nn.py 177.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network. 
Y
Yu Yang 已提交
16 17 18 19 20
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
25
import random
Y
Yu Yang 已提交
26 27

__all__ = [
28 29
    'fc', 'embedding', 'dynamic_lstm', 'dynamic_lstmp', 'dynamic_gru',
    'gru_unit', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'cross_entropy',
30 31 32 33 34 35 36 37
    'square_error_cost', 'chunk_eval', 'sequence_conv', 'conv2d', 'conv3d',
    'sequence_pool', 'sequence_softmax', 'softmax', 'pool2d', 'pool3d',
    'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'conv3d_transpose',
    'sequence_expand', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max',
    'reduce_min', 'reduce_prod', 'sequence_first_step', 'sequence_last_step',
    'dropout', 'split', 'ctc_greedy_decoder', 'edit_distance', 'l2_normalize',
    'matmul', 'topk', 'warpctc', 'sequence_reshape', 'transpose', 'im2sequence',
    'nce', 'beam_search', 'row_conv', 'multiplex', 'layer_norm',
38 39 40
    'softmax_with_cross_entropy', 'smooth_l1', 'one_hot',
    'autoincreased_step_counter', 'reshape', 'lod_reset', 'lrn', 'pad',
    'label_smooth', 'roi_pool', 'dice_loss', 'image_resize',
41 42
    'image_resize_short', 'resize_bilinear', 'gather', 'random_crop',
    'mean_iou', 'relu', 'log'
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
51
       use_mkldnn=False,
Y
Yu Yang 已提交
52
       act=None,
J
Jacek Czaja 已提交
53
       is_test=False,
54
       name=None):
Y
Yu Yang 已提交
55
    """
56
    **Fully Connected Layer**
Y
Yu Yang 已提交
57

F
fengjiayi 已提交
58 59 60 61 62 63 64 65 66
    This function creates a fully connected layer in the network. It can take 
    multiple tensors as its inputs. It creates a variable called weights for 
    each input tensor, which represents a fully connected weight matrix from 
    each input unit to each output unit. The fully connected layer multiplies 
    each input tensor with its coresponding weight to produce an output Tensor. 
    If multiple input tensors are given, the results of multiple multiplications 
    will be sumed up. If bias_attr is not None, a bias variable will be created 
    and added to the output. Finally, if activation is not None, it will be applied 
    to the output as well.
C
caoying03 已提交
67

C
caoying03 已提交
68
    This process can be formulated as follows:
69 70 71

    .. math::

72
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
73 74 75

    In the above equation:

C
caoying03 已提交
76 77 78 79
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
80
    * :math:`Act`: The activation function.
C
caoying03 已提交
81
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
82 83

    Args:
R
ranqiu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
101
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
102 103
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
104
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
105

106
    Returns:
F
fengjiayi 已提交
107
        Variable: The transformation result.
108 109

    Raises:
C
caoying03 已提交
110
        ValueError: If rank of the input tensor is less than 2.
111 112 113 114

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
115
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
116
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
117
    """
C
caoying03 已提交
118

C
caoying03 已提交
119
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
120 121 122 123

    dtype = helper.input_dtype()

    mul_results = []
124 125
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
126 127 128
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
129

Y
Yu Yang 已提交
130
        w = helper.create_parameter(
131 132
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
133
        helper.append_op(
134 135 136
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
137
            outputs={"Out": tmp},
M
mozga-intel 已提交
138 139
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
140 141 142 143
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
144
    else:
145 146 147 148 149 150 151
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
152 153


154 155 156
def embedding(input,
              size,
              is_sparse=False,
157
              is_distributed=False,
158 159 160
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
161
    """
162 163
    **Embedding Layer**

164
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
165 166
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
167 168 169

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
170 171

    Args:
172 173 174 175 176
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
177
        is_distributed(bool): Whether to run lookup table from remote parameter server.
178 179
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
180
            with zeros whenever lookup encounters it in :attr:`input`. If
181
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
182 183
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
184
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
185

186 187 188
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
189

190 191
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
192

C
chengduoZH 已提交
193
          dict_size = len(dataset.ids)
194
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
195
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
196 197 198 199 200 201
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
202 203
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
204 205 206 207 208
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
209 210 211 212 213
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
214 215 216 217 218
    return tmp


def dynamic_lstm(input,
                 size,
219 220
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
221 222 223 224 225 226 227
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
228 229
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
230 231 232 233 234 235
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
236
    .. math::
Y
Yibing Liu 已提交
237

238
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
239

240
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
241

242
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
243

244 245 246
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
247

Y
Yibing Liu 已提交
248
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
249

250
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
251
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
252 253 254
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
255
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
256 257
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
258 259
    all of which have the same size as the cell output activation vector :math:`h`.

