cipher_aes_cbc_hmac_sha256_hw.c 28.0 KB
Newer Older
1
/*
M
Matt Caswell 已提交
2
 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3 4 5 6 7 8 9
 *
 * Licensed under the Apache License 2.0 (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

10
/*
P
Pauli 已提交
11
 * All low level APIs are deprecated for public use, but still ok for internal
12 13 14 15 16
 * use where we're using them to implement the higher level EVP interface, as is
 * the case here.
 */
#include "internal/deprecated.h"

17 18
#include "cipher_aes_cbc_hmac_sha.h"

19
#if !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE)
20
int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
21 22 23
{
    return 0;
}
24

25
const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
26 27 28
{
    return NULL;
}
29 30
#else

31
# include <openssl/rand.h>
32 33 34 35 36 37 38 39
# include "crypto/evp.h"
# include "internal/constant_time.h"

void sha256_block_data_order(void *c, const void *p, size_t len);
int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
                         const AES_KEY *key, unsigned char iv[16],
                         SHA256_CTX *ctx, const void *in0);

40
int ossl_cipher_capable_aes_cbc_hmac_sha256(void)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
{
    return AESNI_CBC_HMAC_SHA_CAPABLE
           && aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL);
}

static int aesni_cbc_hmac_sha256_init_key(PROV_CIPHER_CTX *vctx,
                                          const unsigned char *key,
                                          size_t keylen)
{
    int ret;
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;

    if (ctx->base.enc)
        ret = aesni_set_encrypt_key(key, ctx->base.keylen * 8, &ctx->ks);
    else
        ret = aesni_set_decrypt_key(key, ctx->base.keylen * 8, &ctx->ks);

    SHA256_Init(&sctx->head);    /* handy when benchmarking */
    sctx->tail = sctx->head;
    sctx->md = sctx->head;

    ctx->payload_length = NO_PAYLOAD_LENGTH;

M
Matt Caswell 已提交
65 66
    vctx->removetlspad = 1;
    vctx->removetlsfixed = SHA256_DIGEST_LENGTH + AES_BLOCK_SIZE;
67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    return ret < 0 ? 0 : 1;
}

void sha256_block_data_order(void *c, const void *p, size_t len);

static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
{
    const unsigned char *ptr = data;
    size_t res;

    if ((res = c->num)) {
        res = SHA256_CBLOCK - res;
        if (len < res)
            res = len;
        SHA256_Update(c, ptr, res);
        ptr += res;
        len -= res;
    }

    res = len % SHA256_CBLOCK;
    len -= res;

    if (len) {
        sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);

        ptr += len;
        c->Nh += len >> 29;
        c->Nl += len <<= 3;
        if (c->Nl < (unsigned int)len)
            c->Nh++;
    }

    if (res)
        SHA256_Update(c, ptr, res);
}

# if !defined(OPENSSL_NO_MULTIBLOCK)

typedef struct {
    unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
} SHA256_MB_CTX;

typedef struct {
    const unsigned char *ptr;
    int blocks;
} HASH_DESC;

typedef struct {
    const unsigned char *inp;
    unsigned char *out;
    int blocks;
    u64 iv[2];
} CIPH_DESC;

void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);

static size_t tls1_multi_block_encrypt(void *vctx,
                                       unsigned char *out,
                                       const unsigned char *inp,
                                       size_t inp_len, int n4x)
{                               /* n4x is 1 or 2 */
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    HASH_DESC hash_d[8], edges[8];
    CIPH_DESC ciph_d[8];
    unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
    union {
        u64 q[16];
        u32 d[32];
        u8 c[128];
    } blocks[8];
    SHA256_MB_CTX *mctx;
    unsigned int frag, last, packlen, i;
    unsigned int x4 = 4 * n4x, minblocks, processed = 0;
    size_t ret = 0;
    u8 *IVs;
#  if defined(BSWAP8)
    u64 seqnum;
#  endif

    /* ask for IVs in bulk */
150
    if (RAND_bytes_ex(ctx->base.libctx, (IVs = blocks[0].c), 16 * x4) <= 0)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
        return 0;

    mctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */

    frag = (unsigned int)inp_len >> (1 + n4x);
    last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
    if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
        frag++;
        last -= x4 - 1;
    }

    packlen = 5 + 16 + ((frag + 32 + 16) & -16);

