dmar.c 34.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28 29 30
 */

#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
31 32
#include <linux/iova.h>
#include <linux/intel-iommu.h>
33
#include <linux/timer.h>
34 35
#include <linux/irq.h>
#include <linux/interrupt.h>
36
#include <linux/tboot.h>
37
#include <linux/dmi.h>
38
#include <linux/slab.h>
39
#include <asm/iommu_table.h>
40

41
#define PREFIX "DMAR: "
42 43 44 45 46 47 48 49

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

static struct acpi_table_header * __initdata dmar_tbl;
50
static acpi_size dmar_tbl_size;
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
			printk(KERN_WARNING
			PREFIX "Device scope bus [%d] not found\n",
			scope->bus);
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
			printk(KERN_WARNING PREFIX
			"Device scope device [%04x:%02x:%02x.%02x] not found\n",
				segment, bus->number, path->dev, path->fn);
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
		printk(KERN_WARNING PREFIX
		"Device scope device [%04x:%02x:%02x.%02x] not found\n",
		segment, scope->bus, path->dev, path->fn);
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
		printk(KERN_WARNING PREFIX
			"Device scope type does not match for %s\n",
			 pci_name(pdev));
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				       struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
135
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
136
			printk(KERN_WARNING PREFIX
137 138
			       "Unsupported device scope\n");
		}
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

180
	drhd = (struct acpi_dmar_hardware_unit *)header;
181 182 183 184
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

185
	dmaru->hdr = header;
186
	dmaru->reg_base_addr = drhd->address;
187
	dmaru->segment = drhd->segment;
188 189
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

190 191 192 193 194 195 196 197 198
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

199
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
200 201
{
	struct acpi_dmar_hardware_unit *drhd;
202
	int ret = 0;
203 204 205

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

206 207 208 209
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
210
				((void *)drhd) + drhd->header.length,
211 212
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
213
	if (ret) {
214
		list_del(&dmaru->list);
215
		kfree(dmaru);
216
	}
217 218 219
	return ret;
}

220 221 222 223 224 225 226 227 228
#ifdef CONFIG_DMAR
LIST_HEAD(dmar_rmrr_units);

static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
{
	list_add(&rmrr->list, &dmar_rmrr_units);
}


229 230 231 232 233 234 235 236 237 238
static int __init
dmar_parse_one_rmrr(struct acpi_dmar_header *header)
{
	struct acpi_dmar_reserved_memory *rmrr;
	struct dmar_rmrr_unit *rmrru;

	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
	if (!rmrru)
		return -ENOMEM;

239
	rmrru->hdr = header;
240 241 242
	rmrr = (struct acpi_dmar_reserved_memory *)header;
	rmrru->base_address = rmrr->base_address;
	rmrru->end_address = rmrr->end_address;
243 244 245 246 247 248 249 250 251 252 253 254

	dmar_register_rmrr_unit(rmrru);
	return 0;
}

static int __init
rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
{
	struct acpi_dmar_reserved_memory *rmrr;
	int ret;

	rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
255
	ret = dmar_parse_dev_scope((void *)(rmrr + 1),
256
		((void *)rmrr) + rmrr->header.length,
257 258
		&rmrru->devices_cnt, &rmrru->devices, rmrr->segment);

259 260
	if (ret || (rmrru->devices_cnt == 0)) {
		list_del(&rmrru->list);
261
		kfree(rmrru);
262
	}
263 264
	return ret;
}
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

static LIST_HEAD(dmar_atsr_units);

static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
{
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
	atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
	if (!atsru)
		return -ENOMEM;

	atsru->hdr = hdr;
	atsru->include_all = atsr->flags & 0x1;

	list_add(&atsru->list, &dmar_atsr_units);

	return 0;
}

static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
{
	int rc;
	struct acpi_dmar_atsr *atsr;

	if (atsru->include_all)
		return 0;

	atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
	rc = dmar_parse_dev_scope((void *)(atsr + 1),
				(void *)atsr + atsr->header.length,
				&atsru->devices_cnt, &atsru->devices,
				atsr->segment);
	if (rc || !atsru->devices_cnt) {
		list_del(&atsru->list);
		kfree(atsru);
	}

	return rc;
}

int dmar_find_matched_atsr_unit(struct pci_dev *dev)
{
	int i;
	struct pci_bus *bus;
	struct acpi_dmar_atsr *atsr;
	struct dmar_atsr_unit *atsru;