260 261 262 263
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
264 265 266
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
267 268 269
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
270 271 272
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
273 274

    Args:
275 276 277 278
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
279 280
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
281 282 283 284 285 286 287
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

288
        param_attr(ParamAttr|None): The parameter attribute for the learnable
289
                               hidden-hidden weights.
Y
Yibing Liu 已提交
290 291 292

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
293 294 295
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
296 297 298
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
299

300
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
301
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
302
                                - The shape is (1 x 4D).
303
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
304 305
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
306
                                - The shape is (1 x 7D).
307
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
308 309
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
310 311
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
312
                              "identity"], default "sigmoid".
313
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
314 315
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
316
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
317 318
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
319 320
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
321 322

    Returns:
Y
Yibing Liu 已提交
323 324
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
325

Y
Yibing Liu 已提交
326
    Examples:
Y
Yibing Liu 已提交
327 328
        .. code-block:: python

Y
Yibing Liu 已提交
329 330
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
331
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
332 333
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
334
    """
335

Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
350 351 352 353 354 355 356 357 358 359
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
360 361 362

    helper.append_op(
        type='lstm',
363
        inputs=inputs,
Y
Yu Yang 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
380 381 382 383 384 385 386 387 388 389 390
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
391 392
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
393 394 395
    """
    **Dynamic LSTMP Layer**

396 397 398 399 400 401
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
402 403 404 405 406

    The formula is as follows:

    .. math::

407
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
408

409
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
410

411
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
412

413
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
414

415
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
416

417
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
418

419
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
420

Y
Yibing Liu 已提交
421 422 423 424 425 426
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
427
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
428
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
429
          bias vector).
Y
Yibing Liu 已提交
430 431 432
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
433
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
434
    * :math:`h`: The hidden state.
435
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
436 437
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
438
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
439
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
440
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
441 442
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
443 444 445 446

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
447

Y
Yibing Liu 已提交
448 449 450 451 452 453 454 455 456 457 458 459
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
460
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
461 462
                               hidden-hidden weight and projection weight.

463 464
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
465 466
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
467 468
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
469 470
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
471 472 473 474 475 476
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
477
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
478 479 480
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
481
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
482 483 484 485 486 487 488 489 490
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
491
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
492 493
                              default "tanh".
        proj_activation(str): The activation for projection output.
494
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
495 496
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
497 498
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
499 500

    Returns:
501 502 503 504
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
505 506

    Examples:
507

Y
Yibing Liu 已提交
508 509
        .. code-block:: python

510 511 512 513
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
514
            hidden_dim, proj_dim = 512, 256
515
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
516
                                     act=None, bias_attr=None)
517 518 519
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
520 521 522 523
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
524
    """
525

Y
Yibing Liu 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
572 573 574 575 576 577 578 579 580
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
581
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
582

583
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
584
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
585

G
guosheng 已提交
586 587 588 589 590 591 592 593 594
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
595

G
guosheng 已提交
596
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
597

G
guosheng 已提交
598
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
599 600
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
601 602 603 604
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
605
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
606 607

    Args:
608 609
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
610
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
611
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
612 613
            is the hidden size.
        size(int): The dimension of the gru cell.
614
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
615 616
            hidden-hidden weight matrix. Note:

617
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
618
              :math:`D` is the hidden size.
619
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
620
              The first part are weights of the update gate and reset gate with
621
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
622
              candidate hidden state with shape :math:`(D \\times D)`.
623
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
624
            hidden-hidden bias.
625
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
626 627 628
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
629
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
630
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
631 632 633 634
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
635 636

    Returns:
G
guosheng 已提交
637
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
638
            and sequence length is the same with the input.
639

G
guosheng 已提交
640
    Examples:
641

G
guosheng 已提交
642 643
        .. code-block:: python

644 645 646 647
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
648
            hidden_dim = 512
649
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
650 651 652 653 654 655 656 657 658 659
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
660
    batch_size = input.shape[0]
G
guosheng 已提交
661 662 663
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
664 665 666
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
690 691 692
def gru_unit(input,
             hidden,
             size,
693 694
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
695
             activation='tanh',
696
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
697
    """
698
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
699

700 701
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
702

703
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
704

705
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
706

707
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
708 709

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
710 711 712
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
713 714
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

715 716
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
717 718 719
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
720 721 722 723 724

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
725 726
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
727 728 729 730
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
731

732 733 734 735 736 737
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
738

739
             # assuming we have x_t_data and prev_hidden of size=10
740
             x_t = fluid.layers.fc(input=x_t_data, size=30)
741 742
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
758 759
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
760

761 762 763 764
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
765
    # create bias
766
    if helper.bias_attr:
Y
Yu Yang 已提交
767 768 769
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
770
        inputs['Bias'] = bias
Y
Yu Yang 已提交
771 772 773

    helper.append_op(
        type='gru_unit',
774
        inputs=inputs,
Y
Yu Yang 已提交
775 776 777 778 779 780
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
781 782
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
783 784 785 786 787
        })

    return updated_hidden, reset_hidden_pre, gate


788
@templatedoc()
789
def linear_chain_crf(input, label, param_attr=None):
790 791 792 793 794 795 796 797 798 799 800 801 802 803
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
        ${log_likelihood_comment}

    """
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


829
@templatedoc()
830
def crf_decoding(input, param_attr, label=None):
831 832 833 834 835 836 837 838 839 840 841
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
        param_attr(ParamAttr): The parameter attribute for training.
        label(${label_type}): ${label_comment}

    Returns:
        ${viterbi_path_comment}
    """
Y
Yu Yang 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
855
def cos_sim(X, Y):
Y
Yu Yang 已提交
856 857 858
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
859 860 861 862

    Args:
        X (Variable): The input X.
        Y (Variable): The input Y.
F
fengjiayi 已提交
863

864 865
    Returns:
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
866
    """
F
fengjiayi 已提交
867
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