    /* populate descriptors with pointers and IVs */
    hash_d[0].ptr = inp;
    ciph_d[0].inp = inp;
    /* 5+16 is place for header and explicit IV */
    ciph_d[0].out = out + 5 + 16;
    memcpy(ciph_d[0].out - 16, IVs, 16);
    memcpy(ciph_d[0].iv, IVs, 16);
    IVs += 16;

    for (i = 1; i < x4; i++) {
        ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
        ciph_d[i].out = ciph_d[i - 1].out + packlen;
        memcpy(ciph_d[i].out - 16, IVs, 16);
        memcpy(ciph_d[i].iv, IVs, 16);
        IVs += 16;
    }

#  if defined(BSWAP8)
    memcpy(blocks[0].c, sctx->md.data, 8);
    seqnum = BSWAP8(blocks[0].q[0]);
#  endif

    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag);
#  if !defined(BSWAP8)
        unsigned int carry, j;
#  endif

        mctx->A[i] = sctx->md.h[0];
        mctx->B[i] = sctx->md.h[1];
        mctx->C[i] = sctx->md.h[2];
        mctx->D[i] = sctx->md.h[3];
        mctx->E[i] = sctx->md.h[4];
        mctx->F[i] = sctx->md.h[5];
        mctx->G[i] = sctx->md.h[6];
        mctx->H[i] = sctx->md.h[7];

        /* fix seqnum */
#  if defined(BSWAP8)
        blocks[i].q[0] = BSWAP8(seqnum + i);
#  else
        for (carry = i, j = 8; j--;) {
            blocks[i].c[j] = ((u8 *)sctx->md.data)[j] + carry;
            carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
        }
#  endif
        blocks[i].c[8] = ((u8 *)sctx->md.data)[8];
        blocks[i].c[9] = ((u8 *)sctx->md.data)[9];
        blocks[i].c[10] = ((u8 *)sctx->md.data)[10];
        /* fix length */
        blocks[i].c[11] = (u8)(len >> 8);
        blocks[i].c[12] = (u8)(len);

        memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
        hash_d[i].ptr += 64 - 13;
        hash_d[i].blocks = (len - (64 - 13)) / 64;

        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* hash 13-byte headers and first 64-13 bytes of inputs */
    sha256_multi_block(mctx, edges, n4x);
    /* hash bulk inputs */
#  define MAXCHUNKSIZE    2048
#  if     MAXCHUNKSIZE%64
#   error  "MAXCHUNKSIZE is not divisible by 64"
#  elif   MAXCHUNKSIZE
    /*
     * goal is to minimize pressure on L1 cache by moving in shorter steps,
     * so that hashed data is still in the cache by the time we encrypt it
     */
    minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
    if (minblocks > MAXCHUNKSIZE / 64) {
        for (i = 0; i < x4; i++) {
            edges[i].ptr = hash_d[i].ptr;
            edges[i].blocks = MAXCHUNKSIZE / 64;
            ciph_d[i].blocks = MAXCHUNKSIZE / 16;
        }
        do {
            sha256_multi_block(mctx, edges, n4x);
            aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);

            for (i = 0; i < x4; i++) {
                edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
                hash_d[i].blocks -= MAXCHUNKSIZE / 64;
                edges[i].blocks = MAXCHUNKSIZE / 64;
                ciph_d[i].inp += MAXCHUNKSIZE;
                ciph_d[i].out += MAXCHUNKSIZE;
                ciph_d[i].blocks = MAXCHUNKSIZE / 16;
                memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
            }
            processed += MAXCHUNKSIZE;
            minblocks -= MAXCHUNKSIZE / 64;
        } while (minblocks > MAXCHUNKSIZE / 64);
    }
#  endif
#  undef  MAXCHUNKSIZE
    sha256_multi_block(mctx, hash_d, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag),
            off = hash_d[i].blocks * 64;
        const unsigned char *ptr = hash_d[i].ptr + off;

        off = (len - processed) - (64 - 13) - off; /* remainder actually */
        memcpy(blocks[i].c, ptr, off);
        blocks[i].c[off] = 0x80;
        len += 64 + 13;         /* 64 is HMAC header */
        len *= 8;               /* convert to bits */
        if (off < (64 - 8)) {
#  ifdef BSWAP4
            blocks[i].d[15] = BSWAP4(len);
#  else
            PUTU32(blocks[i].c + 60, len);
#  endif
            edges[i].blocks = 1;
        } else {
#  ifdef BSWAP4
            blocks[i].d[31] = BSWAP4(len);
#  else
            PUTU32(blocks[i].c + 124, len);
#  endif
            edges[i].blocks = 2;
        }
        edges[i].ptr = blocks[i].c;
    }