314 315
	dev = pci_physfn(dev);

316 317 318 319 320 321 322 323 324 325 326 327
	list_for_each_entry(atsru, &dmar_atsr_units, list) {
		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
		if (atsr->segment == pci_domain_nr(dev->bus))
			goto found;
	}

	return 0;

found:
	for (bus = dev->bus; bus; bus = bus->parent) {
		struct pci_dev *bridge = bus->self;

328
		if (!bridge || !pci_is_pcie(bridge) ||
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		    bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
			return 0;

		if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
			for (i = 0; i < atsru->devices_cnt; i++)
				if (atsru->devices[i] == bridge)
					return 1;
			break;
		}
	}

	if (atsru->include_all)
		return 1;

	return 0;
}
345
#endif
346

347
#ifdef CONFIG_ACPI_NUMA
348 349 350 351 352 353 354
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
355
	for_each_drhd_unit(drhd) {
356 357 358 359 360 361
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
362 363
			return 0;
		}
364
	}
365 366 367 368 369 370 371 372
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
373

374
	return 0;
375
}
376
#endif
377

378 379 380 381 382
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
383
	struct acpi_dmar_atsr *atsr;
384
	struct acpi_dmar_rhsa *rhsa;
385 386 387

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
388 389
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
390
		printk (KERN_INFO PREFIX
391 392
			"DRHD base: %#016Lx flags: %#x\n",
			(unsigned long long)drhd->address, drhd->flags);
393 394
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
395 396
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
397
		printk (KERN_INFO PREFIX
398
			"RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
399 400
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
401
		break;
402 403 404 405
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
		printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
		break;
406 407 408 409 410 411
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
		printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
412 413 414
	}
}

415 416 417 418 419 420 421 422
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
423 424 425
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
426 427 428 429 430 431 432 433

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
		printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
434

435 436 437 438 439 440 441 442 443 444
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

445 446 447 448 449 450
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

451 452 453 454 455 456
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

457 458 459 460
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
461
	if (dmar->width < PAGE_SHIFT - 1) {
F
Fenghua Yu 已提交
462
		printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
463 464 465 466 467 468 469 470 471
		return -EINVAL;
	}

	printk (KERN_INFO PREFIX "Host address width %d\n",
		dmar->width + 1);

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
472 473 474 475 476 477 478 479
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			ret = -EINVAL;
			break;
		}

480 481 482 483 484 485 486
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
487
#ifdef CONFIG_DMAR
488
			ret = dmar_parse_one_rmrr(entry_header);
489 490 491 492 493
#endif
			break;
		case ACPI_DMAR_TYPE_ATSR:
#ifdef CONFIG_DMAR
			ret = dmar_parse_one_atsr(entry_header);
494
#endif
495
			break;
496
		case ACPI_DMAR_HARDWARE_AFFINITY:
497
#ifdef CONFIG_ACPI_NUMA
498
			ret = dmar_parse_one_rhsa(entry_header);
499
#endif
500
			break;
501 502
		default:
			printk(KERN_WARNING PREFIX
503 504
				"Unknown DMAR structure type %d\n",
				entry_header->type);
505 506 507 508 509 510 511 512 513 514 515
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

516
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
536 537 538
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

539 540
	dev = pci_physfn(dev);

541 542 543 544 545 546 547 548
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
549

550 551 552
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
553 554 555 556 557
	}

	return NULL;
}

558 559
int __init dmar_dev_scope_init(void)
{
560
	struct dmar_drhd_unit *drhd, *drhd_n;
561 562
	int ret = -ENODEV;