881
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
882 883 884 885 886
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
887
    training. The dropout operator randomly sets (according to the given dropout
888 889 890 891
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
892 893
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
894 895 896 897 898 899 900
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
901 902

    Returns:
903
        Variable: A tensor variable is the shape with `x`.
904 905

    Examples:
906

907 908
        .. code-block:: python

909 910
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
911 912
    """

F
fengjiayi 已提交
913
    helper = LayerHelper('dropout', **locals())
914 915 916 917 918 919 920
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
921 922 923 924 925 926
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
927 928 929
    return out


F
fengjiayi 已提交
930
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
931
    """
Y
Yibing Liu 已提交
932 933
    **Cross Entropy Layer**

934 935 936
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
937 938

    1) One-hot cross-entropy:
F
fengjiayi 已提交
939
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
940

Y
Yibing Liu 已提交
941
        .. math::
Y
yangyaming 已提交
942

Y
Yibing Liu 已提交
943 944 945
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
946 947
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
948 949 950 951 952

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
953
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
954 955 956
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
957 958
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
959
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
960

Y
Yibing Liu 已提交
961
    Args:
Y
yangyaming 已提交
962
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
963 964 965 966
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
967
        label (Variable|list): the ground truth which is a 2-D tensor. When
968 969 970 971
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
972
        soft_label (bool): a flag indicating whether to
973 974
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
975 976 977 978 979

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
980 981 982 983 984
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
985 986 987 988 989 990

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
991
    """
F
fengjiayi 已提交
992
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
993 994 995 996 997 998
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
999
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1000 1001 1002
    return out


F
fengjiayi 已提交
1003
def square_error_cost(input, label):
Y
Yu Yang 已提交
1004
    """
1005 1006
    **Square error cost layer**

1007 1008
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1009

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1023 1024
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1025 1026

    Returns:
G
guosheng 已提交
1027
        Variable: The tensor variable storing the element-wise squared error \
1028
                  difference of input and label.
1029 1030 1031 1032 1033 1034 1035 1036

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1037
    """
F
fengjiayi 已提交
1038
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1048 1049
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1050 1051 1052
    return square_out


1053
@templatedoc()
Y
Yu Yang 已提交
1054 1055 1056 1057
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1058
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1059
    """
Y
yangyaming 已提交
1060
    This function computes and outputs the precision, recall and
1061
    F1-score of chunk detection.
1062 1063 1064 1065 1066 1067 1068

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1069

1070 1071 1072 1073
    Returns:
        tuple: tuple containing: (precision, recall, f1_score,
               num_infer_chunks, num_label_chunks,
               num_correct_chunks)
Y
Yu Yang 已提交
1074
    """
F
fengjiayi 已提交
1075
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1076 1077 1078 1079 1080

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1081 1082 1083
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1084 1085 1086 1087 1088 1089 1090 1091

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1092 1093 1094 1095
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1096 1097 1098
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1099 1100
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1101
        })
1102 1103
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1104 1105


1106
@templatedoc()
Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112 1113
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1114
                  act=None):
Y
Yu Yang 已提交
1115 1116 1117 1118
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1129

1130 1131
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1161
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N` 
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
    
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1208
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1220 1221 1222
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1223 1224
           stride=1,
           padding=0,
1225
           dilation=1,
Y
Yu Yang 已提交
1226 1227 1228
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1229
           use_cudnn=True,
1230
           use_mkldnn=False,
1231 1232
           act=None,
           name=None):
Y
Yu Yang 已提交
1233
    """
C
chengduoZH 已提交
1234
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1235 1236
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1237
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1238 1239 1240 1241 1242 1243 1244
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1245 1246 1247
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1248

1249
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1250

C
chengduoZH 已提交
1251 1252
    .. math::

C
refine  
chengduoZH 已提交
1253
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1254

T
tensor-tang 已提交
1255
    Where:
C
chengduoZH 已提交
1256

1257 1258 1259 1260 1261
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1262
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1263 1264 1265

    Example:

1266 1267
        - Input:

1268
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1269

1270
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1271

1272
        - Output:
T
tensor-tang 已提交
1273

1274
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1275

C
chengduoZH 已提交
1276
        Where
1277 1278

        .. math::
C
chengduoZH 已提交
1279

1280 1281
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1282 1283

    Args:
1284
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1285
        num_filters(int): The number of filter. It is as same as the output
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1308 1309
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1310 1311 1312
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1313 1314

    Returns:
G
guosheng 已提交
1315
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1316 1317
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1318
    Raises:
1319 1320
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1321

C
chengduoZH 已提交
1322 1323 1324
    Examples:
        .. code-block:: python

1325 1326
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1327 1328 1329
    """

    num_channels = input.shape[1]
1330 1331

    l_type = 'conv2d'
X
xzl 已提交
1332 1333
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1334
        l_type = 'depthwise_conv2d'
1335 1336 1337 1338

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1339 1340 1341 1342 1343 1344 1345
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1346 1347 1348
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1349
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1350

C
chengduoZH 已提交
1351 1352
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1370
        type=l_type,
Y
Yu Yang 已提交
1371 1372 1373 1374 1375
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1376 1377 1378
        attrs={
            'strides': stride,
            'paddings': padding,
1379
            'dilations': dilation,
C
chengduoZH 已提交
1380
            'groups': groups,
1381 1382
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1383
        })
Y
Yu Yang 已提交
1384 1385 1386 1387 1388 1389

