lose_context(pwrdm);
#ifdef CONFIG_PM
	pdata->get_context_loss_count = omap_pm_get_dev_context_loss_count;
#endif
479
	pdev = omap_device_build(name, id, oh, pdata, sizeof(*pdata),
480 481 482 483
			omap2_dmtimer_latency,
			ARRAY_SIZE(omap2_dmtimer_latency),
			0);

484
	if (IS_ERR(pdev)) {
485 486 487 488 489 490 491 492 493
		pr_err("%s: Can't build omap_device for %s: %s.\n",
			__func__, name, oh->name);
		ret = -EINVAL;
	}

	kfree(pdata);

	return ret;
}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

/**
 * omap2_dm_timer_init - top level regular device initialization
 *
 * Uses dedicated hwmod api to parse through hwmod database for
 * given class name and then build and register the timer device.
 */
static int __init omap2_dm_timer_init(void)
{
	int ret;

	ret = omap_hwmod_for_each_by_class("timer", omap_timer_init, NULL);
	if (unlikely(ret)) {
		pr_err("%s: device registration failed.\n", __func__);
		return -EINVAL;
	}

	return 0;
}
arch_initcall(omap2_dm_timer_init);