563
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564 565 566 567 568
		ret = dmar_parse_dev(drhd);
		if (ret)
			return ret;
	}

569 570
#ifdef CONFIG_DMAR
	{
571
		struct dmar_rmrr_unit *rmrr, *rmrr_n;
572 573
		struct dmar_atsr_unit *atsr, *atsr_n;

574
		list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575 576 577 578
			ret = rmrr_parse_dev(rmrr);
			if (ret)
				return ret;
		}
579 580 581 582 583 584

		list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
			ret = atsr_parse_dev(atsr);
			if (ret)
				return ret;
		}
585
	}
586
#endif
587 588 589 590

	return ret;
}

591 592 593

int __init dmar_table_init(void)
{
594
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
595 596
	int ret;

597 598 599 600 601
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
602 603
	ret = parse_dmar_table();
	if (ret) {
604 605
		if (ret != -ENODEV)
			printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
F
Fenghua Yu 已提交
606 607 608
		return ret;
	}

609 610 611 612
	if (list_empty(&dmar_drhd_units)) {
		printk(KERN_INFO PREFIX "No DMAR devices found\n");
		return -ENODEV;
	}
F
Fenghua Yu 已提交
613

614
#ifdef CONFIG_DMAR
615
	if (list_empty(&dmar_rmrr_units))
F
Fenghua Yu 已提交
616
		printk(KERN_INFO PREFIX "No RMRR found\n");
617 618 619

	if (list_empty(&dmar_atsr_units))
		printk(KERN_INFO PREFIX "No ATSR found\n");
620
#endif
F
Fenghua Yu 已提交
621

622 623 624
	return 0;
}

625 626
static void warn_invalid_dmar(u64 addr, const char *message)
{
627 628 629 630 631 632 633 634
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
635
}
636

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
			printk(KERN_WARNING PREFIX
				"Invalid 0-length structure\n");
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
656 657 658
			void __iomem *addr;
			u64 cap, ecap;

659 660
			drhd = (void *)entry_header;
			if (!drhd->address) {
661
				warn_invalid_dmar(0, "");
662 663 664 665 666 667 668 669 670 671 672 673
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
674 675
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
676
				goto failed;
677 678 679 680 681 682
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
683 684 685 686 687 688

failed:
#ifdef CONFIG_DMAR
	dmar_disabled = 1;
#endif
	return 0;
689 690
}

691
int __init detect_intel_iommu(void)
692 693 694
{
	int ret;

695
	ret = dmar_table_detect();
696 697
	if (ret)
		ret = check_zero_address();
698
	{
699
#ifdef CONFIG_INTR_REMAP
700
		struct acpi_table_dmar *dmar;
701

702
		dmar = (struct acpi_table_dmar *) dmar_tbl;
703
		if (ret && cpu_has_x2apic && dmar->flags & 0x1)
704 705 706
			printk(KERN_INFO
			       "Queued invalidation will be enabled to support "
			       "x2apic and Intr-remapping.\n");
707 708
#endif
#ifdef CONFIG_DMAR
709
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
710
			iommu_detected = 1;
C
Chris Wright 已提交
711 712 713
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
714 715 716 717
#endif
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
718
#endif
719
	}
720
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
721
	dmar_tbl = NULL;
722

723
	return ret ? 1 : -ENODEV;
724 725 726
}


727
int alloc_iommu(struct dmar_drhd_unit *drhd)
728
{
729
	struct intel_iommu *iommu;
730 731
	int map_size;
	u32 ver;
732
	static int iommu_allocated = 0;
733
	int agaw = 0;
F
Fenghua Yu 已提交
734
	int msagaw = 0;
735

736
	if (!drhd->reg_base_addr) {
737
		warn_invalid_dmar(0, "");
738 739 740
		return -EINVAL;
	}