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1408 1409 1410 1411 1412 1413
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1423 1424
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1425 1426 1427
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1428
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1454
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1455 1456
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1457
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1458 1459
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1460
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1461 1462
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1463
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1490 1491
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1547
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1548 1549 1550 1551

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1552
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1553
    """
Y
yangyaming 已提交
1554 1555 1556
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1568
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1569 1570 1571 1572 1573
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1574
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1575 1576 1577 1578 1579 1580 1581

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1582 1583
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1584

L
Luo Tao 已提交
1585 1586
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1587
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1588 1589 1590 1591 1592 1593 1594 1595
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1596

Y
yangyaming 已提交
1597
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1598 1599 1600 1601 1602
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1603 1604
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1605
    """
F
fengjiayi 已提交
1606
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1618 1619 1620 1621 1622
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1623 1624 1625
    return pool_out


F
fengjiayi 已提交
1626
def sequence_first_step(input):
L
Luo Tao 已提交
1627
    """
1628
    This function gets the first step of sequence.
L
Luo Tao 已提交
1629 1630 1631 1632

    .. code-block:: text

       x is a 1-level LoDTensor:
1633
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1634 1635 1636 1637 1638
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1639
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1640
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1641

L
Luo Tao 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1651

Y
yangyaming 已提交
1652
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1653 1654 1655
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1656 1657 1658
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1659
def sequence_last_step(input):
L
Luo Tao 已提交
1660
    """
1661
    This function gets the last step of sequence.
L
Luo Tao 已提交
1662 1663 1664 1665

    .. code-block:: text

       x is a 1-level LoDTensor:
1666
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1667 1668 1669 1670 1671
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1672
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1673
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1674

L
Luo Tao 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1684

Y
yangyaming 已提交
1685
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1686 1687 1688
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1689 1690 1691
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1692
@templatedoc()
Y
Yu Yang 已提交
1693
def pool2d(input,
C
chengduoZH 已提交
1694 1695
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1696 1697
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1698
           global_pooling=False,
C
chengduoZH 已提交
1699
           use_cudnn=True,
1700
           ceil_mode=False,
1701
           use_mkldnn=False,
C
caoying03 已提交
1702
           name=None):
Y
Yu Yang 已提交
1703
    """
F
fengjiayi 已提交
1704
    ${comment}
1705 1706

    Args:
F
fengjiayi 已提交
1707
        input (Variable): The input tensor of pooling operator. The format of 
F
fengjiayi 已提交
1708 1709 1710
                          input tensor is NCHW, where N is batch size, C is 
                          the number of channels, H is the height of the 
                          feature, and W is the width of the feature.
F
fengjiayi 已提交
1711 1712
        pool_size (int): The side length of pooling windows. All pooling 
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1713
        pool_type: ${pooling_type_comment}
1714 1715
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1716 1717 1718 1719
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
F
fengjiayi 已提交
1720 1721 1722
        name (str|None): A name for this layer(optional). If set None, the 
                        layer will be named automatically.

1723
    Returns:
F
fengjiayi 已提交
1724
        Variable: The pooling result.
F
fengjiayi 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
                            input=data, 
                            pool_size=2, 
                            pool_type='max', 
                            pool_stride=1, 
                            global_pooling=False)
Y
Yu Yang 已提交
1743 1744 1745 1746 1747
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1748

C
chengduoZH 已提交
1749 1750 1751 1752 1753
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1754 1755 1756 1757
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1758 1759
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1760

C
Add doc  
chengduoZH 已提交
1761
    l_type = 'pool2d'
1762 1763

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1764 1765 1766 1767
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1797
    pooling configurations mentioned in input parameters.
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1811

1812
    Returns:
1813
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1814 1815 1816 1817 1818
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1819

C
chengduoZH 已提交
1820 1821 1822 1823 1824
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1825 1826 1827
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1828

C
chengduoZH 已提交
1829 1830
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1831

1832 1833
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1834 1835 1836 1837
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1838
        type=l_type,
Y
Yu Yang 已提交
1839 1840 1841 1842 1843 1844 1845
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1846
            "paddings": pool_padding,
1847
            "use_cudnn": use_cudnn,
1848 1849
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1862
               data_layout='NCHW',
Y
Yang Yang 已提交
1863
               in_place=False,
1864
               use_mkldnn=False,
1865 1866
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1867
               moving_variance_name=None,
W
wanghaoshuang 已提交
1868
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1869 1870 1871
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

    Args:
        input (Variable): the input variable.
        act (str): activation type
        is_test (bool): whether to run batch_norm as test mode.
        momentum (float): momentum
        epsilon (float): epsilon, default 1e-05
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        data_layout (str): data layout, default NCHW
        in_place (bool): if True, do not create tmp variable
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): The name of this layer. It is optional.
        moving_mean_name (str): The name of moving mean variable name, optional.
        moving_variance_name (str): The name of moving variance name, optional.
        do_model_average_for_mean_and_var (bool):

    Returns:
        Variable: output of batch_norm layer.
Y
Yu Yang 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1914
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1915

1916 1917
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1918 1919 1920
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1921
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1922
        shape=param_shape,
1923 1924 1925 1926 1927 1928 1929
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1930
            trainable=False,
W
wanghaoshuang 已提交
1931
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1932
        shape=param_shape,
1933 1934
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1935 1936 1937 1938 1939 1940

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1941 1942
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1943

