ia64.S 44.6 KB
Newer Older
1
.explicit
2
.text
3
.ident	"ia64.S, Version 2.1"
4
.ident	"IA-64 ISA artwork by Andy Polyakov <appro@openssl.org>"
5

M
Matt Caswell 已提交
6
// Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
R
Rich Salz 已提交
7 8 9 10 11 12
//
// Licensed under the OpenSSL license (the "License").  You may not use
// this file except in compliance with the License.  You can obtain a copy
// in the file LICENSE in the source distribution or at
// https://www.openssl.org/source/license.html

13 14
//
// ====================================================================
15
// Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
16 17 18
// project.
//
// Rights for redistribution and usage in source and binary forms are
19
// granted according to the License. Warranty of any kind is disclaimed.
20 21
// ====================================================================
//
J
Josh Soref 已提交
22
// Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is
23 24 25 26 27 28 29 30
// different from Itanium to this module viewpoint. Most notably, is it
// "wider" than Itanium? Can you experience loop scalability as
// discussed in commentary sections? Not really:-( Itanium2 has 6
// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
// spin twice as fast, as I need 8 IALU ports. Amount of floating point
// ports is the same, i.e. 2, while I need 4. In other words, to this
// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
// essentially different in respect to this module, and a re-tune was
31
// required. Well, because some instruction latencies has changed. Most
32 33 34 35 36 37 38 39 40 41 42 43
// noticeably those intensively used:
//
//			Itanium	Itanium2
//	ldf8		9	6		L2 hit
//	ld8		2	1		L1 hit
//	getf		2	5
//	xma[->getf]	7[+1]	4[+0]
//	add[->st8]	1[+1]	1[+0]
//
// What does it mean? You might ratiocinate that the original code
// should run just faster... Because sum of latencies is smaller...
// Wrong! Note that getf latency increased. This means that if a loop is
44
// scheduled for lower latency (as they were), then it will suffer from
45 46 47 48 49 50
// stall condition and the code will therefore turn anti-scalable, e.g.
// original bn_mul_words spun at 5*n or 2.5 times slower than expected
// on Itanium2! What to do? Reschedule loops for Itanium2? But then
// Itanium would exhibit anti-scalability. So I've chosen to reschedule
// for worst latency for every instruction aiming for best *all-round*
// performance.  
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

// Q.	How much faster does it get?
// A.	Here is the output from 'openssl speed rsa dsa' for vanilla
//	0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
//	Linux 7.1 2.96-81):
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0036s   0.0003s    275.3   2999.2
//	rsa 1024 bits   0.0203s   0.0011s     49.3    894.1
//	rsa 2048 bits   0.1331s   0.0040s      7.5    250.9
//	rsa 4096 bits   0.9270s   0.0147s      1.1     68.1
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0035s   0.0043s    288.3    234.8
//	dsa 1024 bits   0.0111s   0.0135s     90.0     74.2
//
//	And here is similar output but for this assembler
//	implementation:-)
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0021s   0.0001s    549.4   9638.5
//	rsa 1024 bits   0.0055s   0.0002s    183.8   4481.1
//	rsa 2048 bits   0.0244s   0.0006s     41.4   1726.3
//	rsa 4096 bits   0.1295s   0.0018s      7.7    561.5
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0012s   0.0013s    891.9    756.6
//	dsa 1024 bits   0.0023s   0.0028s    440.4    376.2
//	
//	Yes, you may argue that it's not fair comparison as it's
//	possible to craft the C implementation with BN_UMULT_HIGH
//	inline assembler macro. But of course! Here is the output
//	with the macro:
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0020s   0.0002s    495.0   6561.0
//	rsa 1024 bits   0.0086s   0.0004s    116.2   2235.7
//	rsa 2048 bits   0.0519s   0.0015s     19.3    667.3
//	rsa 4096 bits   0.3464s   0.0053s      2.9    187.7
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0016s   0.0020s    613.1    510.5
//	dsa 1024 bits   0.0045s   0.0054s    221.0    183.9
//
//	My code is still way faster, huh:-) And I believe that even
//	higher performance can be achieved. Note that as keys get
//	longer, performance gain is larger. Why? According to the
//	profiler there is another player in the field, namely
//	BN_from_montgomery consuming larger and larger portion of CPU
//	time as keysize decreases. I therefore consider putting effort
//	to assembler implementation of the following routine:
//
//	void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
//	{
//	int      i,j;
//	BN_ULONG v;
//
//	for (i=0; i<nl; i++)
//		{
//		v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
//		nrp++;
//		rp++;
//		if (((nrp[-1]+=v)&BN_MASK2) < v)
//			for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
//		}
//	}
//
//	It might as well be beneficial to implement even combaX
//	variants, as it appears as it can literally unleash the
//	performance (see comment section to bn_mul_comba8 below).
//
//	And finally for your reference the output for 0.9.6a compiled
//	with SGIcc version 0.01.0-12 (keep in mind that for the moment
//	of this writing it's not possible to convince SGIcc to use
//	BN_UMULT_HIGH inline assembler macro, yet the code is fast,
//	i.e. for a compiler generated one:-):
//
//	                  sign    verify    sign/s verify/s
//	rsa  512 bits   0.0022s   0.0002s    452.7   5894.3
//	rsa 1024 bits   0.0097s   0.0005s    102.7   2002.9
//	rsa 2048 bits   0.0578s   0.0017s     17.3    600.2
//	rsa 4096 bits   0.3838s   0.0061s      2.6    164.5
//	                  sign    verify    sign/s verify/s
//	dsa  512 bits   0.0018s   0.0022s    547.3    459.6
//	dsa 1024 bits   0.0051s   0.0062s    196.6    161.3
//
//	Oh! Benchmarks were performed on 733MHz Lion-class Itanium
//	system running Redhat Linux 7.1 (very special thanks to Ray
//	McCaffity of Williams Communications for providing an account).
//
// Q.	What's the heck with 'rum 1<<5' at the end of every function?
// A.	Well, by clearing the "upper FP registers written" bit of the
//	User Mask I want to excuse the kernel from preserving upper
//	(f32-f128) FP register bank over process context switch, thus
//	minimizing bus bandwidth consumption during the switch (i.e.
J
Josh Soref 已提交
143
//	after PKI operation completes and the program is off doing
144 145 146 147 148 149 150 151 152 153
//	something else like bulk symmetric encryption). Having said
//	this, I also want to point out that it might be good idea
//	to compile the whole toolkit (as well as majority of the
//	programs for that matter) with -mfixed-range=f32-f127 command
//	line option. No, it doesn't prevent the compiler from writing
//	to upper bank, but at least discourages to do so. If you don't
//	like the idea you have the option to compile the module with
//	-Drum=nop.m in command line.
//

154 155 156 157 158
#if defined(_HPUX_SOURCE) && !defined(_LP64)
#define	ADDP	addp4
#else
#define	ADDP	add
#endif
159 160 161
#ifdef __VMS
.alias abort, "decc$abort"
#endif
162

163 164 165 166
#if 1
//
// bn_[add|sub]_words routines.
//
J
Josh Soref 已提交
167
// Loops are spinning in 2*(n+5) ticks on Itanium (provided that the
168 169 170 171 172 173 174 175 176 177 178 179
// data reside in L1 cache, i.e. 2 ticks away). It's possible to
// compress the epilogue and get down to 2*n+6, but at the cost of
// scalability (the neat feature of this implementation is that it
// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
// I consider that the epilogue is short enough as it is to trade tiny
// performance loss on Itanium for scalability.
//
// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
//
.global	bn_add_words#
.proc	bn_add_words#
.align	64
180
.skip	32	// makes the loop body aligned at 64-byte boundary
181 182 183
bn_add_words:
	.prologue
	.save	ar.pfs,r2
184
{ .mii;	alloc		r2=ar.pfs,4,12,0,16
185
	cmp4.le		p6,p0=r35,r0	};;
186
{ .mfb;	mov		r8=r0			// return value
187 188
(p6)	br.ret.spnt.many	b0	};;

189
{ .mib;	sub		r10=r35,r0,1
190
	.save	ar.lc,r3
191 192 193
	mov		r3=ar.lc
	brp.loop.imp	.L_bn_add_words_ctop,.L_bn_add_words_cend-16
					}
194
{ .mib;	ADDP		r14=0,r32		// rp
A
Andy Polyakov 已提交
195
	.save	pr,r9
196
	mov		r9=pr		};;
A
Andy Polyakov 已提交
197
	.body
198
{ .mii;	ADDP		r15=0,r33		// ap
199 200
	mov		ar.lc=r10
	mov		ar.ec=6		}
201
{ .mib;	ADDP		r16=0,r34		// bp
202
	mov		pr.rot=1<<16	};;
203