    /* hash input tails and finalize */
    sha256_multi_block(mctx, edges, n4x);

    memset(blocks, 0, sizeof(blocks));
    for (i = 0; i < x4; i++) {
#  ifdef BSWAP4
        blocks[i].d[0] = BSWAP4(mctx->A[i]);
        mctx->A[i] = sctx->tail.h[0];
        blocks[i].d[1] = BSWAP4(mctx->B[i]);
        mctx->B[i] = sctx->tail.h[1];
        blocks[i].d[2] = BSWAP4(mctx->C[i]);
        mctx->C[i] = sctx->tail.h[2];
        blocks[i].d[3] = BSWAP4(mctx->D[i]);
        mctx->D[i] = sctx->tail.h[3];
        blocks[i].d[4] = BSWAP4(mctx->E[i]);
        mctx->E[i] = sctx->tail.h[4];
        blocks[i].d[5] = BSWAP4(mctx->F[i]);
        mctx->F[i] = sctx->tail.h[5];
        blocks[i].d[6] = BSWAP4(mctx->G[i]);
        mctx->G[i] = sctx->tail.h[6];
        blocks[i].d[7] = BSWAP4(mctx->H[i]);
        mctx->H[i] = sctx->tail.h[7];
        blocks[i].c[32] = 0x80;
        blocks[i].d[15] = BSWAP4((64 + 32) * 8);
#  else
        PUTU32(blocks[i].c + 0, mctx->A[i]);
        mctx->A[i] = sctx->tail.h[0];
        PUTU32(blocks[i].c + 4, mctx->B[i]);
        mctx->B[i] = sctx->tail.h[1];
        PUTU32(blocks[i].c + 8, mctx->C[i]);
        mctx->C[i] = sctx->tail.h[2];
        PUTU32(blocks[i].c + 12, mctx->D[i]);
        mctx->D[i] = sctx->tail.h[3];
        PUTU32(blocks[i].c + 16, mctx->E[i]);
        mctx->E[i] = sctx->tail.h[4];
        PUTU32(blocks[i].c + 20, mctx->F[i]);
        mctx->F[i] = sctx->tail.h[5];
        PUTU32(blocks[i].c + 24, mctx->G[i]);
        mctx->G[i] = sctx->tail.h[6];
        PUTU32(blocks[i].c + 28, mctx->H[i]);
        mctx->H[i] = sctx->tail.h[7];
        blocks[i].c[32] = 0x80;
        PUTU32(blocks[i].c + 60, (64 + 32) * 8);
#  endif /* BSWAP */
        edges[i].ptr = blocks[i].c;
        edges[i].blocks = 1;
    }

    /* finalize MACs */
    sha256_multi_block(mctx, edges, n4x);

    for (i = 0; i < x4; i++) {
        unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
        unsigned char *out0 = out;

        memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
        ciph_d[i].inp = ciph_d[i].out;

        out += 5 + 16 + len;

        /* write MAC */
        PUTU32(out + 0, mctx->A[i]);
        PUTU32(out + 4, mctx->B[i]);
        PUTU32(out + 8, mctx->C[i]);
        PUTU32(out + 12, mctx->D[i]);
        PUTU32(out + 16, mctx->E[i]);
        PUTU32(out + 20, mctx->F[i]);
        PUTU32(out + 24, mctx->G[i]);
        PUTU32(out + 28, mctx->H[i]);
        out += 32;
        len += 32;

        /* pad */
        pad = 15 - len % 16;
        for (j = 0; j <= pad; j++)
            *(out++) = pad;
        len += pad + 1;

        ciph_d[i].blocks = (len - processed) / 16;
        len += 16;              /* account for explicit iv */