Y
Yang Yang 已提交
1944
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1962 1963 1964 1965 1966 1967
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1968 1969 1970 1971

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
1972
@templatedoc()
G
guosheng 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
1983
    ${comment}
G
guosheng 已提交
1984 1985 1986

    The formula is as follows:

Y
yuyang18 已提交
1987
    ..  math::
G
guosheng 已提交
1988 1989 1990 1991 1992 1993 1994

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
1995 1996 1997 1998 1999 2000 2001 2002
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2003

G
guosheng 已提交
2004 2005
    Args:
        input(Variable): The input tensor variable.
2006
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2007
            normalization.
2008
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2009
            normalization.
2010
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2011
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2012
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2013 2014 2015 2016 2017 2018
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2019
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2020 2021

    Returns:
Y
yuyang18 已提交
2022
        ${y_comment}
G
guosheng 已提交
2023 2024 2025

    Examples:

Y
yuyang18 已提交
2026 2027 2028
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2044
    if shift:
G
guosheng 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
2069
def beam_search_decode(ids, scores, name=None):
2070 2071 2072 2073 2074 2075 2076
    """
    ${beam_search_decode}

    Args:
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        name (str): The name of this layer. It is optional.
F
fengjiayi 已提交
2077

2078 2079 2080
    Returns:
        tuple: a tuple of two output variable: sentence_ids, sentence_scores
    """
Y
Yu Yang 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2101 2102 2103
                     padding=0,
                     stride=1,
                     dilation=1,
2104
                     groups=None,
C
caoying03 已提交
2105
                     param_attr=None,
2106
                     bias_attr=None,
C
chengduoZH 已提交
2107
                     use_cudnn=True,
2108
                     act=None,
C
caoying03 已提交
2109
                     name=None):
Y
Yu Yang 已提交
2110
    """
2111 2112 2113 2114 2115 2116 2117 2118
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2119 2120
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2121 2122 2123
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2124 2125 2126 2127 2128

    For each input :math:`X`, the equation is:

    .. math::

2129
        Out = \sigma (W \\ast X + b)
2130

2131
    Where:
2132 2133 2134

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2135 2136 2137 2138
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2139

2140 2141 2142 2143
    Example:

        - Input:

2144
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2145

2146
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2147 2148 2149

        - Output:

2150
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2151 2152

        Where
Y
Yu Yang 已提交
2153

2154 2155 2156 2157
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2158 2159

    Args:
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2193 2194

    Returns:
2195
        Variable: The tensor variable storing the convolution transpose result.
2196 2197

    Raises:
2198 2199
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2200 2201 2202 2203

    Examples:
       .. code-block:: python

2204 2205
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2206 2207 2208 2209 2210 2211
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
2212 2213 2214
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2215

C
chengduoZH 已提交
2216 2217 2218
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2219 2220 2221 2222 2223 2224 2225 2226
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
2227 2228 2229 2230 2231

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2232
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2233 2234 2235
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
2236

2237 2238
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2239 2240 2241
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2242
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2243 2244 2245 2246
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
2247
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2248 2249 2250 2251
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2252
            'groups': groups,
C
chengduoZH 已提交
2253 2254
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2255

2256 2257
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2258
    return out
Y
yangyaming 已提交
2259 2260


2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
def conv3d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=0,
                     stride=1,
                     dilation=1,
                     groups=None,
                     param_attr=None,
                     bias_attr=None,
                     use_cudnn=True,
                     act=None,
                     name=None):
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2285 2286 2287
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2288 2289 2290 2291 2292

    For each input :math:`X`, the equation is:

    .. math::

2293
        Out = \sigma (W \\ast X + b)
2294 2295 2296 2297 2298

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2299 2300 2301 2302
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
2303 2304 2305 2306 2307

    Example:

        - Input:

2308
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2309

2310
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2311 2312 2313

        - Output:

2314
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

        Where

        .. math::

           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1

    Args:
        input(Variable): The input image with [N, C, D, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain three integers, (image_D, image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

2369 2370
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
    """
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv3d_transpose must be Variable")
    input_channel = input.shape[1]

    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]

        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')

    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
C
chengduoZH 已提交
2418 2419 2420
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2421
            'groups': groups,
C
chengduoZH 已提交
2422 2423
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2424

2425 2426
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2427
    return out
Y
yangyaming 已提交
2428 2429


Y
yangyaming 已提交
2430
def sequence_expand(x, y, ref_level=-1, name=None):
2431
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2432 2433 2434 2435
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2436 2437 2438 2439 2440

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2441
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2442
                x.data = [[a], [b], [c], [d]]
2443 2444 2445
                x.dims = [4, 1]

            y is a LoDTensor:
2446 2447
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2448

Y
yangyaming 已提交
2449
            ref_level: 0
2450

Y
yangyaming 已提交
2451
            then output is a 1-level LoDTensor:
2452
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2453
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2454 2455 2456 2457
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2458
                x.data = [[a], [b], [c]]
2459 2460 2461
                x.dims = [3, 1]

            y is a LoDTensor:
2462
                y.lod = [[2, 0, 3]]
2463

Y
yangyaming 已提交
2464
            ref_level: -1
2465

Y
yangyaming 已提交
2466 2467 2468
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2469 2470 2471
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2472 2473
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2474
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2475
                        will be named automatically.
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2486
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2487
    """
Y
yangyaming 已提交
2488
    helper = LayerHelper('sequence_expand', input=x, **locals())
2489 2490 2491
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2492 2493 2494 2495 2496
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2497
    return tmp
2498 2499