204 205
.L_bn_add_words_ctop:
{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
206 207
	(p18)	add		r39=r37,r34
	(p19)	cmp.ltu.unc	p56,p0=r40,r38	}
208
{ .mfb;	(p0)	nop.m		0x0
209 210
	(p0)	nop.f		0x0
	(p0)	nop.b		0x0		}
211
{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
212 213
	(p58)	cmp.eq.or	p57,p0=-1,r41	  // (p20)
	(p58)	add		r41=1,r41	} // (p20)
214
{ .mfb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
215 216 217 218
	(p0)	nop.f		0x0
	br.ctop.sptk	.L_bn_add_words_ctop	};;
.L_bn_add_words_cend:

219
{ .mii;
220
(p59)	add		r8=1,r8		// return value
A
Andy Polyakov 已提交
221
	mov		pr=r9,0x1ffff
222
	mov		ar.lc=r3	}
223
{ .mbb;	nop.b		0x0
224 225 226 227 228 229 230 231 232
	br.ret.sptk.many	b0	};;
.endp	bn_add_words#

//
// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
//
.global	bn_sub_words#
.proc	bn_sub_words#
.align	64
233
.skip	32	// makes the loop body aligned at 64-byte boundary
234 235 236
bn_sub_words:
	.prologue
	.save	ar.pfs,r2
237
{ .mii;	alloc		r2=ar.pfs,4,12,0,16
238
	cmp4.le		p6,p0=r35,r0	};;
239
{ .mfb;	mov		r8=r0			// return value
240 241
(p6)	br.ret.spnt.many	b0	};;

242
{ .mib;	sub		r10=r35,r0,1
243
	.save	ar.lc,r3
244 245 246
	mov		r3=ar.lc
	brp.loop.imp	.L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
					}
247
{ .mib;	ADDP		r14=0,r32		// rp
A
Andy Polyakov 已提交
248
	.save	pr,r9
249
	mov		r9=pr		};;
A
Andy Polyakov 已提交
250
	.body
251
{ .mii;	ADDP		r15=0,r33		// ap
252 253
	mov		ar.lc=r10
	mov		ar.ec=6		}
254
{ .mib;	ADDP		r16=0,r34		// bp
255
	mov		pr.rot=1<<16	};;
256

257 258
.L_bn_sub_words_ctop:
{ .mii;	(p16)	ld8		r32=[r16],8	  // b=*(bp++)
259 260
	(p18)	sub		r39=r37,r34
	(p19)	cmp.gtu.unc	p56,p0=r40,r38	}
261
{ .mfb;	(p0)	nop.m		0x0
262 263
	(p0)	nop.f		0x0
	(p0)	nop.b		0x0		}
264
{ .mii;	(p16)	ld8		r35=[r15],8	  // a=*(ap++)
265 266
	(p58)	cmp.eq.or	p57,p0=0,r41	  // (p20)
	(p58)	add		r41=-1,r41	} // (p20)
267
{ .mbb;	(p21)	st8		[r14]=r42,8	  // *(rp++)=r
268 269 270 271
	(p0)	nop.b		0x0
	br.ctop.sptk	.L_bn_sub_words_ctop	};;
.L_bn_sub_words_cend:

272
{ .mii;
273
(p59)	add		r8=1,r8		// return value
A
Andy Polyakov 已提交
274
	mov		pr=r9,0x1ffff
275
	mov		ar.lc=r3	}
276
{ .mbb;	nop.b		0x0
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	br.ret.sptk.many	b0	};;
.endp	bn_sub_words#
#endif

#if 0
#define XMA_TEMPTATION
#endif

#if 1
//
// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
//
.global	bn_mul_words#
.proc	bn_mul_words#
.align	64
292
.skip	32	// makes the loop body aligned at 64-byte boundary
293 294 295 296
bn_mul_words:
	.prologue
	.save	ar.pfs,r2
#ifdef XMA_TEMPTATION
297
{ .mfi;	alloc		r2=ar.pfs,4,0,0,0	};;
298
#else
299
{ .mfi;	alloc		r2=ar.pfs,4,12,0,16	};;
300
#endif
301
{ .mib;	mov		r8=r0			// return value
302 303 304
	cmp4.le		p6,p0=r34,r0
(p6)	br.ret.spnt.many	b0		};;

305
{ .mii;	sub	r10=r34,r0,1
306
	.save	ar.lc,r3
307
	mov	r3=ar.lc
A
Andy Polyakov 已提交
308
	.save	pr,r9
309 310 311
	mov	r9=pr			};;

	.body
312
{ .mib;	setf.sig	f8=r35	// w
313 314
	mov		pr.rot=0x800001<<16
			// ------^----- serves as (p50) at first (p27)
315 316 317 318 319
	brp.loop.imp	.L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
					}

#ifndef XMA_TEMPTATION

320 321
{ .mmi;	ADDP		r14=0,r32	// rp
	ADDP		r15=0,r33	// ap
322
	mov		ar.lc=r10	}
323
{ .mmi;	mov		r40=0		// serves as r35 at first (p27)
324
	mov		ar.ec=13	};;
325

326 327
// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
328
// bypass L1 cache and L2 latency is actually best-case scenario for
329 330
// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
331 332 333 334 335 336
// would give us ~5% in *overall* performance improvement on "wider"
// IA-64, but would hurt Itanium for about same because of longer
// epilogue. As it's a matter of few percents in either case I've
// chosen to trade the scalability for development time (you can see
// this very instruction sequence in bn_mul_add_words loop which in
// turn is scalable).
337
.L_bn_mul_words_ctop:
338 339 340
{ .mfi;	(p25)	getf.sig	r36=f52			// low
	(p21)	xmpy.lu		f48=f37,f8
	(p28)	cmp.ltu		p54,p50=r41,r39	}
341
{ .mfi;	(p16)	ldf8		f32=[r15],8
342
	(p21)	xmpy.hu		f40=f37,f8
343
	(p0)	nop.i		0x0		};;
344 345 346 347 348
{ .mii;	(p25)	getf.sig	r32=f44			// high
	.pred.rel	"mutex",p50,p54
	(p50)	add		r40=r38,r35		// (p27)
	(p54)	add		r40=r38,r35,1	}	// (p27)
{ .mfb;	(p28)	st8		[r14]=r41,8
349 350 351 352
	(p0)	nop.f		0x0
	br.ctop.sptk	.L_bn_mul_words_ctop	};;
.L_bn_mul_words_cend:

353
{ .mii;	nop.m		0x0
354 355 356
.pred.rel	"mutex",p51,p55
(p51)	add		r8=r36,r0
(p55)	add		r8=r36,r0,1	}
357
{ .mfb;	nop.m	0x0
358 359 360 361 362 363 364
	nop.f	0x0
	nop.b	0x0			}

#else	// XMA_TEMPTATION

	setf.sig	f37=r0	// serves as carry at (p18) tick
	mov		ar.lc=r10
365
	mov		ar.ec=5;;
366 367 368 369 370 371 372 373 374

// Most of you examining this code very likely wonder why in the name
// of Intel the following loop is commented out? Indeed, it looks so
// neat that you find it hard to believe that it's something wrong
// with it, right? The catch is that every iteration depends on the
// result from previous one and the latter isn't available instantly.
// The loop therefore spins at the latency of xma minus 1, or in other
// words at 6*(n+4) ticks:-( Compare to the "production" loop above
// that runs in 2*(n+11) where the low latency problem is worked around
375
// by moving the dependency to one-tick latent integer ALU. Note that
376 377
// "distance" between ldf8 and xma is not latency of ldf8, but the
// *difference* between xma and ldf8 latencies.
378 379
.L_bn_mul_words_ctop:
{ .mfi;	(p16)	ldf8		f32=[r33],8
380
	(p18)	xma.hu		f38=f34,f8,f39	}
381
{ .mfb;	(p20)	stf8		[r32]=f37,8
382 383 384 385 386 387 388 389
	(p18)	xma.lu		f35=f34,f8,f39
	br.ctop.sptk	.L_bn_mul_words_ctop	};;
.L_bn_mul_words_cend:

	getf.sig	r8=f41		// the return value

#endif	// XMA_TEMPTATION

390
{ .mii;	nop.m		0x0
A
Andy Polyakov 已提交
391
	mov		pr=r9,0x1ffff
392
	mov		ar.lc=r3	}
393
{ .mfb;	rum		1<<5		// clear um.mfh
394 395 396 397 398 399 400 401 402 403 404 405
	nop.f		0x0
	br.ret.sptk.many	b0	};;
.endp	bn_mul_words#
#endif

#if 1
//
// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
//
.global	bn_mul_add_words#
.proc	bn_mul_add_words#
.align	64
406
.skip	48	// makes the loop body aligned at 64-byte boundary
407 408 409
bn_mul_add_words:
	.prologue
	.save	ar.pfs,r2
410 411
{ .mmi;	alloc		r2=ar.pfs,4,4,0,8
	cmp4.le		p6,p0=r34,r0
412
	.save	ar.lc,r3
413 414 415 416
	mov		r3=ar.lc	};;
{ .mib;	mov		r8=r0		// return value
	sub		r10=r34,r0,1
(p6)	br.ret.spnt.many	b0	};;
417

