README 6.2 KB
Newer Older
C
readme  
calin cerchez 已提交
1 2 3
LTE Simulator for OMNEST/OMNeT++ 4.2
====================================

C
calincerchez 已提交
4
Directors for LTEsim:
C
readme  
calin cerchez 已提交
5

C
calincerchez 已提交
6
 src/
L
ltesim 已提交
7 8 9 10 11
   applications/    		   application protocols
     diameter/           diameter base protocol
     diameters6a/			     diameter application for s6a interface
   util/					            general utility classes
     asn/					           utility classes for ASN.1 encoding/decoding
C
calincerchez 已提交
12
     headerserializers/		serialize/parse methods for LTE protocols
L
ltesim 已提交
13
     lte/					           utility classes for LTE
C
calincerchez 已提交
14 15
     
 
C
readme  
calin cerchez 已提交
16 17

INET Framework for OMNEST/OMNeT++ 4.2
C
calincerchez 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
=====================================

The INET framework is an open-source communication networks simulation
package, written for the OMNEST/OMNeT++ simulation system. The INET framework
contains models for several Internet protocols: beyond TCP and IP there is UDP,
Ethernet, PPP and MPLS with LDP and RSVP-TE signalling. See the CREDITS file
for the names of people who have contributed to the INET Framework.

IMPORTANT: The INET Framework is continuously being improved: new parts
are added, bugs are corrected, and so on. We cannot assert that any protocol
implemented here will work fully according to the specifications. YOU ARE
RESPONSIBLE YOURSELF TO MAKE SURE THAT THE MODELS YOU USE IN YOUR SIMULATIONS
WORK CORRECTLY, AND YOU'RE GETTING VALID RESULTS.

Contributions are highly welcome. You can make a difference!

See the WHATSNEW file for recent changes.


GETTING STARTED
---------------
You may start by downloading and installing the INET framework. Read the INSTALL
file for further information.

Then you can gather initial experience by following the INET tutorial. After
that, you can learn the NED language from the OMNeT++ manual & sample
simulations.

After that, you may write your own topologies using the NED language. You may
assign some of the submodule parameters in NED files. You may leave some of
them unassigned.

Then, you may assign unassigned module parameters in omnetpp.ini of your
simulation. (You can refer to sample simulations & manual for the content of
omnetpp.ini)

Finally, you will be ready to run your simulation. As you see, you may use
the INET framework without writing any C++ code, as long as you use the
available modules.

To implement new protocols or modify existing ones, you'll need to add your 
code somewhere under the src directory. If you add new files under the 'src' 
directory you will need to regenerate the makefiles (using the 'make makefiles' 
command).

If you want to use external interfaces in INET, please install libpcap-dev (on linux)
or winpcap (on windows from www.winpcap.org), then re-run the omnetpp configuration
script (./configure). You should also enable the pcap support by editing the
src/makefrag and then regenerating the INET makefiles (using the "make makefiles" 
command).

Directory structure
-------------------
Directories of INET framework source are arranged roughly along the OSI layers.

Bottom-up:

 src/
   networkinterfaces/    L2 (data link layer) protocols
     contract/           API to common L2 functionality
     ethernet/           Ethernet model (MAC, LLC, Encap)
     etherswitch/        Ethernet switch (relay unit) model
     ppp/                basic PPP model (framing only)
     mfcore/             Core modules from the Mobility Framework (modified)
     mf80211/            MF's 802.11b ad-hoc mode model (modified)
     ext/                External interface

   network/              L3 (network layer) protocols
     contract/           API to common L3 functionality
     autorouting/        autoconfiguration of static routes
     arp/                ARP protocol
     queue/              router queues (QoS, RED, etc)
     ipv4/               IPv4 and associated protocols
     ipv6/               IPv6 implementation (currently in work)
     icmpv6/             ICMPv6 implementation (currently in work)
     mpls/               MPLS implementation (will be replaced soon)
     ldp/                LDP signalling protocol for MPLS
     rsvp_te/            RSVP-TE signalling protocol for MPLS (will be replaced soon)
     scenario/           specific for RSVP-TE (will be replaced soon)

   transport/            transport layer protocols
     contract/           API to transport layer functionality
     tcp/                TCP protocol (supporting SACK) (default TCP implementation)
     tcp_nsc/            TCP protocol using Network Simulation Cradle
     tcp_old/            TCP old (obsolete) TCP implementation (without SACK) for reference only
     udp/                UDP protocol
     rtp/                Realtime Transport Protocol (not yet integrated)
     sctp/               Stream Control Transmission Protocol

   applications/         application layer
     tcpapp/             TCP application models
     udpapp/             UDP application models (VideoStream, etc.)
     generic/            traffic generators (directly for IP)
     ethernet/           traffic generators (directly for Ethernet)
     pingapp/            ping application

   world/                scenario manager, MF channel manager

   nodes/                protocol stacks, host and router models
     inet/               IP-based components
     ipv6/               IPv6-based components
     mpls/               router models with MPLS/LDP/RSVP-TE

   base/                 common header files, base classes
   util/                 utility classes

 examples/               example networks
   ethernet/             example Ethernet networks
   inet/                 TCP/IP-based example networks
   ipv6/                 IPv6-based example networks
   sctp/                 SCTP examples
   rtp/                  RTP examples (not yet integrated)
   emulation/            example networks using external interface to connect with real networks
   adhoc/                mobile and ad-hoc networks (incomplete)
   wireless/             IEEE 802.11 examples
   mpls/                 example networks for MPLS/LDP/RSVP-TE
   ospfv2/               OSPF examples

 doc/                    documentation

 tests/                  some test
   ipv4/                 for IPv4 components
   ipv6/                 for IPv6 components
   mpls/                 for the MPLS models
   newtcp/               for the TCP model

 3rdparty/               optional 3rd party components like (Network Simulation Cradle etc.)