Q
Qiao Longfei 已提交
2500 2501 2502
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
2503 2504 2505 2506 2507 2508 2509 2510

    Args:
        pre_ids (Variable): ${pre_ids_comment}
        ids (Variable): ${ids_comment}
        scores (Variable): ${scores_comment}
        beam_size (int): ${beam_size_comment}
        end_id (int): ${end_id_comment}
        level (int): ${level_comment}
F
fengjiayi 已提交
2511

2512 2513
    Returns:
        tuple: a tuple of beam_search output variables: selected_ids, selected_scores
Q
Qiao Longfei 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
2543 2544 2545 2546
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2547
              param_attr=None,
C
caoying03 已提交
2548 2549
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2550 2551 2552 2553
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2554
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2555

2556
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2557

2558
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2559

2560
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2561 2562 2563

            h_t & = o_t tanh(c_t)

2564 2565 2566 2567 2568 2569
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2570 2571 2572

        .. math::

2573
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2574 2575 2576 2577 2578 2579 2580 2581

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2582
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2583 2584

    Args:
Y
yangyaming 已提交
2585 2586 2587 2588 2589 2590
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2591
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2592 2593
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2594 2595
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2596 2597
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2598 2599

    Returns:
Y
yangyaming 已提交
2600
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2601 2602

    Raises:
2603 2604 2605 2606
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2607 2608 2609 2610 2611 2612

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2613
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2614
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2615
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2632
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2633 2634 2635 2636
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2637 2638
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2639 2640 2641
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2642
    size = cell_t_prev.shape[1]
2643
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2644 2645
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2646
                param_attr=param_attr,
2647
                bias_attr=bias_attr)
Y
yangyaming 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2660
    return h, c
G
guosheng 已提交
2661 2662


C
caoying03 已提交
2663
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2664
    """
Y
yangyaming 已提交
2665
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2666 2667 2668

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2669
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2670 2671
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2672 2673
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2674
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2675
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2676
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2677 2678
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2679 2680 2681

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2682

G
guosheng 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2694 2695 2696 2697 2698 2699 2700 2701

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2702 2703 2704
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2705 2706
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2707 2708 2709 2710 2711
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2712
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2713 2714 2715 2716
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2717 2718


C
caoying03 已提交
2719
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2720
    """
Y
Yibing Liu 已提交
2721
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2722 2723 2724

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
2725 2726 2727
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
2728
            must be in the range :math:`[-rank(input), rank(input))`. If
Y
Yibing Liu 已提交
2729 2730
            :math:`dim[i] < 0`, the dimension to reduce is 
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
2731 2732
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2733
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
2734
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
2735
                       will be named automatically.
G
guosheng 已提交
2736 2737

    Returns:
Y
Yibing Liu 已提交
2738
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
2739

G
guosheng 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
2750 2751
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2752 2753 2754 2755 2756 2757 2758

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2759 2760 2761
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2762 2763
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2764 2765 2766 2767 2768
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2769
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2770 2771 2772 2773
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2774 2775


C
caoying03 已提交
2776
def reduce_max(input, dim=None, keep_dim=False, name=None):
2777
    """
Y
yangyaming 已提交
2778
    Computes the maximum of tensor elements over the given dimension.
2779 2780 2781

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2782
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2783 2784 2785
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2786
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2787 2788
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2789
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2790 2791
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2792 2793 2794

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2795

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2807 2808 2809 2810 2811 2812 2813

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2814 2815 2816
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2817 2818
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2819 2820 2821 2822 2823
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2824
            'dim': dim if dim != None else [0],
2825 2826 2827 2828 2829 2830
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2831
def reduce_min(input, dim=None, keep_dim=False, name=None):
2832
    """
Y
yangyaming 已提交
2833
    Computes the minimum of tensor elements over the given dimension.
2834 2835 2836

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2837
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2838 2839 2840
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2841
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2842 2843
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2844
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2845 2846
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2847 2848 2849

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2862 2863 2864 2865 2866 2867 2868

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2869 2870 2871
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2872 2873
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2874 2875 2876 2877 2878
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2879
            'dim': dim if dim != None else [0],
2880 2881 2882 2883
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2884 2885


2886 2887 2888 2889 2890 2891
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2892
        dim (list|int|None): The dimensions along which the product is performed. If
2893 2894
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2895 2896
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2897 2898 2899
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2900
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2901
            layer will be named automatically.
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2916
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2917
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2918 2919 2920 2921 2922 2923 2924

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2925 2926 2927
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2928 2929
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2930 2931 2932 2933 2934
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2935
            'dim': dim if dim != None else [0],
2936 2937 2938 2939 2940 2941
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2942
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2943
    """
C
caoying03 已提交
2944
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2945 2946 2947

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2948 2949 2950 2951 2952
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2953
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2954
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2955
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2956 2957
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
2970 2971
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3010
    .. math::
3011 3012

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3013 3014 3015 3016 3017

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3018
        x(Variable|list): The input tensor to l2_normalize layer.
3019
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3020 3021
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3022
        epsilon(float): The epsilon value is used to avoid division by zero, \
3023
            the defalut value is 1e-10.
3024
        name(str|None): A name for this layer(optional). If set None, the layer \
3025
            will be named automatically.
C
caoying03 已提交
3026 3027