418
{ .mib;	setf.sig	f8=r35		// w
419
	.save	pr,r9
420
	mov		r9=pr
421 422
	brp.loop.imp	.L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
					}
A
Andy Polyakov 已提交
423
	.body
424 425
{ .mmi;	ADDP		r14=0,r32	// rp
	ADDP		r15=0,r33	// ap
426
	mov		ar.lc=r10	}
427 428 429 430 431 432 433
{ .mii;	ADDP		r16=0,r32	// rp copy
	mov		pr.rot=0x2001<<16
			// ------^----- serves as (p40) at first (p27)
	mov		ar.ec=11	};;

// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
// Itanium 2. Yes, unlike previous versions it scales:-) Previous
A
Alessandro Ghedini 已提交
434
// version was performing *all* additions in IALU and was starving
435 436
// for those even on Itanium 2. In this version one addition is
// moved to FPU and is folded with multiplication. This is at cost
437
// of propagating the result from previous call to this subroutine
438 439 440
// to L2 cache... In other words negligible even for shorter keys.
// *Overall* performance improvement [over previous version] varies
// from 11 to 22 percent depending on key length.
441
.L_bn_mul_add_words_ctop:
442 443 444 445 446 447 448 449 450 451 452 453
.pred.rel	"mutex",p40,p42
{ .mfi;	(p23)	getf.sig	r36=f45			// low
	(p20)	xma.lu		f42=f36,f8,f50		// low
	(p40)	add		r39=r39,r35	}	// (p27)
{ .mfi;	(p16)	ldf8		f32=[r15],8		// *(ap++)
	(p20)	xma.hu		f36=f36,f8,f50		// high
	(p42)	add		r39=r39,r35,1	};;	// (p27)
{ .mmi;	(p24)	getf.sig	r32=f40			// high
	(p16)	ldf8		f46=[r16],8		// *(rp1++)
	(p40)	cmp.ltu		p41,p39=r39,r35	}	// (p27)
{ .mib;	(p26)	st8		[r14]=r39,8		// *(rp2++)
	(p42)	cmp.leu		p41,p39=r39,r35		// (p27)
454 455 456
	br.ctop.sptk	.L_bn_mul_add_words_ctop};;
.L_bn_mul_add_words_cend:

457 458 459 460 461 462
{ .mmi;	.pred.rel	"mutex",p40,p42
(p40)	add		r8=r35,r0
(p42)	add		r8=r35,r0,1
	mov		pr=r9,0x1ffff	}
{ .mib;	rum		1<<5		// clear um.mfh
	mov		ar.lc=r3
463 464 465 466 467 468 469 470 471 472 473
	br.ret.sptk.many	b0	};;
.endp	bn_mul_add_words#
#endif

#if 1
//
// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
//
.global	bn_sqr_words#
.proc	bn_sqr_words#
.align	64
474
.skip	32	// makes the loop body aligned at 64-byte boundary 
475 476 477
bn_sqr_words:
	.prologue
	.save	ar.pfs,r2
478
{ .mii;	alloc		r2=ar.pfs,3,0,0,0
479
	sxt4		r34=r34		};;
480
{ .mii;	cmp.le		p6,p0=r34,r0
481
	mov		r8=r0		}	// return value
482 483
{ .mfb;	ADDP		r32=0,r32
	nop.f		0x0
484 485
(p6)	br.ret.spnt.many	b0	};;

486
{ .mii;	sub	r10=r34,r0,1
487
	.save	ar.lc,r3
488
	mov	r3=ar.lc
489
	.save	pr,r9
490 491 492
	mov	r9=pr			};;

	.body
493
{ .mib;	ADDP		r33=0,r33
494 495 496
	mov		pr.rot=1<<16
	brp.loop.imp	.L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
					}
497
{ .mii;	add		r34=8,r32
498
	mov		ar.lc=r10
499
	mov		ar.ec=18	};;
500 501 502 503 504

// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
// possible to compress the epilogue (I'm getting tired to write this
// comment over and over) and get down to 2*n+16 at the cost of
// scalability. The decision will very likely be reconsidered after the
J
Josh Soref 已提交
505
// benchmark program is profiled. I.e. if performance gain on Itanium
506
// will appear larger than loss on "wider" IA-64, then the loop should
F
FdaSilvaYY 已提交
507
// be explicitly split and the epilogue compressed.
508 509
.L_bn_sqr_words_ctop:
{ .mfi;	(p16)	ldf8		f32=[r33],8
510 511
	(p25)	xmpy.lu		f42=f41,f41
	(p0)	nop.i		0x0		}
512
{ .mib;	(p33)	stf8		[r32]=f50,16
513 514
	(p0)	nop.i		0x0
	(p0)	nop.b		0x0		}
515
{ .mfi;	(p0)	nop.m		0x0
516 517
	(p25)	xmpy.hu		f52=f41,f41
	(p0)	nop.i		0x0		}
518
{ .mib;	(p33)	stf8		[r34]=f60,16
519 520 521 522
	(p0)	nop.i		0x0
	br.ctop.sptk	.L_bn_sqr_words_ctop	};;
.L_bn_sqr_words_cend:

523
{ .mii;	nop.m		0x0
A
Andy Polyakov 已提交
524
	mov		pr=r9,0x1ffff
525
	mov		ar.lc=r3	}
526
{ .mfb;	rum		1<<5		// clear um.mfh
527 528 529 530 531 532
	nop.f		0x0
	br.ret.sptk.many	b0	};;
.endp	bn_sqr_words#
#endif

#if 1
533
// Apparently we win nothing by implementing special bn_sqr_comba8.
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
// Yes, it is possible to reduce the number of multiplications by
// almost factor of two, but then the amount of additions would
// increase by factor of two (as we would have to perform those
// otherwise performed by xma ourselves). Normally we would trade
// anyway as multiplications are way more expensive, but not this
// time... Multiplication kernel is fully pipelined and as we drain
// one 128-bit multiplication result per clock cycle multiplications
// are effectively as inexpensive as additions. Special implementation
// might become of interest for "wider" IA-64 implementation as you'll
// be able to get through the multiplication phase faster (there won't
// be any stall issues as discussed in the commentary section below and
// you therefore will be able to employ all 4 FP units)... But these
// Itanium days it's simply too hard to justify the effort so I just
// drop down to bn_mul_comba8 code:-)
//
// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
//
.global	bn_sqr_comba8#
.proc	bn_sqr_comba8#
.align	64
bn_sqr_comba8:
	.prologue
	.save	ar.pfs,r2
557
#if defined(_HPUX_SOURCE) && !defined(_LP64)
558
{ .mii;	alloc	r2=ar.pfs,2,1,0,0
A
Andy Polyakov 已提交
559 560 561 562 563 564
	addp4	r33=0,r33
	addp4	r32=0,r32		};;
{ .mii;
#else
{ .mii;	alloc	r2=ar.pfs,2,1,0,0
#endif
565 566 567
	mov	r34=r33
	add	r14=8,r33		};;
	.body
568
{ .mii;	add	r17=8,r34
569 570
	add	r15=16,r33
	add	r18=16,r34		}
571
{ .mfb;	add	r16=24,r33
572
	br	.L_cheat_entry_point8	};;
573
.endp	bn_sqr_comba8#
574 575 576 577 578 579
#endif

#if 1
// I've estimated this routine to run in ~120 ticks, but in reality
// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
// cycles consumed for instructions fetch? Or did I misinterpret some
580
// clause in Itanium µ-architecture manual? Comments are welcomed and
581 582
// highly appreciated.
//
583 584 585 586
// On Itanium 2 it takes ~190 ticks. This is because of stalls on
// result from getf.sig. I do nothing about it at this point for
// reasons depicted below.
//
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
// However! It should be noted that even 160 ticks is darn good result
// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
// C version (compiled with gcc with inline assembler). I really
// kicked compiler's butt here, didn't I? Yeah! This brings us to the
// following statement. It's damn shame that this routine isn't called
// very often nowadays! According to the profiler most CPU time is
// consumed by bn_mul_add_words called from BN_from_montgomery. In
// order to estimate what we're missing, I've compared the performance
// of this routine against "traditional" implementation, i.e. against
// following routine:
//
// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
// {	r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
//	r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
//	r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
//	r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
//	r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
//	r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
//	r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
//	r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
// }
//
// The one below is over 8 times faster than the one above:-( Even
// more reasons to "combafy" bn_mul_add_mont...
//
// And yes, this routine really made me wish there were an optimizing
// assembler! It also feels like it deserves a dedication.
//
//	To my wife for being there and to my kids...
//
// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
//
#define	carry1	r14
#define	carry2	r15
#define	carry3	r34
.global	bn_mul_comba8#
.proc	bn_mul_comba8#
.align	64
bn_mul_comba8:
	.prologue
	.save	ar.pfs,r2
628
#if defined(_HPUX_SOURCE) && !defined(_LP64)
629
{ .mii;	alloc	r2=ar.pfs,3,0,0,0
A
Andy Polyakov 已提交
630 631 632 633 634 635
	addp4	r33=0,r33
	addp4	r34=0,r34		};;
{ .mii;	addp4	r32=0,r32
#else
{ .mii;	alloc   r2=ar.pfs,3,0,0,0
#endif
636 637 638
	add	r14=8,r33
	add	r17=8,r34		}
	.body
639
{ .mii;	add	r15=16,r33
640
	add	r18=16,r34
641
	add	r16=24,r33		}
642
.L_cheat_entry_point8:
643
{ .mmi;	add	r19=24,r34
644

