README 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Intro
=====

This directory contains a few sets of files that are used for
configuration in diverse ways:

    *.conf      Target platform configurations, please read
                'Configurations of OpenSSL target platforms' for more
                information.
    *.tmpl      Build file templates, please read 'Build-file
                programming with the "unified" build system' as well
                as 'Build info files' for more information.
    *.pm        Helper scripts / modules for the main `Configure`
                script.  See 'Configure helper scripts for more
                information.


18
Configurations of OpenSSL target platforms
19
==========================================
20

21
Configuration targets are a collection of facts that we know about
22 23 24
different platforms and their capabilities.  We organise them in a
hash table, where each entry represent a specific target.

25 26 27 28
Note that configuration target names must be unique across all config
files.  The Configure script does check that a config file doesn't
have config targets that shadow config targets from other files.

29 30 31 32 33 34 35 36 37 38 39 40
In each table entry, the following keys are significant:

        inherit_from    => Other targets to inherit values from.
                           Explained further below. [1]
        template        => Set to 1 if this isn't really a platform
                           target.  Instead, this target is a template
                           upon which other targets can be built.
                           Explained further below.  [1]

        sys_id          => System identity for systems where that
                           is difficult to determine automatically.

41 42 43 44 45 46 47
        enable          => Enable specific configuration features.
                           This MUST be an array of words.
        disable         => Disable specific configuration features.
                           This MUST be an array of words.
                           Note: if the same feature is both enabled
                           and disabled, disable wins.

48 49 50 51
        as              => The assembler command.  This is not always
                           used (for example on Unix, where the C
                           compiler is used instead).
        asflags         => Default assembler command flags [4].
52 53 54
        cpp             => The C preprocessor command, normally not
                           given, as the build file defaults are
                           usually good enough.
55
        cppflags        => Default C preprocessor flags [4].
56
        defines         => As an alternative, macro definitions may be
57 58 59
                           given here instead of in `cppflags' [4].
                           If given here, they MUST be as an array of
                           the string such as "MACRO=value", or just
60 61
                           "MACRO" for definitions without value.
        includes        => As an alternative, inclusion directories
62 63 64 65
                           may be given here instead of in `cppflags'
                           [4].  If given here, the MUST be an array
                           of strings, one directory specification
                           each.
R
Richard Levitte 已提交
66
        cc              => The C compiler command, usually one of "cc",
67 68 69
                           "gcc" or "clang".  This command is normally
                           also used to link object files and
                           libraries into the final program.
R
Richard Levitte 已提交
70 71 72 73 74
        cxx             => The C++ compiler command, usually one of
                           "c++", "g++" or "clang++".  This command is
                           also used when linking a program where at
                           least one of the object file is made from
                           C++ source.
75 76 77
        cflags          => Defaults C compiler flags [4].
        cxxflags        => Default  C++ compiler flags [4].  If unset,
                           it gets the same value as cflags.
78

79 80
        (linking is a complex thing, see [3] below)
        ld              => Linker command, usually not defined
81 82 83 84
                           (meaning the compiler command is used
                           instead).
                           (NOTE: this is here for future use, it's
                           not implemented yet)
85 86
        lflags          => Default flags used when linking apps,
                           shared libraries or DSOs [4].
87
        ex_libs         => Extra libraries that are needed when
88
                           linking shared libraries, DSOs or programs.
89 90
                           The value is also assigned to Libs.private
                           in $(libdir)/pkgconfig/libcrypto.pc.
91 92 93 94 95 96 97 98 99 100 101 102 103 104

        shared_cppflags => Extra C preprocessor flags used when
                           processing C files for shared libraries.
        shared_cflag    => Extra C compiler flags used when compiling
                           for shared libraries, typically something
                           like "-fPIC".
        shared_ldflag   => Extra linking flags used when linking
                           shared libraries.
        module_cppflags
        module_cflags
        module_ldflags  => Has the same function as the corresponding
                           `shared_' attributes, but for building DSOs.
                           When unset, they get the same values as the
                           corresponding `shared_' attributes.
105 106 107 108 109 110

        ar              => The library archive command, the default is
                           "ar".
                           (NOTE: this is here for future use, it's
                           not implemented yet)
        arflags         => Flags to be used with the library archive
111 112
                           command.  On Unix, this includes the
                           command letter, 'r' by default.
113 114 115 116 117 118 119 120

        ranlib          => The library archive indexing command, the
                           default is 'ranlib' it it exists.

