proxy_certificates.txt 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
<DRAFT!>
			HOWTO proxy certificates

0. WARNING

NONE OF THE CODE PRESENTED HERE HAVE BEEN CHECKED!  They are just an
example to show you how things can be done.  There may be typos or
type conflicts, and you will have to resolve them.

1. Introduction

Proxy certificates are defined in RFC 3820.  They are really usual
certificates with the mandatory extension proxyCertInfo.

Proxy certificates are issued by an End Entity (typically a user),
either directly with the EE certificate as issuing certificate, or by
extension through an already issued proxy certificate..  They are used
to extend rights to some other entity (a computer process, typically,
or sometimes to the user itself), so it can perform operations in the
name of the owner of the EE certificate.

See http://www.ietf.org/rfc/rfc3820.txt for more information.


2. How to create proxy cerificates

It's quite easy to create proxy certificates, by taking advantage of
the lack of checks of the 'openssl x509' application (*ahem*).  But
first, you need to create a configuration section that contains a
definition of the proxyCertInfo extension, a little like this:

  [ v3_proxy ]
  # A proxy certificate MUST NEVER be a CA certificate.
  basicConstraints=CA:FALSE

  # Usual authority key ID
  authorityKeyIdentifier=keyid,issuer:always

  # Now, for the extension that marks this certificate as a proxy one
  proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:1,policy:text:AB

It's also possible to give the proxy extension in a separate section:

  proxyCertInfo=critical,@proxy_ext

  [ proxy_ext ]
  language=id-ppl-anyLanguage
  pathlen=0
  policy=text:BC

The policy value has a specific syntax, {syntag}:{string}, where the
syntag determines what will be done with the string.  The recognised
syntags are as follows:

  text	indicates that the string is simply the bytes, not
	encoded in any kind of way:

		policy=text:räksmörgås

	Previous versions of this design had a specific tag
	for UTF-8 text.  However, since the bytes are copied
	as-is anyway, there's no need for it.  Instead, use
	the text: tag, like this:

		policy=text:räksmörgås

  hex	indicates the string is encoded in hex, with colons
	between each byte (every second hex digit):

		policy=hex:72:E4:6B:73:6D:F6:72:67:E5:73

	Previous versions of this design had a tag to insert a
	complete DER blob.  However, the only legal use for
	this would be to surround the bytes that would go with
	the hex: tag with what's needed to construct a correct
	OCTET STRING.  Since hex: does that, the DER tag felt
	superfluous, and was therefore removed.

  file	indicates that the text of the policy should really be
	taken from a file.  The string is then really a file
	name.  This is useful for policies that are large
	(more than a few of lines) XML documents, for example.

The 'policy' setting can be split up in multiple lines like this:

  0.policy=This is
  1.polisy= a multi-
  2.policy=line policy.

NOTE: the proxy policy value is the part that determines the rights
granted to the process using the proxy certificate.  The value is
completely dependent on the application reading and interpretting it!

Now that you have created an extension section for your proxy
certificate, you can now easily create a proxy certificate like this:

  openssl req -new -config openssl.cnf \
	  -out proxy.req -keyout proxy.key
  openssl x509 -req -CAcreateserial -in proxy.req -days 7 \
	  -out proxy.crt -CA user.crt -CAkey user.key \
	  -extfile openssl.cnf -extensions v3_proxy

It's just as easy to create a proxy certificate using another proxy
certificate as issuer (note that I'm using a different configuration
section for it):

  openssl req -new -config openssl.cnf \
	  -out proxy2.req -keyout proxy2.key
  openssl x509 -req -CAcreateserial -in proxy2.req -days 7 \
	  -out proxy2.crt -CA proxy.crt -CAkey proxy.key \
	  -extfile openssl.cnf -extensions v3_proxy2


3. How to have your application interpret the policy?

The basic way to interpret proxy policies is to prepare some default
rights, then do a check of the proxy certificate against the a chain
of proxy certificates, user certificate and CA certificates, and see
what rights came out by the end.  Sounds easy, huh?  It almost is.

The slightly complicated part is how to pass data between your
application and the certificate validation procedure.

You need the following ingredients:

 - a callback routing that will be called for every certificate that's
   validated.  It will be called several times for each certificates,
   so you must be attentive to when it's a good time to do the proxy
   policy interpretation and check, as well as to fill in the defaults
   when the EE certificate is checked.

 - a structure of data that's shared between your application code and
   the callback.

 - a wrapper function that sets it all up.

 - an ex_data index function that creates an index into the generic
   ex_data store that's attached to an X509 validation context.