645
	ldf8	f32=[r33],32		};;
646

647 648 649 650 651
{ .mmi;	ldf8	f120=[r34],32
	ldf8	f121=[r17],32		}
{ .mmi;	ldf8	f122=[r18],32
	ldf8	f123=[r19],32		};;
{ .mmi;	ldf8	f124=[r34]
652
	ldf8	f125=[r17]		}
653
{ .mmi;	ldf8	f126=[r18]
654 655
	ldf8	f127=[r19]		}

656
{ .mmi;	ldf8	f33=[r14],32
657
	ldf8	f34=[r15],32		}
658
{ .mmi;	ldf8	f35=[r16],32;;
659
	ldf8	f36=[r33]		}
660
{ .mmi;	ldf8	f37=[r14]
661
	ldf8	f38=[r15]		}
662
{ .mfi;	ldf8	f39=[r16]
663 664 665 666 667
// -------\ Entering multiplier's heaven /-------
// ------------\                    /------------
// -----------------\          /-----------------
// ----------------------\/----------------------
		xma.hu	f41=f32,f120,f0		}
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
{ .mfi;		xma.lu	f40=f32,f120,f0		};; // (*)
{ .mfi;		xma.hu	f51=f32,f121,f0		}
{ .mfi;		xma.lu	f50=f32,f121,f0		};;
{ .mfi;		xma.hu	f61=f32,f122,f0		}
{ .mfi;		xma.lu	f60=f32,f122,f0		};;
{ .mfi;		xma.hu	f71=f32,f123,f0		}
{ .mfi;		xma.lu	f70=f32,f123,f0		};;
{ .mfi;		xma.hu	f81=f32,f124,f0		}
{ .mfi;		xma.lu	f80=f32,f124,f0		};;
{ .mfi;		xma.hu	f91=f32,f125,f0		}
{ .mfi;		xma.lu	f90=f32,f125,f0		};;
{ .mfi;		xma.hu	f101=f32,f126,f0	}
{ .mfi;		xma.lu	f100=f32,f126,f0	};;
{ .mfi;		xma.hu	f111=f32,f127,f0	}
{ .mfi;		xma.lu	f110=f32,f127,f0	};;//
683 684 685 686 687 688 689 690 691 692 693
// (*)	You can argue that splitting at every second bundle would
//	prevent "wider" IA-64 implementations from achieving the peak
//	performance. Well, not really... The catch is that if you
//	intend to keep 4 FP units busy by splitting at every fourth
//	bundle and thus perform these 16 multiplications in 4 ticks,
//	the first bundle *below* would stall because the result from
//	the first xma bundle *above* won't be available for another 3
//	ticks (if not more, being an optimist, I assume that "wider"
//	implementation will have same latency:-). This stall will hold
//	you back and the performance would be as if every second bundle
//	were split *anyway*...
694
{ .mfi;	getf.sig	r16=f40
695 696
		xma.hu	f42=f33,f120,f41
	add		r33=8,r32		}
697 698
{ .mfi;		xma.lu	f41=f33,f120,f41	};;
{ .mfi;	getf.sig	r24=f50
699
		xma.hu	f52=f33,f121,f51	}
700 701
{ .mfi;		xma.lu	f51=f33,f121,f51	};;
{ .mfi;	st8		[r32]=r16,16
702
		xma.hu	f62=f33,f122,f61	}
703 704 705 706 707 708 709 710 711 712 713
{ .mfi;		xma.lu	f61=f33,f122,f61	};;
{ .mfi;		xma.hu	f72=f33,f123,f71	}
{ .mfi;		xma.lu	f71=f33,f123,f71	};;
{ .mfi;		xma.hu	f82=f33,f124,f81	}
{ .mfi;		xma.lu	f81=f33,f124,f81	};;
{ .mfi;		xma.hu	f92=f33,f125,f91	}
{ .mfi;		xma.lu	f91=f33,f125,f91	};;
{ .mfi;		xma.hu	f102=f33,f126,f101	}
{ .mfi;		xma.lu	f101=f33,f126,f101	};;
{ .mfi;		xma.hu	f112=f33,f127,f111	}
{ .mfi;		xma.lu	f111=f33,f127,f111	};;//
714
//-------------------------------------------------//
715
{ .mfi;	getf.sig	r25=f41
716
		xma.hu	f43=f34,f120,f42	}
717 718
{ .mfi;		xma.lu	f42=f34,f120,f42	};;
{ .mfi;	getf.sig	r16=f60
719
		xma.hu	f53=f34,f121,f52	}
720 721
{ .mfi;		xma.lu	f52=f34,f121,f52	};;
{ .mfi;	getf.sig	r17=f51
722 723
		xma.hu	f63=f34,f122,f62
	add		r25=r25,r24		}
724
{ .mfi;		xma.lu	f62=f34,f122,f62
725
	mov		carry1=0		};;
726
{ .mfi;	cmp.ltu		p6,p0=r25,r24
727
		xma.hu	f73=f34,f123,f72	}
728 729
{ .mfi;		xma.lu	f72=f34,f123,f72	};;
{ .mfi;	st8		[r33]=r25,16
730 731
		xma.hu	f83=f34,f124,f82
(p6)	add		carry1=1,carry1		}
732 733 734 735 736 737 738
{ .mfi;		xma.lu	f82=f34,f124,f82	};;
{ .mfi;		xma.hu	f93=f34,f125,f92	}
{ .mfi;		xma.lu	f92=f34,f125,f92	};;
{ .mfi;		xma.hu	f103=f34,f126,f102	}
{ .mfi;		xma.lu	f102=f34,f126,f102	};;
{ .mfi;		xma.hu	f113=f34,f127,f112	}
{ .mfi;		xma.lu	f112=f34,f127,f112	};;//
739
//-------------------------------------------------//
740
{ .mfi;	getf.sig	r18=f42
741 742
		xma.hu	f44=f35,f120,f43
	add		r17=r17,r16		}
743 744
{ .mfi;		xma.lu	f43=f35,f120,f43	};;
{ .mfi;	getf.sig	r24=f70
745
		xma.hu	f54=f35,f121,f53	}
746
{ .mfi;	mov		carry2=0
747
		xma.lu	f53=f35,f121,f53	};;
748
{ .mfi;	getf.sig	r25=f61
749 750
		xma.hu	f64=f35,f122,f63
	cmp.ltu		p7,p0=r17,r16		}
751
{ .mfi;	add		r18=r18,r17
752
		xma.lu	f63=f35,f122,f63	};;
753
{ .mfi;	getf.sig	r26=f52
754 755
		xma.hu	f74=f35,f123,f73
(p7)	add		carry2=1,carry2		}
756
{ .mfi;	cmp.ltu		p7,p0=r18,r17
757 758
		xma.lu	f73=f35,f123,f73
	add		r18=r18,carry1		};;
759
{ .mfi;
760 761
		xma.hu	f84=f35,f124,f83
(p7)	add		carry2=1,carry2		}
762
{ .mfi;	cmp.ltu		p7,p0=r18,carry1
763
		xma.lu	f83=f35,f124,f83	};;
764
{ .mfi;	st8		[r32]=r18,16
765 766
		xma.hu	f94=f35,f125,f93
(p7)	add		carry2=1,carry2		}
767 768 769 770 771
{ .mfi;		xma.lu	f93=f35,f125,f93	};;
{ .mfi;		xma.hu	f104=f35,f126,f103	}
{ .mfi;		xma.lu	f103=f35,f126,f103	};;
{ .mfi;		xma.hu	f114=f35,f127,f113	}
{ .mfi;	mov		carry1=0
772
		xma.lu	f113=f35,f127,f113
773
	add		r25=r25,r24		};;//
774
//-------------------------------------------------//
775
{ .mfi;	getf.sig	r27=f43
776 777
		xma.hu	f45=f36,f120,f44
	cmp.ltu		p6,p0=r25,r24		}
778
{ .mfi;		xma.lu	f44=f36,f120,f44	
779
	add		r26=r26,r25		};;
780
{ .mfi;	getf.sig	r16=f80
781 782
		xma.hu	f55=f36,f121,f54
(p6)	add		carry1=1,carry1		}
783 784
{ .mfi;		xma.lu	f54=f36,f121,f54	};;