        unistd          => An alternative header to the typical
                           '<unistd.h>'.  This is very rarely needed.

        shared_extension => File name extension used for shared
121
                            libraries.
122 123 124 125 126 127 128 129
        obj_extension   => File name extension used for object files.
                           On unix, this defaults to ".o" (NOTE: this
                           is here for future use, it's not
                           implemented yet)
        exe_extension   => File name extension used for executable
                           files.  On unix, this defaults to "" (NOTE:
                           this is here for future use, it's not
                           implemented yet)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        shlib_variant   => A "variant" identifier inserted between the base
                           shared library name and the extension.  On "unixy"
                           platforms (BSD, Linux, Solaris, MacOS/X, ...) this
                           supports installation of custom OpenSSL libraries
                           that don't conflict with other builds of OpenSSL
                           installed on the system.  The variant identifier
                           becomes part of the SONAME of the library and also
                           any symbol versions (symbol versions are not used or
                           needed with MacOS/X).  For example, on a system
                           where a default build would normally create the SSL
                           shared library as 'libssl.so -> libssl.so.1.1' with
                           the value of the symlink as the SONAME, a target
                           definition that sets 'shlib_variant => "-abc"' will
                           create 'libssl.so -> libssl-abc.so.1.1', again with
                           an SONAME equal to the value of the symlink.  The
                           symbol versions associated with the variant library
                           would then be 'OPENSSL_ABC_<version>' rather than
                           the default 'OPENSSL_<version>'. The string inserted
                           into symbol versions is obtained by mapping all
                           letters in the "variant" identifier to upper case
                           and all non-alphanumeric characters to '_'.
151

152 153 154 155 156 157 158 159
        thread_scheme   => The type of threads is used on the
                           configured platform.  Currently known
                           values are "(unknown)", "pthreads",
                           "uithreads" (a.k.a solaris threads) and
                           "winthreads".  Except for "(unknown)", the
                           actual value is currently ignored but may
                           be used in the future.  See further notes
                           below [2].
160 161 162 163 164 165 166 167
        dso_scheme      => The type of dynamic shared objects to build
                           for.  This mostly comes into play with
                           engines, but can be used for other purposes
                           as well.  Valid values are "DLFCN"
                           (dlopen() et al), "DLFCN_NO_H" (for systems
                           that use dlopen() et al but do not have
                           fcntl.h), "DL" (shl_load() et al), "WIN32"
                           and "VMS".
168
        perlasm_scheme  => The perlasm method used to create the
169 170 171
                           assembler files used when compiling with
                           assembler implementations.
        shared_target   => The shared library building method used.
172 173 174 175 176 177 178 179
                           This serves multiple purposes:
                           - as index for targets found in shared_info.pl.
                           - as linker script generation selector.
                           To serve both purposes, the index for shared_info.pl
                           should end with '-shared', and this suffix will be
                           removed for use as a linker script generation
                           selector.  Note that the latter is only used if
                           'shared_defflag' is defined.
180
        build_scheme    => The scheme used to build up a Makefile.
181 182 183 184 185 186 187
                           In its simplest form, the value is a string
                           with the name of the build scheme.
                           The value may also take the form of a list
                           of strings, if the build_scheme is to have
                           some options.  In this case, the first
                           string in the list is the name of the build
                           scheme.
188
                           Currently recognised build scheme is "unified".
189 190 191 192
                           For the "unified" build scheme, this item
                           *must* be an array with the first being the
                           word "unified" and the second being a word
                           to identify the platform family.
193 194 195 196 197 198 199

        multilib        => On systems that support having multiple
                           implementations of a library (typically a
                           32-bit and a 64-bit variant), this is used
                           to have the different variants in different
                           directories.