        /* arrange header */
        out0[0] = ((u8 *)sctx->md.data)[8];
        out0[1] = ((u8 *)sctx->md.data)[9];
        out0[2] = ((u8 *)sctx->md.data)[10];
        out0[3] = (u8)(len >> 8);
        out0[4] = (u8)(len);

        ret += len + 5;
        inp += frag;
    }

    aesni_multi_cbc_encrypt(ciph_d, &ctx->ks, n4x);

    OPENSSL_cleanse(blocks, sizeof(blocks));
    OPENSSL_cleanse(mctx, sizeof(*mctx));

    ctx->multiblock_encrypt_len = ret;
    return ret;
}
# endif /* !OPENSSL_NO_MULTIBLOCK */

static int aesni_cbc_hmac_sha256_cipher(PROV_CIPHER_CTX *vctx,
                                        unsigned char *out,
                                        const unsigned char *in, size_t len)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned int l;
    size_t plen = ctx->payload_length;
    size_t iv = 0; /* explicit IV in TLS 1.1 and * later */
    size_t aes_off = 0, blocks;
    size_t sha_off = SHA256_CBLOCK - sctx->md.num;

    ctx->payload_length = NO_PAYLOAD_LENGTH;

    if (len % AES_BLOCK_SIZE)
        return 0;

    if (ctx->base.enc) {
        if (plen == NO_PAYLOAD_LENGTH)
            plen = len;
        else if (len !=
                 ((plen + SHA256_DIGEST_LENGTH +
                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
            return 0;
        else if (ctx->aux.tls_ver >= TLS1_1_VERSION)
            iv = AES_BLOCK_SIZE;

        /*
         * Assembly stitch handles AVX-capable processors, but its
         * performance is not optimal on AMD Jaguar, ~40% worse, for
         * unknown reasons. Incidentally processor in question supports
         * AVX, but not AMD-specific XOP extension, which can be used
         * to identify it and avoid stitch invocation. So that after we
         * establish that current CPU supports AVX, we even see if it's
         * either even XOP-capable Bulldozer-based or GenuineIntel one.
         * But SHAEXT-capable go ahead...
         */
        if (((OPENSSL_ia32cap_P[2] & (1 << 29)) ||         /* SHAEXT? */
             ((OPENSSL_ia32cap_P[1] & (1 << (60 - 32))) && /* AVX? */
              ((OPENSSL_ia32cap_P[1] & (1 << (43 - 32)))   /* XOP? */
               | (OPENSSL_ia32cap_P[0] & (1 << 30))))) &&  /* "Intel CPU"? */
            plen > (sha_off + iv) &&
            (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
            sha256_update(&sctx->md, in + iv, sha_off);

            (void)aesni_cbc_sha256_enc(in, out, blocks, &ctx->ks,
                                       ctx->base.iv,
                                       &sctx->md, in + iv + sha_off);
            blocks *= SHA256_CBLOCK;
            aes_off += blocks;
            sha_off += blocks;
            sctx->md.Nh += blocks >> 29;
            sctx->md.Nl += blocks <<= 3;
            if (sctx->md.Nl < (unsigned int)blocks)
                sctx->md.Nh++;
        } else {
            sha_off = 0;
        }
        sha_off += iv;
        sha256_update(&sctx->md, in + sha_off, plen - sha_off);

        if (plen != len) {      /* "TLS" mode of operation */
            if (in != out)
                memcpy(out + aes_off, in + aes_off, plen - aes_off);

            /* calculate HMAC and append it to payload */
            SHA256_Final(out + plen, &sctx->md);
            sctx->md = sctx->tail;
            sha256_update(&sctx->md, out + plen, SHA256_DIGEST_LENGTH);
            SHA256_Final(out + plen, &sctx->md);

            /* pad the payload|hmac */
            plen += SHA256_DIGEST_LENGTH;
            for (l = len - plen - 1; plen < len; plen++)
                out[plen] = l;
            /* encrypt HMAC|padding at once */
            aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
                              &ctx->ks, ctx->base.iv, 1);
        } else {
            aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
                              &ctx->ks, ctx->base.iv, 1);
        }
    } else {
        union {
            unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
            unsigned char c[64 + SHA256_DIGEST_LENGTH];
        } mac, *pmac;

        /* arrange cache line alignment */
        pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));