{ .mfi;	getf.sig	r17=f71
785 786
		xma.hu	f65=f36,f122,f64
	cmp.ltu		p6,p0=r26,r25		}
787
{ .mfi;		xma.lu	f64=f36,f122,f64
788
	add		r27=r27,r26		};;
789
{ .mfi;	getf.sig	r18=f62
790 791
		xma.hu	f75=f36,f123,f74
(p6)	add		carry1=1,carry1		}
792
{ .mfi;	cmp.ltu		p6,p0=r27,r26
793 794
		xma.lu	f74=f36,f123,f74
	add		r27=r27,carry2		};;
795
{ .mfi;	getf.sig	r19=f53
796 797
		xma.hu	f85=f36,f124,f84
(p6)	add		carry1=1,carry1		}
798
{ .mfi;		xma.lu	f84=f36,f124,f84
799
	cmp.ltu		p6,p0=r27,carry2	};;
800
{ .mfi;	st8		[r33]=r27,16
801 802
		xma.hu	f95=f36,f125,f94
(p6)	add		carry1=1,carry1		}
803 804 805
{ .mfi;		xma.lu	f94=f36,f125,f94	};;
{ .mfi;		xma.hu	f105=f36,f126,f104	}
{ .mfi;	mov		carry2=0
806 807
		xma.lu	f104=f36,f126,f104
	add		r17=r17,r16		};;
808
{ .mfi;		xma.hu	f115=f36,f127,f114
809
	cmp.ltu		p7,p0=r17,r16		}
810 811
{ .mfi;		xma.lu	f114=f36,f127,f114
	add		r18=r18,r17		};;//
812
//-------------------------------------------------//
813
{ .mfi;	getf.sig	r20=f44
814 815
		xma.hu	f46=f37,f120,f45
(p7)	add		carry2=1,carry2		}
816
{ .mfi;	cmp.ltu		p7,p0=r18,r17
817 818
		xma.lu	f45=f37,f120,f45
	add		r19=r19,r18		};;
819
{ .mfi;	getf.sig	r24=f90
820
		xma.hu	f56=f37,f121,f55	}
821 822
{ .mfi;		xma.lu	f55=f37,f121,f55	};;
{ .mfi;	getf.sig	r25=f81
823 824
		xma.hu	f66=f37,f122,f65
(p7)	add		carry2=1,carry2		}
825
{ .mfi;	cmp.ltu		p7,p0=r19,r18
826 827
		xma.lu	f65=f37,f122,f65
	add		r20=r20,r19		};;
828
{ .mfi;	getf.sig	r26=f72
829 830
		xma.hu	f76=f37,f123,f75
(p7)	add		carry2=1,carry2		}
831
{ .mfi;	cmp.ltu		p7,p0=r20,r19
832 833
		xma.lu	f75=f37,f123,f75
	add		r20=r20,carry1		};;
834
{ .mfi;	getf.sig	r27=f63
835 836
		xma.hu	f86=f37,f124,f85
(p7)	add		carry2=1,carry2		}
837
{ .mfi;		xma.lu	f85=f37,f124,f85
838
	cmp.ltu		p7,p0=r20,carry1	};;
839
{ .mfi;	getf.sig	r28=f54
840 841
		xma.hu	f96=f37,f125,f95
(p7)	add		carry2=1,carry2		}
842
{ .mfi;	st8		[r32]=r20,16
843
		xma.lu	f95=f37,f125,f95	};;
844 845
{ .mfi;		xma.hu	f106=f37,f126,f105	}
{ .mfi;	mov		carry1=0
846 847
		xma.lu	f105=f37,f126,f105
	add		r25=r25,r24		};;
848
{ .mfi;		xma.hu	f116=f37,f127,f115
849
	cmp.ltu		p6,p0=r25,r24		}
850 851
{ .mfi;		xma.lu	f115=f37,f127,f115
	add		r26=r26,r25		};;//
852
//-------------------------------------------------//
853
{ .mfi;	getf.sig	r29=f45
854 855
		xma.hu	f47=f38,f120,f46
(p6)	add		carry1=1,carry1		}
856
{ .mfi;	cmp.ltu		p6,p0=r26,r25
857 858
		xma.lu	f46=f38,f120,f46
	add		r27=r27,r26		};;
859
{ .mfi;	getf.sig	r16=f100
860 861
		xma.hu	f57=f38,f121,f56
(p6)	add		carry1=1,carry1		}
862
{ .mfi;	cmp.ltu		p6,p0=r27,r26
863 864
		xma.lu	f56=f38,f121,f56
	add		r28=r28,r27		};;
865
{ .mfi;	getf.sig	r17=f91
866 867
		xma.hu	f67=f38,f122,f66
(p6)	add		carry1=1,carry1		}
868
{ .mfi;	cmp.ltu		p6,p0=r28,r27
869 870
		xma.lu	f66=f38,f122,f66
	add		r29=r29,r28		};;
871
{ .mfi;	getf.sig	r18=f82
872 873
		xma.hu	f77=f38,f123,f76
(p6)	add		carry1=1,carry1		}
874
{ .mfi;	cmp.ltu		p6,p0=r29,r28
875 876
		xma.lu	f76=f38,f123,f76
	add		r29=r29,carry2		};;
877
{ .mfi;	getf.sig	r19=f73
878 879
		xma.hu	f87=f38,f124,f86
(p6)	add		carry1=1,carry1		}
880
{ .mfi;		xma.lu	f86=f38,f124,f86
881
	cmp.ltu		p6,p0=r29,carry2	};;
882
{ .mfi;	getf.sig	r20=f64
883 884
		xma.hu	f97=f38,f125,f96
(p6)	add		carry1=1,carry1		}
885
{ .mfi;	st8		[r33]=r29,16
886
		xma.lu	f96=f38,f125,f96	};;
887
{ .mfi;	getf.sig	r21=f55
888
		xma.hu	f107=f38,f126,f106	}
889
{ .mfi;	mov		carry2=0
890 891
		xma.lu	f106=f38,f126,f106
	add		r17=r17,r16		};;
892
{ .mfi;		xma.hu	f117=f38,f127,f116
893
	cmp.ltu		p7,p0=r17,r16		}
894 895
{ .mfi;		xma.lu	f116=f38,f127,f116
	add		r18=r18,r17		};;//
896
//-------------------------------------------------//
897
{ .mfi;	getf.sig	r22=f46
898 899
		xma.hu	f48=f39,f120,f47
(p7)	add		carry2=1,carry2		}
900
{ .mfi;	cmp.ltu		p7,p0=r18,r17
901 902
		xma.lu	f47=f39,f120,f47
	add		r19=r19,r18		};;
903
{ .mfi;	getf.sig	r24=f110
904 905
		xma.hu	f58=f39,f121,f57
(p7)	add		carry2=1,carry2		}
906
{ .mfi;	cmp.ltu		p7,p0=r19,r18
907 908
		xma.lu	f57=f39,f121,f57
	add		r20=r20,r19		};;
909
{ .mfi;	getf.sig	r25=f101
910 911
		xma.hu	f68=f39,f122,f67
(p7)	add		carry2=1,carry2		}
912
{ .mfi;	cmp.ltu		p7,p0=r20,r19
913 914
		xma.lu	f67=f39,f122,f67
	add		r21=r21,r20		};;
915
{ .mfi;	getf.sig	r26=f92
916 917
		xma.hu	f78=f39,f123,f77
(p7)	add		carry2=1,carry2		}
918
{ .mfi;	cmp.ltu		p7,p0=r21,r20
919 920
		xma.lu	f77=f39,f123,f77
	add		r22=r22,r21		};;
921
{ .mfi;	getf.sig	r27=f83
922 923
		xma.hu	f88=f39,f124,f87
(p7)	add		carry2=1,carry2		}
924
{ .mfi;	cmp.ltu		p7,p0=r22,r21
925 926
		xma.lu	f87=f39,f124,f87
	add		r22=r22,carry1		};;
927
{ .mfi;	getf.sig	r28=f74
928 929
		xma.hu	f98=f39,f125,f97
(p7)	add		carry2=1,carry2		}
930
{ .mfi;		xma.lu	f97=f39,f125,f97
931
	cmp.ltu		p7,p0=r22,carry1	};;
932
{ .mfi;	getf.sig	r29=f65
933 934
		xma.hu	f108=f39,f126,f107
(p7)	add		carry2=1,carry2		}
935
{ .mfi;	st8		[r32]=r22,16
936
		xma.lu	f107=f39,f126,f107	};;
937
{ .mfi;	getf.sig	r30=f56
938
		xma.hu	f118=f39,f127,f117	}
939
{ .mfi;		xma.lu	f117=f39,f127,f117	};;//
940
//-------------------------------------------------//
J
Josh Soref 已提交
941
// Leaving multiplier's heaven... Quite a ride, huh?
942