200 201 202 203 204 205 206 207
        bn_ops          => Building options (was just bignum options in
                           the earlier history of this option, hence the
                           name). This is a string of words that describe
                           algorithms' implementation parameters that
                           are optimal for the designated target platform,
                           such as the type of integers used to build up
                           the bignum, different ways to implement certain
                           ciphers and so on. To fully comprehend the
208 209 210 211
                           meaning, the best is to read the affected
                           source.
                           The valid words are:

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                           THIRTY_TWO_BIT       bignum limbs are 32 bits,
                                                this is default if no
                                                option is specified, it
                                                works on any supported
                                                system [unless "wider"
                                                limb size is implied in
                                                assembly code];
                           BN_LLONG             bignum limbs are 32 bits,
                                                but 64-bit 'unsigned long
                                                long' is used internally
                                                in calculations;
                           SIXTY_FOUR_BIT_LONG  bignum limbs are 64 bits
                                                and sizeof(long) is 8;
                           SIXTY_FOUR_BIT       bignums limbs are 64 bits,
                                                but execution environment
                                                is ILP32;
                           RC4_CHAR             RC4 key schedule is made
                                                up of 'unsigned char's;
                           RC4_INT              RC4 key schedule is made
                                                up of 'unsigned int's;
232 233 234 235
                           EXPORT_VAR_AS_FN     for shared libraries,
                                                export vars as
                                                accessor functions.

236 237 238 239 240 241 242
        apps_aux_src    => Extra source to build apps/openssl and other
                           apps, as needed by the target and that can be
                           collected in a library.
        apps_init_src   => Init source to build apps/openssl and other
                           apps, as needed by the target.  This code
                           cannot be placed in a library, as the rest
                           of the code isn't expected to link to it
243
                           explicitly.
244
        cpuid_asm_src   => assembler implementation of cpuid code as
245
                           well as OPENSSL_cleanse().
246 247
                           Default to mem_clr.c
        bn_asm_src      => Assembler implementation of core bignum
248
                           functions.
249 250
                           Defaults to bn_asm.c
        ec_asm_src      => Assembler implementation of core EC
251
                           functions.
252
        des_asm_src     => Assembler implementation of core DES
253
                           encryption functions.
254 255
                           Defaults to 'des_enc.c fcrypt_b.c'
        aes_asm_src     => Assembler implementation of core AES
256
                           functions.
257 258
                           Defaults to 'aes_core.c aes_cbc.c'
        bf_asm_src      => Assembler implementation of core BlowFish
259
                           functions.
260 261
                           Defaults to 'bf_enc.c'
        md5_asm_src     => Assembler implementation of core MD5
262
                           functions.
263
        sha1_asm_src    => Assembler implementation of core SHA1,
264 265
                           functions, and also possibly SHA256 and
                           SHA512 ones.
266
        cast_asm_src    => Assembler implementation of core CAST
267
                           functions.
268 269
                           Defaults to 'c_enc.c'
        rc4_asm_src     => Assembler implementation of core RC4
270
                           functions.
271 272
                           Defaults to 'rc4_enc.c rc4_skey.c'
        rmd160_asm_src  => Assembler implementation of core RMD160
273
                           functions.
274
        rc5_asm_src     => Assembler implementation of core RC5
275
                           functions.
276 277
                           Defaults to 'rc5_enc.c'
        wp_asm_src      => Assembler implementation of core WHIRLPOOL
278
                           functions.
279
        cmll_asm_src    => Assembler implementation of core CAMELLIA
280
                           functions.
281 282 283 284 285
                           Defaults to 'camellia.c cmll_misc.c cmll_cbc.c'
        modes_asm_src   => Assembler implementation of cipher modes,
                           currently the functions gcm_gmult_4bit and
                           gcm_ghash_4bit.
        padlock_asm_src => Assembler implementation of core parts of
286 287 288 289 290 291 292 293 294
                           the padlock engine.  This is mandatory on
                           any platform where the padlock engine might
                           actually be built.