741 742
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
743
		return -ENOMEM;
744 745

	iommu->seq_id = iommu_allocated++;
746
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
747

F
Fenghua Yu 已提交
748
	iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
749 750 751 752 753 754 755
	if (!iommu->reg) {
		printk(KERN_ERR "IOMMU: can't map the region\n");
		goto error;
	}
	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

756
	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
757
		warn_invalid_dmar(drhd->reg_base_addr, " returns all ones");
758 759 760
		goto err_unmap;
	}

761
#ifdef CONFIG_DMAR
W
Weidong Han 已提交
762 763 764
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
		printk(KERN_ERR
F
Fenghua Yu 已提交
765 766
		       "Cannot get a valid agaw for iommu (seq_id = %d)\n",
		       iommu->seq_id);
767
		goto err_unmap;
F
Fenghua Yu 已提交
768 769 770 771 772
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
		printk(KERN_ERR
			"Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
773
			iommu->seq_id);
774
		goto err_unmap;
W
Weidong Han 已提交
775
	}
776
#endif
W
Weidong Han 已提交
777
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
778
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
779

780 781
	iommu->node = -1;

782 783 784
	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
		cap_max_fault_reg_offset(iommu->cap));
F
Fenghua Yu 已提交
785 786
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > VTD_PAGE_SIZE) {
787 788 789 790 791 792 793 794 795
		iounmap(iommu->reg);
		iommu->reg = ioremap(drhd->reg_base_addr, map_size);
		if (!iommu->reg) {
			printk(KERN_ERR "IOMMU: can't map the region\n");
			goto error;
		}
	}

	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
796 797
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
798 799 800 801
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
802

803
	raw_spin_lock_init(&iommu->register_lock);
804 805

	drhd->iommu = iommu;
806
	return 0;
807 808 809 810

 err_unmap:
	iounmap(iommu->reg);
 error:
811
	kfree(iommu);
812
	return -1;
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

#ifdef CONFIG_DMAR
	free_dmar_iommu(iommu);
#endif

	if (iommu->reg)
		iounmap(iommu->reg);
	kfree(iommu);
}
828 829 830 831 832 833

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
834 835
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
836 837 838 839 840 841
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

842 843 844
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
845
	int head, tail;
846 847 848
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

849 850 851
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

852 853 854 855 856 857 858 859 860
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
861 862 863 864 865
		if ((head >> DMAR_IQ_SHIFT) == index) {
			printk(KERN_ERR "VT-d detected invalid descriptor: "
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
866 867 868 869 870 871 872 873 874
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

901 902 903
	return 0;
}

904 905 906 907
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
908
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
909
{
910
	int rc;
911 912 913 914 915 916
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
917
		return 0;
918 919 920

	hw = qi->desc;

921 922 923
restart:
	rc = 0;

924
	spin_lock_irqsave(&qi->q_lock, flags);
925
	while (qi->free_cnt < 3) {
926
		spin_unlock_irqrestore(&qi->q_lock, flags);
927
		cpu_relax();
928
		spin_lock_irqsave(&qi->q_lock, flags);
929 930 931 932 933 934 935 936 937
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

938 939
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
940 941 942 943 944 945 946 947 948 949 950 951 952 953
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
954
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
955 956

	while (qi->desc_status[wait_index] != QI_DONE) {
957 958 959 960 961 962 963
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
964 965
		rc = qi_check_fault(iommu, index);
		if (rc)
966
			break;
967

968 969 970 971
		spin_unlock(&qi->q_lock);
		cpu_relax();
		spin_lock(&qi->q_lock);
	}
972 973

	qi->desc_status[index] = QI_DONE;
974 975

	reclaim_free_desc(qi);
976
	spin_unlock_irqrestore(&qi->q_lock, flags);
977

978 979 980
	if (rc == -EAGAIN)
		goto restart;

981
	return rc;
982 983 984 985 986 987 988 989 990 991 992 993
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