    Returns:
3028
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3029 3030

    Examples:
3031

C
caoying03 已提交
3032 3033
        .. code-block:: python

3034 3035 3036 3037
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3038 3039
    """

F
fengjiayi 已提交
3040 3041
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3042 3043
    helper = LayerHelper("l2_normalize", **locals())

3044 3045
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3046
    helper.append_op(
3047 3048 3049 3050
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3051
        attrs={
3052 3053
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3054 3055
        })
    return out
3056 3057


3058
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3059
    """
Y
ying 已提交
3060 3061 3062 3063
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3064

C
chengduoZH 已提交
3065
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3066
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3067

3068 3069 3070 3071 3072
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3073
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3074

C
chengduoZH 已提交
3075
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3076
      performs in the following way.
G
guosheng 已提交
3077

3078
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3079
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3080
        last two dimensions and a batched matrix multiply supporting broadcast
3081
        applies on the two tensors.
G
guosheng 已提交
3082

Y
ying 已提交
3083 3084
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3085
    removed after matrix multiplication.
G
guosheng 已提交
3086 3087 3088

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3089 3090 3091
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3092
        name(str|None): A name for this layer(optional). If set None, the layer
3093
            will be named automatically.
G
guosheng 已提交
3094 3095

    Returns:
3096
        Variable: The product Tensor variable.
G
guosheng 已提交
3097

G
guosheng 已提交
3098 3099 3100
    Examples:
        .. code-block:: python

3101
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3102 3103
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3104

3105 3106
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3107

3108 3109
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3110

3111 3112
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3113 3114 3115 3116

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3117 3118
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3119

Y
ying 已提交
3120
            # x: [M], y: [N]
3121
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3122
    """
Y
ying 已提交
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3135
            y_shape = y_shape + [1]
Y
ying 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3152
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3153
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3154
    helper.append_op(
3155 3156 3157 3158 3159 3160 3161
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3162 3163


3164
def topk(input, k, name=None):
Q
qingqing01 已提交
3165 3166 3167 3168
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3169
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3170 3171 3172 3173 3174 3175
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3197 3198 3199
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
F
fengjiayi 已提交
3200 3201
        k(int):  The number of top elements to look for along the last dimension 
                 of input.
3202
        name(str|None): A name for this layer(optional). If set None, the layer
F
fengjiayi 已提交
3203 3204
                       will be named automatically. 
                       Default: None
Q
qingqing01 已提交
3205 3206

    Returns:
F
fengjiayi 已提交
3207 3208 3209 3210
        Tuple[Variable]: A tuple with two elements. Each element is a Variable. 
        The first one is k largest elements along each last 
        dimensional slice. The second one is indices of values 
        within the last dimension of input.
Q
qingqing01 已提交
3211

F
fengjiayi 已提交
3212 3213
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3214 3215 3216 3217 3218 3219 3220

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3221
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3239
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3240
    """
Y
ying 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3250

Y
ying 已提交
3251
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3252

3253
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3254 3255
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3256
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3257

3258
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3259 3260
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3261

3262 3263 3264
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3265
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3266
                          the length of reference string.
3267
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3268
                                     calculating edit distance.
3269
        name (str): The name of this layer. It is optional.
3270

W
wanghaoshuang 已提交
3271
    Returns:
W
wanghaoshuang 已提交
3272
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3273 3274 3275 3276 3277

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3278
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3279
            cost = fluid.layers.edit_distance(input=x,label=y)
3280
    """
3281
    helper = LayerHelper("edit_distance", **locals())
3282

3283
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3284
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3285 3286 3287 3288 3289 3290 3291
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3292
            attrs={"tokens": ignored_tokens})
3293 3294 3295 3296 3297
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3298
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3299
            attrs={"tokens": ignored_tokens})
3300 3301
        label = erased_label

3302 3303
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3304
    sequence_num = helper.create_tmp_variable(dtype="int64")
3305 3306 3307 3308
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3309 3310
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3311 3312
        attrs={"normalized": normalized})

3313
    return edit_distance_out, sequence_num
3314 3315 3316 3317 3318


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
3319 3320 3321 3322
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3340
        input.lod = [[4, 4]]
3341 3342 3343 3344 3345 3346 3347

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3348
        output.lod = [[2, 1]]
3349 3350 3351

    Args:

Y
ying 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3361
        name (str): The name of this layer. It is optional.
3362 3363

    Returns:
3364
        Variable: CTC greedy decode result. If all the sequences in result were
3365
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3366 3367 3368 3369 3370

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3371

3372
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3373
    """
3374
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3375
    _, topk_indices = topk(input, k=1)
3376 3377 3378 3379 3380 3381

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3382
        outputs={"Output": [ctc_out]},
3383 3384
        attrs={"merge_repeated": True,
               "blank": blank})
3385
    return ctc_out
3386 3387


F
fengjiayi 已提交
3388
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3389
    """
3390 3391
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3392
    to compute Connectionist Temporal Classification (CTC) loss.
3393 3394
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3395 3396 3397
    input tensor.