[1] as part of the target configuration, one can have a key called
    'inherit_from' that indicate what other configurations to inherit
    data from.  These are resolved recursively.

F
FdaSilvaYY 已提交
295
    Inheritance works as a set of default values that can be overridden
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    by corresponding key values in the inheriting configuration.

    Note 1: any configuration table can be used as a template.
    Note 2: pure templates have the attribute 'template => 1' and
            cannot be used as build targets.

    If several configurations are given in the 'inherit_from' array,
    the values of same attribute are concatenated with space
    separation.  With this, it's possible to have several smaller
    templates for different configuration aspects that can be combined
    into a complete configuration.

    instead of a scalar value or an array, a value can be a code block
    of the form 'sub { /* your code here */ }'.  This code block will
    be called with the list of inherited values for that key as
    arguments.  In fact, the concatenation of strings is really done
    by using 'sub { join(" ",@_) }' on the list of inherited values.

    An example:

        "foo" => {
                template => 1,
                haha => "ha ha",
                hoho => "ho",
                ignored => "This should not appear in the end result",
        },
        "bar" => {
                template => 1,
                haha => "ah",
                hoho => "haho",
                hehe => "hehe"
        },
        "laughter" => {
                inherit_from => [ "foo", "bar" ],
                hehe => sub { join(" ",(@_,"!!!")) },
                ignored => "",
        }

        The entry for "laughter" will become as follows after processing:

        "laughter" => {
                haha => "ha ha ah",
                hoho => "ho haho",
                hehe => "hehe !!!",
                ignored => ""
        }

[2] OpenSSL is built with threading capabilities unless the user
344
    specifies 'no-threads'.  The value of the key 'thread_scheme' may
345 346 347
    be "(unknown)", in which case the user MUST give some compilation
    flags to Configure.

348 349 350 351 352 353 354 355 356 357 358 359 360
[3] OpenSSL has three types of things to link from object files or
    static libraries:

    - shared libraries; that would be libcrypto and libssl.
    - shared objects (sometimes called dynamic libraries);  that would
      be the engines.
    - applications; those are apps/openssl and all the test apps.

    Very roughly speaking, linking is done like this (words in braces
    represent the configuration settings documented at the beginning
    of this file):

    shared libraries:
361 362
        {ld} $(CFLAGS) {lflags} {shared_ldflag} -o libfoo.so \
            foo/something.o foo/somethingelse.o {ex_libs}
363 364

    shared objects:
365
        {ld} $(CFLAGS) {lflags} {module_ldflags} -o libeng.so \
366
            blah1.o blah2.o -lcrypto {ex_libs}
367 368 369

    applications:
        {ld} $(CFLAGS) {lflags} -o app \
370
            app1.o utils.o -lssl -lcrypto {ex_libs}
371

372 373 374
[4] There are variants of these attribute, prefixed with `lib_',
    `dso_' or `bin_'.  Those variants replace the unprefixed attribute
    when building library, DSO or program modules specifically.
375 376

Historically, the target configurations came in form of a string with
377 378
values separated by colons.  This use is deprecated.  The string form
looked like this:
379

R
Richard Levitte 已提交
380
   "target" => "{cc}:{cflags}:{unistd}:{thread_cflag}:{sys_id}:{lflags}:{bn_ops}:{cpuid_obj}:{bn_obj}:{ec_obj}:{des_obj}:{aes_obj}:{bf_obj}:{md5_obj}:{sha1_obj}:{cast_obj}:{rc4_obj}:{rmd160_obj}:{rc5_obj}:{wp_obj}:{cmll_obj}:{modes_obj}:{padlock_obj}:{perlasm_scheme}:{dso_scheme}:{shared_target}:{shared_cflag}:{shared_ldflag}:{shared_extension}:{ranlib}:{arflags}:{multilib}"
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402


Build info files
================

The build.info files that are spread over the source tree contain the
minimum information needed to build and distribute OpenSSL.  It uses a
simple and yet fairly powerful language to determine what needs to be
built, from what sources, and other relationships between files.