943
{ .mii;	getf.sig	r31=f47
944 945
	add		r25=r25,r24
	mov		carry1=0		};;
946
{ .mii;		getf.sig	r16=f111
947 948
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
949 950
{ .mfb;		getf.sig	r17=f102	}
{ .mii;
951 952 953
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
954 955
{ .mfb;	nop.m	0x0				}
{ .mii;
956 957 958
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r28=r28,r27		};;
959
{ .mii;		getf.sig	r18=f93
960 961
		add		r17=r17,r16
		mov		carry3=0	}
962
{ .mii;
963 964 965
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,r27
	add		r29=r29,r28		};;
966
{ .mii;		getf.sig	r19=f84
967
		cmp.ltu		p7,p0=r17,r16	}
968
{ .mii;
969 970 971
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r29,r28
	add		r30=r30,r29		};;
972
{ .mii;		getf.sig	r20=f75
973
		add		r18=r18,r17	}
974
{ .mii;
975 976 977
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r30,r29
	add		r31=r31,r30		};;
978 979
{ .mfb;		getf.sig	r21=f66		}
{ .mii;	(p7)	add		carry3=1,carry3
980 981
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	}
982 983
{ .mfb;	nop.m	0x0				}
{ .mii;
984 985 986
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r31,r30
	add		r31=r31,carry2		};;
987 988
{ .mfb;		getf.sig	r22=f57		}
{ .mii;	(p7)	add		carry3=1,carry3
989 990
		cmp.ltu		p7,p0=r19,r18
		add		r20=r20,r19	}
991 992
{ .mfb;	nop.m	0x0				}
{ .mii;
993 994
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r31,carry2	};;
995 996
{ .mfb;		getf.sig	r23=f48		}
{ .mii;	(p7)	add		carry3=1,carry3
997 998
		cmp.ltu		p7,p0=r20,r19
		add		r21=r21,r20	}
999
{ .mii;
1000
(p6)	add		carry1=1,carry1		}
1001
{ .mfb;	st8		[r33]=r31,16		};;
1002

1003 1004
{ .mfb;	getf.sig	r24=f112		}
{ .mii;	(p7)	add		carry3=1,carry3
1005 1006
		cmp.ltu		p7,p0=r21,r20
		add		r22=r22,r21	};;
1007 1008
{ .mfb;	getf.sig	r25=f103		}
{ .mii;	(p7)	add		carry3=1,carry3
1009 1010
		cmp.ltu		p7,p0=r22,r21
		add		r23=r23,r22	};;
1011 1012
{ .mfb;	getf.sig	r26=f94			}
{ .mii;	(p7)	add		carry3=1,carry3
1013 1014
		cmp.ltu		p7,p0=r23,r22
		add		r23=r23,carry1	};;
1015 1016
{ .mfb;	getf.sig	r27=f85			}
{ .mii;	(p7)	add		carry3=1,carry3
1017
		cmp.ltu		p7,p8=r23,carry1};;
1018
{ .mii;	getf.sig	r28=f76
1019 1020
	add		r25=r25,r24
	mov		carry1=0		}
1021
{ .mii;		st8		[r32]=r23,16
1022 1023 1024
	(p7)	add		carry2=1,carry3
	(p8)	add		carry2=0,carry3	};;

1025 1026
{ .mfb;	nop.m	0x0				}
{ .mii;	getf.sig	r29=f67
1027 1028
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
1029 1030
{ .mfb;	getf.sig	r30=f58			}
{ .mii;
1031 1032 1033
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
1034 1035
{ .mfb;		getf.sig	r16=f113	}
{ .mii;
1036 1037 1038
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r28=r28,r27		};;
1039 1040
{ .mfb;		getf.sig	r17=f104	}
{ .mii;
1041 1042 1043
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,r27
	add		r29=r29,r28		};;
1044 1045
{ .mfb;		getf.sig	r18=f95		}
{ .mii;
1046 1047 1048
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r29,r28
	add		r30=r30,r29		};;
1049
{ .mii;		getf.sig	r19=f86
1050 1051
		add		r17=r17,r16
		mov		carry3=0	}
1052
{ .mii;
1053 1054 1055
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r30,r29
	add		r30=r30,carry2		};;
1056
{ .mii;		getf.sig	r20=f77
1057 1058
		cmp.ltu		p7,p0=r17,r16
		add		r18=r18,r17	}
1059
{ .mii;
1060 1061
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r30,carry2	};;
1062 1063
{ .mfb;		getf.sig	r21=f68		}
{ .mii;	st8		[r33]=r30,16
1064 1065
(p6)	add		carry1=1,carry1		};;

1066 1067
{ .mfb;	getf.sig	r24=f114		}
{ .mii;	(p7)	add		carry3=1,carry3
1068 1069
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	};;
1070 1071
{ .mfb;	getf.sig	r25=f105		}
{ .mii;	(p7)	add		carry3=1,carry3
1072 1073
		cmp.ltu		p7,p0=r19,r18
		add		r20=r20,r19	};;
1074 1075
{ .mfb;	getf.sig	r26=f96			}
{ .mii;	(p7)	add		carry3=1,carry3
1076 1077
		cmp.ltu		p7,p0=r20,r19
		add		r21=r21,r20	};;
1078 1079
{ .mfb;	getf.sig	r27=f87			}
{ .mii;	(p7)	add		carry3=1,carry3
1080 1081
		cmp.ltu		p7,p0=r21,r20
		add		r21=r21,carry1	};;
1082
{ .mib;	getf.sig	r28=f78			
1083
	add		r25=r25,r24		}
1084
{ .mib;	(p7)	add		carry3=1,carry3
1085
		cmp.ltu		p7,p8=r21,carry1};;
1086
{ .mii;		st8		[r32]=r21,16
1087 1088 1089
	(p7)	add		carry2=1,carry3
	(p8)	add		carry2=0,carry3	}

1090
{ .mii;	mov		carry1=0
1091 1092
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
1093 1094
{ .mfb;		getf.sig	r16=f115	}
{ .mii;
1095 1096 1097
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
1098 1099
{ .mfb;		getf.sig	r17=f106	}
{ .mii;
1100 1101 1102
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r28=r28,r27		};;
1103 1104
{ .mfb;		getf.sig	r18=f97		}
{ .mii;
1105 1106 1107
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,r27
	add		r28=r28,carry2		};;
1108
{ .mib;		getf.sig	r19=f88
1109
		add		r17=r17,r16	}
1110
{ .mib;
1111 1112
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r28,carry2	};;
1113
{ .mii;	st8		[r33]=r28,16
1114 1115
(p6)	add		carry1=1,carry1		}

1116
{ .mii;		mov		carry2=0
1117 1118
		cmp.ltu		p7,p0=r17,r16
		add		r18=r18,r17	};;
1119 1120
{ .mfb;	getf.sig	r24=f116		}
{ .mii;	(p7)	add		carry2=1,carry2
1121 1122
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	};;
1123 1124
{ .mfb;	getf.sig	r25=f107		}
{ .mii;	(p7)	add		carry2=1,carry2
1125 1126
		cmp.ltu		p7,p0=r19,r18
		add		r19=r19,carry1	};;
1127 1128
{ .mfb;	getf.sig	r26=f98			}
{ .mii;	(p7)	add		carry2=1,carry2
1129
		cmp.ltu		p7,p0=r19,carry1};;
1130
{ .mii;		st8		[r32]=r19,16
1131 1132
	(p7)	add		carry2=1,carry2	}

1133
{ .mfb;	add		r25=r25,r24		};;
1134

1135 1136
{ .mfb;		getf.sig	r16=f117	}
{ .mii;	mov		carry1=0
1137 1138
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
1139 1140
{ .mfb;		getf.sig	r17=f108	}
{ .mii;
1141 1142 1143
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r26=r26,carry2		};;
1144 1145
{ .mfb;	nop.m	0x0				}
{ .mii;
1146 1147
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,carry2	};;
1148
{ .mii;	st8		[r33]=r26,16
1149 1150
(p6)	add		carry1=1,carry1		}

1151 1152 1153
{ .mfb;		add		r17=r17,r16	};;
{ .mfb;	getf.sig	r24=f118		}
{ .mii;		mov		carry2=0
1154 1155
		cmp.ltu		p7,p0=r17,r16
		add		r17=r17,carry1	};;
1156
{ .mii;	(p7)	add		carry2=1,carry2
1157
		cmp.ltu		p7,p0=r17,carry1};;
1158
{ .mii;		st8		[r32]=r17
1159
	(p7)	add		carry2=1,carry2	};;
1160 1161
{ .mfb;	add		r24=r24,carry2		};;
{ .mib;	st8		[r33]=r24		}
1162

1163
{ .mib;	rum		1<<5		// clear um.mfh
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	br.ret.sptk.many	b0	};;
.endp	bn_mul_comba8#
#undef	carry3
#undef	carry2
#undef	carry1
#endif