This is some cookbook code for you to fill in:

  /* In this example, I will use a view of granted rights as a bit
     array, one bit for each possible right.  */
  typedef struct your_rights {
    unsigned char rights[total_rights / 8];
  } YOUR_RIGHTS;

  /* The following procedure will create an index for the ex_data
     store in the X509 validation context the first time it's called.
     Subsequent calls will return the same index.  */
  static int get_proxy_auth_ex_data_idx(void)
  {
    static volatile int idx = -1;
    if (idx < 0)
      {
        CRYPTO_w_lock(CRYPTO_LOCK_X509_STORE);
        if (idx < 0)
          {
            idx = X509_STORE_CTX_get_ex_new_index(0,
                                                  "for verify callback",
                                                  NULL,NULL,NULL);
          }
        CRYPTO_w_unlock(CRYPTO_LOCK_X509_STORE);
      }
    return idx;
  }

  /* Callback to be given to the X509 validation procedure.  */
  static int verify_callback(int ok, X509_STORE_CTX *ctx)
  {
    if (ok == 1) /* It's REALLY important you keep the proxy policy
                    check within this secion.  It's important to know
                    that when ok is 1, the certificates are checked
                    from top to bottom.  You get the CA root first,
                    followed by the possible chain of intermediate
                    CAs, followed by the EE certificate, followed by
                    the possible proxy certificates.  */
      {
        X509 *xs = ctx->current_cert;

        if (xs->ex_flags & EXFLAG_PROXY)
          {
	    YOUR_RIGHTS *rights =
              (YOUR_RIGHTS *)X509_STORE_CTX_get_ex_data(ctx,
                get_proxy_auth_ex_data_idx());
            PROXY_CERT_INFO_EXTENSION *pci =
              X509_get_ext_d2i(xs, NID_proxyCertInfo, NULL, NULL);

            switch (OBJ_obj2nid(pci->proxyPolicy->policyLanguage))
              {
              case NID_Independent:
                /* Do whatever you need to grant explicit rights to
                   this particular proxy certificate, usually by
                   pulling them from some database.  If there are none
                   to be found, clear all rights (making this and any
                   subsequent proxy certificate void of any rights).
                */
                memset(rights->rights, 0, sizeof(rights->rights));
                break;
              case NID_id_ppl_inheritAll:
                /* This is basically a NOP, we simply let the current
                   rights stand as they are. */
                break;
              default:
                /* This is usually the most complex section of code.
                   You really do whatever you want as long as you
                   follow RFC 3820.  In the example we use here, the
                   simplest thing to do is to build another, temporary
                   bit array and fill it with the rights granted by
                   the current proxy certificate, then use it as a
                   mask on the accumulated rights bit array, and
                   voilà, you now have a new accumulated rights bit
                   array.  */
                {
                  int i;
                  YOUR_RIGHTS tmp_rights;
		  memset(tmp_rights.rights, 0, sizeof(tmp_rights.rights));

                  /* process_rights() is supposed to be a procedure
                     that takes a string and it's length, interprets
                     it and sets the bits in the YOUR_RIGHTS pointed
                     at by the third argument.  */
                  process_rights((char *) pci->proxyPolicy->policy->data,
                                 pci->proxyPolicy->policy->length,
                                 &tmp_rights);

                  for(i = 0; i < total_rights / 8; i++)
                    rights->rights[i] &= tmp_rights.rights[i];
                }
                break;
              }
            PROXY_CERT_INFO_EXTENSION_free(pci);
          }
        else if (!(xs->ex_flags & EXFLAG_CA))
          {
            /* We have a EE certificate, let's use it to set default!
            */
	    YOUR_RIGHTS *rights =
              (YOUR_RIGHTS *)X509_STORE_CTX_get_ex_data(ctx,
                get_proxy_auth_ex_data_idx());

            /* The following procedure finds out what rights the owner
               of the current certificate has, and sets them in the
               YOUR_RIGHTS structure pointed at by the second
               argument.  */
            set_default_rights(xs, rights);
          }
      }
    return ok;
  }

  static int my_X509_verify_cert(X509_STORE_CTX *ctx,
                                 YOUR_RIGHTS *needed_rights)
  {
    int i;
    int (*save_verify_cb)(int ok,X509_STORE_CTX *ctx) = ctx->verify_cb;
    YOUR_RIGHTS rights;

    X509_STORE_CTX_set_verify_cb(ctx, verify_callback);
    X509_STORE_CTX_set_ex_data(ctx, get_proxy_auth_ex_data_idx(), &rights);
    ok = X509_verify_cert(ctx);

    if (ok == 1)
      {
        ok = check_needed_rights(rights, needed_rights);
      }

    X509_STORE_CTX_set_verify_cb(ctx, save_verify_cb);

    return ok;
  }

If you use SSL or TLS, you can easily set up a callback to have the
certificates checked properly, using the code above:

  SSL_CTX_set_cert_verify_callback(s_ctx, my_X509_verify_cert, &needed_rights);


-- 
Richard Levitte