For every build.info file, all file references are relative to the
directory of the build.info file for source files, and the
corresponding build directory for built files if the build tree
differs from the source tree.

When processed, every line is processed with the perl module
Text::Template, using the delimiters "{-" and "-}".  The hashes
%config and %target are passed to the perl fragments, along with
$sourcedir and $builddir, which are the locations of the source
directory for the current build.info file and the corresponding build
directory, all relative to the top of the build tree.

403 404 405 406 407 408 409
'Configure' only knows inherently about the top build.info file.  For
any other directory that has one, further directories to look into
must be indicated like this:

    SUBDIRS=something someelse

On to things to be built; they are declared by setting specific
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
variables:

    PROGRAMS=foo bar
    LIBS=libsomething
    ENGINES=libeng
    SCRIPTS=myhack

Note that the files mentioned for PROGRAMS, LIBS and ENGINES *must* be
without extensions.  The build file templates will figure them out.

For each thing to be built, it is then possible to say what sources
they are built from:

    PROGRAMS=foo bar
    SOURCE[foo]=foo.c common.c
    SOURCE[bar]=bar.c extra.c common.c

It's also possible to tell some other dependencies:

    DEPEND[foo]=libsomething
    DEPEND[libbar]=libsomethingelse

(it could be argued that 'libsomething' and 'libsomethingelse' are
source as well.  However, the files given through SOURCE are expected
to be located in the source tree while files given through DEPEND are
expected to be located in the build tree)

J
Josh Soref 已提交
437
It's also possible to depend on static libraries explicitly:
438 439 440 441 442 443

    DEPEND[foo]=libsomething.a
    DEPEND[libbar]=libsomethingelse.a

This should be rarely used, and care should be taken to make sure it's
only used when supported.  For example, native Windows build doesn't
444
support building static libraries and DLLs at the same time, so using
445 446 447
static libraries on Windows can only be done when configured
'no-shared'.

448 449 450 451 452
In some cases, it's desirable to include some source files in the
shared form of a library only:

    SHARED_SOURCE[libfoo]=dllmain.c

453 454 455 456 457
For any file to be built, it's also possible to tell what extra
include paths the build of their source files should use:

    INCLUDE[foo]=include

458 459 460 461
It's also possible to specify C macros that should be defined:

    DEFINE[foo]=FOO BAR=1

462 463 464 465 466 467 468
In some cases, one might want to generate some source files from
others, that's done as follows:

    GENERATE[foo.s]=asm/something.pl $(CFLAGS)
    GENERATE[bar.s]=asm/bar.S

The value of each GENERATE line is a command line or part of it.
D
Daniel Bevenius 已提交
469 470
Configure places no rules on the command line, except that the first
item must be the generator file.  It is, however, entirely up to the
471 472 473
build file template to define exactly how those command lines should
be handled, how the output is captured and so on.

474 475 476 477 478 479 480 481 482 483 484 485
Sometimes, the generator file itself depends on other files, for
example if it is a perl script that depends on other perl modules.
This can be expressed using DEPEND like this:

    DEPEND[asm/something.pl]=../perlasm/Foo.pm

There may also be cases where the exact file isn't easily specified,
but an inclusion directory still needs to be specified.  INCLUDE can
be used in that case:

    INCLUDE[asm/something.pl]=../perlasm

486 487
NOTE: GENERATE lines are limited to one command only per GENERATE.

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
Finally, you can have some simple conditional use of the build.info
information, looking like this:

    IF[1]
     something
    ELSIF[2]
     something other
    ELSE
     something else
    ENDIF

The expression in square brackets is interpreted as a string in perl,
and will be seen as true if perl thinks it is, otherwise false.  For
example, the above would have "something" used, since 1 is true.