#if 1
// It's possible to make it faster (see comment to bn_sqr_comba8), but
// I reckon it doesn't worth the effort. Basically because the routine
// (actually both of them) practically never called... So I just play
// same trick as with bn_sqr_comba8.
//
// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
//
.global	bn_sqr_comba4#
.proc	bn_sqr_comba4#
.align	64
bn_sqr_comba4:
	.prologue
	.save	ar.pfs,r2
1185
#if defined(_HPUX_SOURCE) && !defined(_LP64)
A
Andy Polyakov 已提交
1186 1187 1188 1189 1190
{ .mii;	alloc   r2=ar.pfs,2,1,0,0
	addp4	r32=0,r32
	addp4	r33=0,r33		};;
{ .mii;
#else
1191
{ .mii;	alloc	r2=ar.pfs,2,1,0,0
A
Andy Polyakov 已提交
1192
#endif
1193 1194 1195
	mov	r34=r33
	add	r14=8,r33		};;
	.body
1196
{ .mii;	add	r17=8,r34
1197 1198
	add	r15=16,r33
	add	r18=16,r34		}
1199
{ .mfb;	add	r16=24,r33
1200
	br	.L_cheat_entry_point4	};;
1201
.endp	bn_sqr_comba4#
1202 1203 1204 1205 1206 1207 1208
#endif

#if 1
// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
//
// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
//
1209
#define	carry1	r14
1210 1211 1212 1213 1214 1215 1216
#define	carry2	r15
.global	bn_mul_comba4#
.proc	bn_mul_comba4#
.align	64
bn_mul_comba4:
	.prologue
	.save	ar.pfs,r2
1217
#if defined(_HPUX_SOURCE) && !defined(_LP64)
A
Andy Polyakov 已提交
1218 1219 1220 1221 1222
{ .mii;	alloc   r2=ar.pfs,3,0,0,0
	addp4	r33=0,r33
	addp4	r34=0,r34		};;
{ .mii;	addp4	r32=0,r32
#else
1223
{ .mii;	alloc	r2=ar.pfs,3,0,0,0
A
Andy Polyakov 已提交
1224
#endif
1225 1226 1227
	add	r14=8,r33
	add	r17=8,r34		}
	.body
1228
{ .mii;	add	r15=16,r33
1229 1230 1231
	add	r18=16,r34
	add	r16=24,r33		};;
.L_cheat_entry_point4:
1232
{ .mmi;	add	r19=24,r34
1233 1234 1235

	ldf8	f32=[r33]		}

1236
{ .mmi;	ldf8	f120=[r34]
1237
	ldf8	f121=[r17]		};;
1238
{ .mmi;	ldf8	f122=[r18]
1239 1240
	ldf8	f123=[r19]		}

1241
{ .mmi;	ldf8	f33=[r14]
1242
	ldf8	f34=[r15]		}
1243
{ .mfi;	ldf8	f35=[r16]
1244 1245

		xma.hu	f41=f32,f120,f0		}
1246 1247 1248 1249 1250 1251 1252
{ .mfi;		xma.lu	f40=f32,f120,f0		};;
{ .mfi;		xma.hu	f51=f32,f121,f0		}
{ .mfi;		xma.lu	f50=f32,f121,f0		};;
{ .mfi;		xma.hu	f61=f32,f122,f0		}
{ .mfi;		xma.lu	f60=f32,f122,f0		};;
{ .mfi;		xma.hu	f71=f32,f123,f0		}
{ .mfi;		xma.lu	f70=f32,f123,f0		};;//
1253 1254
// Major stall takes place here, and 3 more places below. Result from
// first xma is not available for another 3 ticks.
1255
{ .mfi;	getf.sig	r16=f40
1256 1257
		xma.hu	f42=f33,f120,f41
	add		r33=8,r32		}
1258 1259
{ .mfi;		xma.lu	f41=f33,f120,f41	};;
{ .mfi;	getf.sig	r24=f50
1260
		xma.hu	f52=f33,f121,f51	}
1261 1262
{ .mfi;		xma.lu	f51=f33,f121,f51	};;
{ .mfi;	st8		[r32]=r16,16
1263
		xma.hu	f62=f33,f122,f61	}
1264 1265 1266
{ .mfi;		xma.lu	f61=f33,f122,f61	};;
{ .mfi;		xma.hu	f72=f33,f123,f71	}
{ .mfi;		xma.lu	f71=f33,f123,f71	};;//
1267
//-------------------------------------------------//
1268
{ .mfi;	getf.sig	r25=f41
1269
		xma.hu	f43=f34,f120,f42	}
1270 1271
{ .mfi;		xma.lu	f42=f34,f120,f42	};;
{ .mfi;	getf.sig	r16=f60
1272
		xma.hu	f53=f34,f121,f52	}
1273 1274
{ .mfi;		xma.lu	f52=f34,f121,f52	};;
{ .mfi;	getf.sig	r17=f51
1275 1276
		xma.hu	f63=f34,f122,f62
	add		r25=r25,r24		}
1277
{ .mfi;	mov		carry1=0
1278
		xma.lu	f62=f34,f122,f62	};;
1279
{ .mfi;	st8		[r33]=r25,16
1280 1281
		xma.hu	f73=f34,f123,f72
	cmp.ltu		p6,p0=r25,r24		}
1282
{ .mfi;		xma.lu	f72=f34,f123,f72	};;//
1283
//-------------------------------------------------//
1284
{ .mfi;	getf.sig	r18=f42
1285 1286
		xma.hu	f44=f35,f120,f43
(p6)	add		carry1=1,carry1		}
1287
{ .mfi;	add		r17=r17,r16
1288 1289
		xma.lu	f43=f35,f120,f43
	mov		carry2=0		};;
1290
{ .mfi;	getf.sig	r24=f70
1291 1292
		xma.hu	f54=f35,f121,f53
	cmp.ltu		p7,p0=r17,r16		}
1293 1294
{ .mfi;		xma.lu	f53=f35,f121,f53	};;
{ .mfi;	getf.sig	r25=f61
1295 1296
		xma.hu	f64=f35,f122,f63
	add		r18=r18,r17		}
1297
{ .mfi;		xma.lu	f63=f35,f122,f63
1298
(p7)	add		carry2=1,carry2		};;
1299
{ .mfi;	getf.sig	r26=f52
1300 1301
		xma.hu	f74=f35,f123,f73
	cmp.ltu		p7,p0=r18,r17		}
1302
{ .mfi;		xma.lu	f73=f35,f123,f73
1303 1304
	add		r18=r18,carry1		};;
//-------------------------------------------------//
1305
{ .mii;	st8		[r32]=r18,16
1306 1307 1308
(p7)	add		carry2=1,carry2
	cmp.ltu		p7,p0=r18,carry1	};;

1309
{ .mfi;	getf.sig	r27=f43	// last major stall
1310
(p7)	add		carry2=1,carry2		};;
1311
{ .mii;		getf.sig	r16=f71
1312 1313
	add		r25=r25,r24
	mov		carry1=0		};;
1314
{ .mii;		getf.sig	r17=f62	
1315 1316
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
1317
{ .mii;
1318 1319 1320
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r27=r27,r26		};;
1321
{ .mii;
1322 1323 1324
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,r26
	add		r27=r27,carry2		};;
1325
{ .mii;		getf.sig	r18=f53
1326 1327
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r27,carry2	};;
1328
{ .mfi;	st8		[r33]=r27,16
1329 1330
(p6)	add		carry1=1,carry1		}

1331
{ .mii;		getf.sig	r19=f44
1332 1333
		add		r17=r17,r16
		mov		carry2=0	};;
1334
{ .mii;	getf.sig	r24=f72
1335 1336
		cmp.ltu		p7,p0=r17,r16
		add		r18=r18,r17	};;
1337
{ .mii;	(p7)	add		carry2=1,carry2
1338 1339
		cmp.ltu		p7,p0=r18,r17
		add		r19=r19,r18	};;
1340
{ .mii;	(p7)	add		carry2=1,carry2
1341 1342
		cmp.ltu		p7,p0=r19,r18
		add		r19=r19,carry1	};;
1343
{ .mii;	getf.sig	r25=f63
1344 1345
	(p7)	add		carry2=1,carry2
		cmp.ltu		p7,p0=r19,carry1};;
1346
{ .mii;		st8		[r32]=r19,16
1347 1348
	(p7)	add		carry2=1,carry2	}

1349
{ .mii;	getf.sig	r26=f54
1350 1351
	add		r25=r25,r24
	mov		carry1=0		};;
1352
{ .mii;		getf.sig	r16=f73
1353 1354
	cmp.ltu		p6,p0=r25,r24
	add		r26=r26,r25		};;
1355
{ .mii;
1356 1357 1358
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,r25
	add		r26=r26,carry2		};;
1359
{ .mii;		getf.sig	r17=f64
1360 1361
(p6)	add		carry1=1,carry1
	cmp.ltu		p6,p0=r26,carry2	};;
1362
{ .mii;	st8		[r33]=r26,16
1363 1364
(p6)	add		carry1=1,carry1		}

1365
{ .mii;	getf.sig	r24=f74
1366 1367
		add		r17=r17,r16	
		mov		carry2=0	};;
1368
{ .mii;		cmp.ltu		p7,p0=r17,r16
1369 1370
		add		r17=r17,carry1	};;