        /* decrypt HMAC|padding at once */
        aesni_cbc_encrypt(in, out, len, &ctx->ks,
                          ctx->base.iv, 0);

        if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
            size_t inp_len, mask, j, i;
            unsigned int res, maxpad, pad, bitlen;
            int ret = 1;
            union {
                unsigned int u[SHA_LBLOCK];
                unsigned char c[SHA256_CBLOCK];
            } *data = (void *)sctx->md.data;

            if ((ctx->aux.tls_aad[plen - 4] << 8 | ctx->aux.tls_aad[plen - 3])
                >= TLS1_1_VERSION)
                iv = AES_BLOCK_SIZE;

            if (len < (iv + SHA256_DIGEST_LENGTH + 1))
                return 0;

            /* omit explicit iv */
            out += iv;
            len -= iv;

            /* figure out payload length */
            pad = out[len - 1];
            maxpad = len - (SHA256_DIGEST_LENGTH + 1);
            maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
            maxpad &= 255;

            mask = constant_time_ge(maxpad, pad);
            ret &= mask;
            /*
             * If pad is invalid then we will fail the above test but we must
             * continue anyway because we are in constant time code. However,
             * we'll use the maxpad value instead of the supplied pad to make
             * sure we perform well defined pointer arithmetic.
             */
            pad = constant_time_select(mask, pad, maxpad);

            inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);

            ctx->aux.tls_aad[plen - 2] = inp_len >> 8;
            ctx->aux.tls_aad[plen - 1] = inp_len;

            /* calculate HMAC */
            sctx->md = sctx->head;
            sha256_update(&sctx->md, ctx->aux.tls_aad, plen);

            /* code with lucky-13 fix */
            len -= SHA256_DIGEST_LENGTH; /* amend mac */
            if (len >= (256 + SHA256_CBLOCK)) {
                j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
                j += SHA256_CBLOCK - sctx->md.num;
                sha256_update(&sctx->md, out, j);
                out += j;
                len -= j;
                inp_len -= j;
            }

            /* but pretend as if we hashed padded payload */
            bitlen = sctx->md.Nl + (inp_len << 3); /* at most 18 bits */
# ifdef BSWAP4
            bitlen = BSWAP4(bitlen);
# else
            mac.c[0] = 0;
            mac.c[1] = (unsigned char)(bitlen >> 16);
            mac.c[2] = (unsigned char)(bitlen >> 8);
            mac.c[3] = (unsigned char)bitlen;
            bitlen = mac.u[0];
# endif /* BSWAP */

            pmac->u[0] = 0;
            pmac->u[1] = 0;
            pmac->u[2] = 0;
            pmac->u[3] = 0;
            pmac->u[4] = 0;
            pmac->u[5] = 0;
            pmac->u[6] = 0;
            pmac->u[7] = 0;

            for (res = sctx->md.num, j = 0; j < len; j++) {
                size_t c = out[j];
                mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
                c &= mask;
                c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
                data->c[res++] = (unsigned char)c;

                if (res != SHA256_CBLOCK)
                    continue;

                /* j is not incremented yet */
                mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha256_block_data_order(&sctx->md, data, 1);
                mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= sctx->md.h[0] & mask;
                pmac->u[1] |= sctx->md.h[1] & mask;
                pmac->u[2] |= sctx->md.h[2] & mask;
                pmac->u[3] |= sctx->md.h[3] & mask;
                pmac->u[4] |= sctx->md.h[4] & mask;
                pmac->u[5] |= sctx->md.h[5] & mask;
                pmac->u[6] |= sctx->md.h[6] & mask;
                pmac->u[7] |= sctx->md.h[7] & mask;
                res = 0;
            }

            for (i = res; i < SHA256_CBLOCK; i++, j++)
                data->c[i] = 0;

            if (res > SHA256_CBLOCK - 8) {
                mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
                data->u[SHA_LBLOCK - 1] |= bitlen & mask;
                sha256_block_data_order(&sctx->md, data, 1);
                mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
                pmac->u[0] |= sctx->md.h[0] & mask;
                pmac->u[1] |= sctx->md.h[1] & mask;
                pmac->u[2] |= sctx->md.h[2] & mask;
                pmac->u[3] |= sctx->md.h[3] & mask;
                pmac->u[4] |= sctx->md.h[4] & mask;
                pmac->u[5] |= sctx->md.h[5] & mask;
                pmac->u[6] |= sctx->md.h[6] & mask;
                pmac->u[7] |= sctx->md.h[7] & mask;