Together with the use of Text::Template, this can be used as
conditions based on something in the passed variables, for example:

506
    IF[{- $disabled{shared} -}]
507 508 509 510 511 512 513
      LIBS=libcrypto
      SOURCE[libcrypto]=...
    ELSE
      LIBS=libfoo
      SOURCE[libfoo]=...
    ENDIF

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

Build-file programming with the "unified" build system
======================================================

"Build files" are called "Makefile" on Unix-like operating systems,
"descrip.mms" for MMS on VMS, "makefile" for nmake on Windows, etc.

To use the "unified" build system, the target configuration needs to
set the three items 'build_scheme', 'build_file' and 'build_command'.
In the rest of this section, we will assume that 'build_scheme' is set
to "unified" (see the configurations documentation above for the
details).

For any name given by 'build_file', the "unified" system expects a
template file in Configurations/ named like the build file, with
".tmpl" appended, or in case of possible ambiguity, a combination of
the second 'build_scheme' list item and the 'build_file' name.  For
example, if 'build_file' is set to "Makefile", the template could be
Configurations/Makefile.tmpl or Configurations/unix-Makefile.tmpl.
In case both Configurations/unix-Makefile.tmpl and
Configurations/Makefile.tmpl are present, the former takes
precedence.

The build-file template is processed with the perl module
Text::Template, using "{-" and "-}" as delimiters that enclose the
perl code fragments that generate configuration-dependent content.
Those perl fragments have access to all the hash variables from
configdata.pem.

The build-file template is expected to define at least the following
perl functions in a perl code fragment enclosed with "{-" and "-}".
They are all expected to return a string with the lines they produce.

547 548 549 550 551 552 553
    generatesrc - function that produces build file lines to generate
                  a source file from some input.

                  It's called like this:

                        generatesrc(src => "PATH/TO/tobegenerated",
                                    generator => [ "generatingfile", ... ]
554 555
                                    generator_incs => [ "INCL/PATH", ... ]
                                    generator_deps => [ "dep1", ... ]
556 557
                                    generator => [ "generatingfile", ... ]
                                    incs => [ "INCL/PATH", ... ],
558 559 560 561 562 563 564 565 566
                                    deps => [ "dep1", ... ],
                                    intent => one of "libs", "dso", "bin" );

                  'src' has the name of the file to be generated.
                  'generator' is the command or part of command to
                  generate the file, of which the first item is
                  expected to be the file to generate from.
                  generatesrc() is expected to analyse and figure out
                  exactly how to apply that file and how to capture
567 568 569 570 571 572 573 574
                  the result.  'generator_incs' and 'generator_deps'
                  are include directories and files that the generator
                  file itself depends on.  'incs' and 'deps' are
                  include directories and files that are used if $(CC)
                  is used as an intermediary step when generating the
                  end product (the file indicated by 'src').  'intent'
                  indicates what the generated file is going to be
                  used for.
575

576 577 578 579 580 581 582 583
    src2obj     - function that produces build file lines to build an
                  object file from source files and associated data.

                  It's called like this:

                        src2obj(obj => "PATH/TO/objectfile",
                                srcs => [ "PATH/TO/sourcefile", ... ],
                                deps => [ "dep1", ... ],
584 585
                                incs => [ "INCL/PATH", ... ]
                                intent => one of "lib", "dso", "bin" );
586

587 588 589
                  'obj' has the intended object file with '.o'
                  extension, src2obj() is expected to change it to
                  something more suitable for the platform.
590 591 592
                  'srcs' has the list of source files to build the
                  object file, with the first item being the source
                  file that directly corresponds to the object file.
593
                  'deps' is a list of explicit dependencies.  'incs'
594 595 596
                  is a list of include file directories.  Finally,
                  'intent' indicates what this object file is going
                  to be used for.
597 598 599 600 601 602 603 604 605 606 607 608

    obj2lib     - function that produces build file lines to build a
                  static library file ("libfoo.a" in Unix terms) from
                  object files.