1371
{ .mii;	(p7)	add		carry2=1,carry2
1372
		cmp.ltu		p7,p0=r17,carry1};;
1373
{ .mii;		st8		[r32]=r17,16
1374 1375
	(p7)	add		carry2=1,carry2	};;

1376 1377
{ .mii;	add		r24=r24,carry2		};;
{ .mii;	st8		[r33]=r24		}
1378

1379
{ .mib;	rum		1<<5		// clear um.mfh
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	br.ret.sptk.many	b0	};;
.endp	bn_mul_comba4#
#undef	carry2
#undef	carry1
#endif

#if 1
//
// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
//
// In the nutshell it's a port of my MIPS III/IV implementation.
//
#define	AT	r14
#define	H	r16
#define	HH	r20
#define	L	r17
#define	D	r18
#define	DH	r22
#define	I	r21

1400
#if 0
1401 1402
// Some preprocessors (most notably HP-UX) appear to be allergic to
// macros enclosed to parenthesis [as these three were].
1403 1404 1405
#define	cont	p16
#define	break	p0	// p20
#define	equ	p24
1406 1407 1408 1409 1410 1411
#else
cont=p16
break=p0
equ=p24
#endif

1412 1413 1414 1415 1416 1417 1418
.global	abort#
.global	bn_div_words#
.proc	bn_div_words#
.align	64
bn_div_words:
	.prologue
	.save	ar.pfs,r2
1419
{ .mii;	alloc		r2=ar.pfs,3,5,0,8
1420
	.save	b0,r3
1421
	mov		r3=b0
A
Andy Polyakov 已提交
1422
	.save	pr,r10
1423
	mov		r10=pr		};;
1424
{ .mmb;	cmp.eq		p6,p0=r34,r0
1425 1426 1427 1428
	mov		r8=-1
(p6)	br.ret.spnt.many	b0	};;

	.body
1429
{ .mii;	mov		H=r32		// save h
1430 1431
	mov		ar.ec=0		// don't rotate at exit
	mov		pr.rot=0	}
1432
{ .mii;	mov		L=r33		// save l
1433
	mov		r25=r0		// needed if abort is called on VMS
1434
	mov		r36=r0		};;
1435

1436 1437
.L_divw_shift:	// -vv- note signed comparison
{ .mfi;	(p0)	cmp.lt		p16,p0=r0,r34	// d
1438
	(p0)	shladd		r33=r34,1,r0	}
1439
{ .mfb;	(p0)	add		r35=1,r36
1440
	(p0)	nop.f		0x0
1441
(p16)	br.wtop.dpnt		.L_divw_shift	};;
1442

1443
{ .mii;	mov		D=r34
1444 1445
	shr.u		DH=r34,32
	sub		r35=64,r36		};;
1446
{ .mii;	setf.sig	f7=DH
1447 1448
	shr.u		AT=H,r35
	mov		I=r36			};;
1449
{ .mib;	cmp.ne		p6,p0=r0,AT
1450 1451 1452
	shl		H=H,r36
(p6)	br.call.spnt.clr	b0=abort	};;	// overflow, die...

1453
{ .mfi;	fcvt.xuf.s1	f7=f7
1454
	shr.u		AT=L,r35		};;
1455
{ .mii;	shl		L=L,r36
1456 1457
	or		H=H,AT			};;

1458
{ .mii;	nop.m		0x0
1459 1460 1461
	cmp.leu		p6,p0=D,H;;
(p6)	sub		H=H,D			}

1462
{ .mlx;	setf.sig	f14=D
1463
	movl		AT=0xffffffff		};;
1464
///////////////////////////////////////////////////////////
1465
{ .mii;	setf.sig	f6=H
1466 1467
	shr.u		HH=H,32;;
	cmp.eq		p6,p7=HH,DH		};;
1468
{ .mfb;
1469 1470 1471 1472
(p6)	setf.sig	f8=AT
(p7)	fcvt.xuf.s1	f6=f6
(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;

1473
{ .mfi;	getf.sig	r33=f8				// q
1474
	xmpy.lu		f9=f8,f14		}
1475
{ .mfi;	xmpy.hu		f10=f8,f14
1476 1477
	shrp		H=H,L,32		};;

1478
{ .mmi;	getf.sig	r35=f9				// tl
1479 1480
	getf.sig	r31=f10			};;	// th

1481 1482
.L_divw_1st_iter:
{ .mii;	(p0)	add		r32=-1,r33
1483
	(p0)	cmp.eq		equ,cont=HH,r31		};;
1484
{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
1485 1486
	(p0)	sub		r34=r35,D
	(equ)	cmp.leu		break,cont=r35,H	};;
1487
{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
1488
	(p8)	add		r31=-1,r31
1489
(cont)	br.wtop.spnt		.L_divw_1st_iter	};;
1490
///////////////////////////////////////////////////////////
1491
{ .mii;	sub		H=H,r35
1492
	shl		r8=r33,32
1493
	shl		L=L,32			};;
1494
///////////////////////////////////////////////////////////
1495
{ .mii;	setf.sig	f6=H
1496 1497
	shr.u		HH=H,32;;
	cmp.eq		p6,p7=HH,DH		};;
1498
{ .mfb;
1499 1500 1501 1502
(p6)	setf.sig	f8=AT
(p7)	fcvt.xuf.s1	f6=f6
(p7)	br.call.sptk	b6=.L_udiv64_32_b6	};;

1503
{ .mfi;	getf.sig	r33=f8				// q
1504
	xmpy.lu		f9=f8,f14		}
1505
{ .mfi;	xmpy.hu		f10=f8,f14
1506 1507
	shrp		H=H,L,32		};;

1508
{ .mmi;	getf.sig	r35=f9				// tl
1509 1510
	getf.sig	r31=f10			};;	// th

1511 1512
.L_divw_2nd_iter:
{ .mii;	(p0)	add		r32=-1,r33
1513
	(p0)	cmp.eq		equ,cont=HH,r31		};;
1514
{ .mii;	(p0)	cmp.ltu		p8,p0=r35,D
1515 1516
	(p0)	sub		r34=r35,D
	(equ)	cmp.leu		break,cont=r35,H	};;
1517
{ .mib;	(cont)	cmp.leu		cont,break=HH,r31
1518
	(p8)	add		r31=-1,r31
1519
(cont)	br.wtop.spnt		.L_divw_2nd_iter	};;
1520
///////////////////////////////////////////////////////////
1521
{ .mii;	sub	H=H,r35
1522 1523
	or	r8=r8,r33
	mov	ar.pfs=r2		};;
1524
{ .mii;	shr.u	r9=H,I			// remainder if anybody wants it
A
Andy Polyakov 已提交
1525
	mov	pr=r10,0x1ffff		}
1526
{ .mfb;	br.ret.sptk.many	b0	};;
1527 1528 1529 1530

// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
// procedure.
//
1531 1532
// inputs:	f6 = (double)a, f7 = (double)b
// output:	f8 = (int)(a/b)
1533 1534
// clobbered:	f8,f9,f10,f11,pred
pred=p15
1535 1536
// This snippet is based on text found in the "Divide, Square
// Root and Remainder" section at
1537 1538 1539 1540 1541 1542 1543 1544 1545
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// Yes, I admit that the referred code was used as template,
// but after I realized that there hardly is any other instruction
// sequence which would perform this operation. I mean I figure that
// any independent attempt to implement high-performance division
// will result in code virtually identical to the Intel code. It
// should be noted though that below division kernel is 1 cycle
// faster than Intel one (note commented splits:-), not to mention
// original prologue (rather lack of one) and epilogue.
1546
.align	32
1547
.skip	16
1548
.L_udiv64_32_b6:
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	frcpa.s1	f8,pred=f6,f7;;		// [0]  y0 = 1 / b

(pred)	fnma.s1		f9=f7,f8,f1		// [5]  e0 = 1 - b * y0
(pred)	fmpy.s1		f10=f6,f8;;		// [5]  q0 = a * y0
(pred)	fmpy.s1		f11=f9,f9		// [10] e1 = e0 * e0
(pred)	fma.s1		f10=f9,f10,f10;;	// [10] q1 = q0 + e0 * q0
(pred)	fma.s1		f8=f9,f8,f8	//;;	// [15] y1 = y0 + e0 * y0
(pred)	fma.s1		f9=f11,f10,f10;;	// [15] q2 = q1 + e1 * q1
(pred)	fma.s1		f8=f11,f8,f8	//;;	// [20] y2 = y1 + e1 * y1
(pred)	fnma.s1		f10=f7,f9,f6;;		// [20] r2 = a - b * q2
(pred)	fma.s1		f8=f10,f8,f9;;		// [25] q3 = q2 + r2 * y2
1560 1561 1562 1563 1564

	fcvt.fxu.trunc.s1	f8=f8		// [30] q = trunc(q3)
	br.ret.sptk.many	b6;;
.endp	bn_div_words#
#endif