994
	/* should never fail */
995 996 997
	qi_submit_sync(&desc, iommu);
}

998 999
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1000 1001 1002 1003 1004 1005 1006
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1007
	qi_submit_sync(&desc, iommu);
1008 1009
}

1010 1011
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1029
	qi_submit_sync(&desc, iommu);
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

1065
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1085
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1086 1087
}

1088 1089 1090 1091 1092
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1093
	u32 sts;
1094 1095 1096 1097 1098 1099
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1100
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1101 1102 1103 1104 1105 1106 1107

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1108
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1109 1110 1111 1112

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1113
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1124
	struct page *desc_page;
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1135
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1136 1137 1138 1139 1140
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1141 1142 1143

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1144 1145 1146 1147 1148
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1149 1150
	qi->desc = page_address(desc_page);

1151
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

	spin_lock_init(&qi->q_lock);

1164
	__dmar_enable_qi(iommu);
1165 1166 1167

	return 0;
}
1168 1169 1170

/* iommu interrupt handling. Most stuff are MSI-like. */

1171 1172 1173 1174 1175 1176 1177
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

static const char *intr_remap_fault_reasons[] =
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1205 1206
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1207
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1208
{
1209 1210 1211 1212 1213 1214 1215 1216 1217
	if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
				     ARRAY_SIZE(intr_remap_fault_reasons))) {
		*fault_type = INTR_REMAP;
		return intr_remap_fault_reasons[fault_reason - 0x20];
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1218
		return "Unknown";
1219
	}
1220 1221
}

1222
void dmar_msi_unmask(struct irq_data *data)
1223
{
1224
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1225 1226 1227
	unsigned long flag;

	/* unmask it */
1228
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1229 1230 1231
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1232
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1233 1234
}

1235
void dmar_msi_mask(struct irq_data *data)
1236 1237
{
	unsigned long flag;
1238
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1239 1240

	/* mask it */
1241
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1242 1243 1244
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1245
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1246 1247 1248 1249
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1250
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1251 1252
	unsigned long flag;

1253
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1254 1255 1256
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1257
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1258 1259 1260 1261
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1262
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1263 1264
	unsigned long flag;

1265
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1266 1267 1268
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1269
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1270 1271 1272 1273 1274 1275
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1276
	int fault_type;
1277

1278
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (fault_type == INTR_REMAP)
		printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
		printk(KERN_ERR
		       "DMAR:[%s] Request device [%02x:%02x.%d] "
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1295 1296 1297 1298
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1299
irqreturn_t dmar_fault(int irq, void *dev_id)
1300 1301 1302 1303 1304 1305
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1306
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1307
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1308 1309 1310
	if (fault_status)
		printk(KERN_ERR "DRHD: handling fault status reg %x\n",
		       fault_status);
1311 1312 1313

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1314
		goto clear_rest;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1345
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1346 1347 1348 1349 1350

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1351
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1352
			fault_index = 0;
1353
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1354
	}
1355 1356
clear_rest:
	/* clear all the other faults */
1357
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1358
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1359

1360
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1361 1362 1363 1364 1365 1366 1367
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1368 1369 1370 1371 1372 1373
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1374 1375 1376 1377 1378 1379
	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

1380
	irq_set_handler_data(irq, iommu);
1381 1382 1383 1384
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1385
		irq_set_handler_data(irq, NULL);
1386 1387
		iommu->irq = 0;
		destroy_irq(irq);
1388
		return ret;
1389 1390 1391 1392 1393 1394 1395
	}

	ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
			printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
			       " interrupt, ret %d\n",
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1415 1416 1417 1418 1419

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1420 1421 1422 1423
	}

	return 0;
}
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1449 1450 1451 1452

/*
 * Check interrupt remapping support in DMAR table description.
 */
1453
int __init dmar_ir_support(void)
1454 1455 1456
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1457 1458
	if (!dmar)
		return 0;
1459 1460
	return dmar->flags & 0x1;
}
1461
IOMMU_INIT_POST(detect_intel_iommu);