                  called like this:

                        obj2lib(lib => "PATH/TO/libfile",
                                objs => [ "PATH/TO/objectfile", ... ]);

                  'lib' has the intended library file name *without*
                  extension, obj2lib is expected to add that.  'objs'
609
                  has the list of object files to build this library.
610

611 612 613 614 615 616 617 618 619
    libobj2shlib - backward compatibility function that's used the
                  same way as obj2shlib (described next), and was
                  expected to build the shared library from the
                  corresponding static library when that was suitable.
                  NOTE: building a shared library from a static
                  library is now DEPRECATED, as they no longer share
                  object files.  Attempting to do this will fail.

    obj2shlib   - function that produces build file lines to build a
620
                  shareable object library file ("libfoo.so" in Unix
621
                  terms) from the corresponding object files.
622 623 624

                  called like this:

625 626 627 628
                        obj2shlib(shlib => "PATH/TO/shlibfile",
                                  lib => "PATH/TO/libfile",
                                  objs => [ "PATH/TO/objectfile", ... ],
                                  deps => [ "PATH/TO/otherlibfile", ... ]);
629

630 631 632 633
                  'lib' has the base (static) library ffile name
                  *without* extension.  This is useful in case
                  supporting files are needed (such as import
                  libraries on Windows).
F
FdaSilvaYY 已提交
634
                  'shlib' has the corresponding shared library name
635 636 637
                  *without* extension.  'deps' has the list of other
                  libraries (also *without* extension) this library
                  needs to be linked with.  'objs' has the list of
638
                  object files to build this library.
639

640 641
    obj2dso     - function that produces build file lines to build a
                  dynamic shared object file from object files.
642 643 644

                  called like this:

645 646 647 648
                        obj2dso(lib => "PATH/TO/libfile",
                                objs => [ "PATH/TO/objectfile", ... ],
                                deps => [ "PATH/TO/otherlibfile",
                                ... ]);
649

650
                  This is almost the same as obj2shlib, but the
651
                  intent is to build a shareable library that can be
652
                  loaded in runtime (a "plugin"...).
653 654 655 656 657 658 659 660 661 662 663 664

    obj2bin     - function that produces build file lines to build an
                  executable file from object files.

                  called like this:

                        obj2bin(bin => "PATH/TO/binfile",
                                objs => [ "PATH/TO/objectfile", ... ],
                                deps => [ "PATH/TO/libfile", ... ]);

                  'bin' has the intended executable file name
                  *without* extension, obj2bin is expected to add
665 666 667 668
                  that.  'objs' has the list of object files to build
                  this library.  'deps' has the list of library files
                  (also *without* extension) that the programs needs
                  to be linked with.
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

    in2script   - function that produces build file lines to build a
                  script file from some input.

                  called like this:

                        in2script(script => "PATH/TO/scriptfile",
                                  sources => [ "PATH/TO/infile", ... ]);

                  'script' has the intended script file name.
                  'sources' has the list of source files to build the
                  resulting script from.

In all cases, file file paths are relative to the build tree top, and
the build file actions run with the build tree top as current working
directory.

Make sure to end the section with these functions with a string that
F
FdaSilvaYY 已提交
687
you thing is appropriate for the resulting build file.  If nothing
688 689 690 691
else, end it like this:

      "";       # Make sure no lingering values end up in the Makefile
    -}
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711


Configure helper scripts
========================

Configure uses helper scripts in this directory:

Checker scripts
---------------

These scripts are per platform family, to check the integrity of the
tools used for configuration and building.  The checker script used is
either {build_platform}-{build_file}-checker.pm or
{build_platform}-checker.pm, where {build_platform} is the second
'build_scheme' list element from the configuration target data, and
{build_file} is 'build_file' from the same target data.

If the check succeeds, the script is expected to end with a non-zero
expression.  If the check fails, the script can end with a zero, or
with a `die`.