                memset(data, 0, SHA256_CBLOCK);
                j += 64;
            }
            data->u[SHA_LBLOCK - 1] = bitlen;
            sha256_block_data_order(&sctx->md, data, 1);
            mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
            pmac->u[0] |= sctx->md.h[0] & mask;
            pmac->u[1] |= sctx->md.h[1] & mask;
            pmac->u[2] |= sctx->md.h[2] & mask;
            pmac->u[3] |= sctx->md.h[3] & mask;
            pmac->u[4] |= sctx->md.h[4] & mask;
            pmac->u[5] |= sctx->md.h[5] & mask;
            pmac->u[6] |= sctx->md.h[6] & mask;
            pmac->u[7] |= sctx->md.h[7] & mask;

# ifdef BSWAP4
            pmac->u[0] = BSWAP4(pmac->u[0]);
            pmac->u[1] = BSWAP4(pmac->u[1]);
            pmac->u[2] = BSWAP4(pmac->u[2]);
            pmac->u[3] = BSWAP4(pmac->u[3]);
            pmac->u[4] = BSWAP4(pmac->u[4]);
            pmac->u[5] = BSWAP4(pmac->u[5]);
            pmac->u[6] = BSWAP4(pmac->u[6]);
            pmac->u[7] = BSWAP4(pmac->u[7]);
# else
            for (i = 0; i < 8; i++) {
                res = pmac->u[i];
                pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
                pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
                pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
                pmac->c[4 * i + 3] = (unsigned char)res;
            }
# endif /* BSWAP */
            len += SHA256_DIGEST_LENGTH;
            sctx->md = sctx->tail;
            sha256_update(&sctx->md, pmac->c, SHA256_DIGEST_LENGTH);
            SHA256_Final(pmac->c, &sctx->md);

            /* verify HMAC */
            out += inp_len;
            len -= inp_len;
            /* code containing lucky-13 fix */
            {
                unsigned char *p =
                    out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
                size_t off = out - p;
                unsigned int c, cmask;

P
Pauli 已提交
658 659 660
                for (res = 0, i = 0, j = 0;
                     j < maxpad + SHA256_DIGEST_LENGTH;
                     j++) {
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
                    c = p[j];
                    cmask =
                        ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
                        (sizeof(int) * 8 - 1);
                    res |= (c ^ pad) & ~cmask; /* ... and padding */
                    cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
                    res |= (c ^ pmac->c[i]) & cmask;
                    i += 1 & cmask;
                }

                res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
                ret &= (int)~res;
            }
            return ret;
        } else {
            sha256_update(&sctx->md, out, len);
        }
    }

    return 1;
}

/* EVP_CTRL_AEAD_SET_MAC_KEY */
static void aesni_cbc_hmac_sha256_set_mac_key(void *vctx,
                                              const unsigned char *mackey,
                                              size_t len)
{
    PROV_AES_HMAC_SHA256_CTX *ctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned int i;
    unsigned char hmac_key[64];

    memset(hmac_key, 0, sizeof(hmac_key));

    if (len > sizeof(hmac_key)) {
        SHA256_Init(&ctx->head);
        sha256_update(&ctx->head, mackey, len);
        SHA256_Final(hmac_key, &ctx->head);
    } else {
        memcpy(hmac_key, mackey, len);
    }

    for (i = 0; i < sizeof(hmac_key); i++)
        hmac_key[i] ^= 0x36; /* ipad */
    SHA256_Init(&ctx->head);
    sha256_update(&ctx->head, hmac_key, sizeof(hmac_key));

    for (i = 0; i < sizeof(hmac_key); i++)
        hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
    SHA256_Init(&ctx->tail);
    sha256_update(&ctx->tail, hmac_key, sizeof(hmac_key));

    OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
}

/* EVP_CTRL_AEAD_TLS1_AAD */
static int aesni_cbc_hmac_sha256_set_tls1_aad(void *vctx,
                                              unsigned char *aad_rec, int aad_len)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned char *p = aad_rec;
    unsigned int len;

    if (aad_len != EVP_AEAD_TLS1_AAD_LEN)
        return -1;

    len = p[aad_len - 2] << 8 | p[aad_len - 1];

    if (ctx->base.enc) {
        ctx->payload_length = len;
        if ((ctx->aux.tls_ver =
             p[aad_len - 4] << 8 | p[aad_len - 3]) >= TLS1_1_VERSION) {
            if (len < AES_BLOCK_SIZE)
                return 0;
            len -= AES_BLOCK_SIZE;
            p[aad_len] = len >> 8;
            p[aad_len - 1] = len;
        }
        sctx->md = sctx->head;
        sha256_update(&sctx->md, p, aad_len);
        ctx->tls_aad_pad = (int)(((len + SHA256_DIGEST_LENGTH +
                                   AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
                                   - len);
        return 1;
    } else {
        memcpy(ctx->aux.tls_aad, p, aad_len);
        ctx->payload_length = aad_len;
        ctx->tls_aad_pad = SHA256_DIGEST_LENGTH;
        return 1;
    }
}

# if !defined(OPENSSL_NO_MULTIBLOCK)
/* EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE */
static int aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize(
    void *vctx)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;

    OPENSSL_assert(ctx->multiblock_max_send_fragment != 0);
    return (int)(5 + 16
                 + (((int)ctx->multiblock_max_send_fragment + 32 + 16) & -16));
}

/* EVP_CTRL_TLS1_1_MULTIBLOCK_AAD */
static int aesni_cbc_hmac_sha256_tls1_multiblock_aad(
    void *vctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
{
    PROV_AES_HMAC_SHA_CTX *ctx = (PROV_AES_HMAC_SHA_CTX *)vctx;
    PROV_AES_HMAC_SHA256_CTX *sctx = (PROV_AES_HMAC_SHA256_CTX *)vctx;
    unsigned int n4x = 1, x4;
    unsigned int frag, last, packlen, inp_len;

    inp_len = param->inp[11] << 8 | param->inp[12];

    if (ctx->base.enc) {
        if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
            return -1;

        if (inp_len) {
            if (inp_len < 4096)
                return 0; /* too short */

            if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
                n4x = 2; /* AVX2 */
        } else if ((n4x = param->interleave / 4) && n4x <= 2)
            inp_len = param->len;
        else
            return -1;

        sctx->md = sctx->head;
        sha256_update(&sctx->md, param->inp, 13);

        x4 = 4 * n4x;
        n4x += 1;

        frag = inp_len >> n4x;
        last = inp_len + frag - (frag << n4x);
        if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
            frag++;
            last -= x4 - 1;
        }

        packlen = 5 + 16 + ((frag + 32 + 16) & -16);
        packlen = (packlen << n4x) - packlen;
        packlen += 5 + 16 + ((last + 32 + 16) & -16);

        param->interleave = x4;
        /* The returned values used by get need to be stored */
        ctx->multiblock_interleave = x4;
        ctx->multiblock_aad_packlen = packlen;
        return 1;
    }
    return -1;      /* not yet */
}

/* EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT */
static int aesni_cbc_hmac_sha256_tls1_multiblock_encrypt(
    void *ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param)
{
    return (int)tls1_multi_block_encrypt(ctx, param->out,
                                         param->inp, param->len,
                                         param->interleave / 4);
}
825
# endif
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

static const PROV_CIPHER_HW_AES_HMAC_SHA cipher_hw_aes_hmac_sha256 = {
    {
      aesni_cbc_hmac_sha256_init_key,
      aesni_cbc_hmac_sha256_cipher
    },
    aesni_cbc_hmac_sha256_set_mac_key,
    aesni_cbc_hmac_sha256_set_tls1_aad,
# if !defined(OPENSSL_NO_MULTIBLOCK)
    aesni_cbc_hmac_sha256_tls1_multiblock_max_bufsize,
    aesni_cbc_hmac_sha256_tls1_multiblock_aad,
    aesni_cbc_hmac_sha256_tls1_multiblock_encrypt
# endif
};

841
const PROV_CIPHER_HW_AES_HMAC_SHA *ossl_prov_cipher_hw_aes_cbc_hmac_sha256(void)
842 843 844 845
{
    return &cipher_hw_aes_hmac_sha256;
}

846
#endif /* !defined(AES_CBC_HMAC_SHA_CAPABLE) || !defined(AESNI_CAPABLE) */