    Args:
3398
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3399 3400 3401 3402
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3403 3404 3405 3406
       label (Variable): The ground truth of variable-length sequence, 
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3407 3408
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3409 3410 3411 3412
       norm_by_times(bool, default false): Whether to normalize the gradients 
         by the number of time-step, which is also the sequence's length. 
         There is no need to normalize the gradients if warpctc layer was 
         follewed by a mean_op.
W
wanghaoshuang 已提交
3413 3414

    Returns:
3415 3416
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3417 3418

    Examples:
3419

W
wanghaoshuang 已提交
3420
        .. code-block:: python
3421

3422 3423 3424
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3425 3426

    """
F
fengjiayi 已提交
3427
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3454 3455 3456
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3457 3458 3459 3460 3461
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3462

3463
            out.lod  = [[0, 1, 3]]
3464 3465 3466 3467

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3468 3469 3470 3471 3472 3473 3474
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3475 3476 3477

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3478 3479

    Returns:
3480

3481 3482 3483 3484 3485
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3486
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3487
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3488 3489 3490 3491 3492 3493 3494 3495 3496
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3497 3498


3499 3500 3501 3502
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3503 3504 3505 3506 3507 3508 3509
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3510 3511 3512 3513 3514 3515 3516
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3517 3518 3519
        sample_weight (Variable|None): A Variable of shape [batch_size, 1] 
            storing a weight for each sample. The default weight for each 
            sample is 1.0.
3520 3521 3522
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3523

3524
    Returns:
Y
Yibing Liu 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3552
    """
Y
Yang Yu 已提交
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3597
    return cost / (num_neg_samples + 1)
3598 3599


Y
fix ci.  
ying 已提交
3600
def transpose(x, perm, name=None):
Y
ying 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3610 3611 3612
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3613 3614 3615 3616 3617 3618 3619 3620

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3621
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3622 3623
    """

Y
fix ci.  
ying 已提交
3624
    if len(perm) != len(x.shape):
Y
ying 已提交
3625 3626 3627
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3628 3629 3630 3631 3632 3633
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3634 3635

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3636
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3637 3638
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3639
        inputs={'X': [x]},
Y
ying 已提交
3640 3641 3642
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3643 3644


3645
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3646
    """
3647 3648 3649 3650 3651 3652 3653
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3682 3683 3684
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3685 3686 3687 3688 3689
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3719 3720 3721
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

3736
            output.lod = [[4, 4]]
3737 3738 3739 3740 3741

        The simple usage is:

        .. code-block:: python

3742 3743
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3744 3745

    """
W
wanghaoshuang 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3757
    helper = LayerHelper('im2sequence', **locals())
3758 3759
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3760
        type='im2sequence',
3761 3762 3763
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3764 3765 3766
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3767 3768
        })
    return out
3769 3770


Y
yuyang18 已提交
3771
@templatedoc()
3772
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3773 3774
    """
    ${comment}
3775 3776

    Args:
Y
yuyang18 已提交
3777
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3778 3779
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3780 3781 3782 3783 3784
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3785
        ${out_comment}.
3786 3787

    Examples:
Y
yuyang18 已提交
3788 3789 3790 3791
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3804
    return helper.append_activation(out)
3805 3806


Y
yuyang18 已提交
3807
@templatedoc()
3808 3809
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
3810 3811 3812 3813 3814 3815 3816
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
3817 3818

    Args:
Y
yuyang18 已提交
3819 3820
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
3821 3822

    Returns:
Y
yuyang18 已提交
3823
        ${out_comment}.
3824 3825
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3826 3827 3828 3829 3830 3831

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3832 3833 3834 3835 3836 3837
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3838 3839 3840 3841 3842


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3843

3844 3845 3846 3847
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3848

3849 3850 3851
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3852

3853 3854 3855
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3856

3857
    The equation is as follows:
3858

3859
    1) Hard label (one-hot label, so every sample has exactly one class)
3860

3861 3862 3863 3864
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3865

3866 3867 3868
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3869

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
3891 3892
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
3909 3910
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
3911
    For each instance, it computes the smooth L1 loss element by element first
3912 3913
    and then sums all the losses. So the shape of ouput Variable is 
    [batch_size, 1].
3914

3915 3916
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3917
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3918
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
3919
            L1 loss op with same shape as :attr:`x`.
3920
        inside_weight (Variable|None):  A tensor with rank at least 2. This
Y
Yibing Liu 已提交
3921 3922 3923
            input is optional and should have same shape with :attr:`x`. If 
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied 
            by this tensor element by element.
3924
        outside_weight (Variable|None): A tensor with rank at least 2. This
Y
Yibing Liu 已提交
3925 3926 3927
            input is optional and should have same shape with :attr:`x`. If 
            provided, the out smooth L1 loss will be multiplied by this tensor 
            element by element.
3928 3929 3930
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float 
           scalar with default value 1.0.

3931
    Returns:
3932
        Variable: The output smooth L1 loss with shape [batch_size, 1].
3933 3934 3935 3936 3937

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
3938 3939
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
3940
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3941
            out = fluid.layers.smooth_l1(x=fc, y=label)
3942
    """
3943

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3959 3960 3961 3962


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
3963
    This layer creates the one-hot representations for input indices.
3964 3965

    Args:
Y
Yibing Liu 已提交
3966 3967
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
3968 3969

    Returns:
Y
Yibing Liu 已提交
3970
        Variable: The one-hot representations of input.
3971 3972

    Examples:
C
caoying03 已提交
3973
        .. code-block:: python
Y
Yibing Liu 已提交
3974 3975 3976
        
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
3977 3978 3979 3980 3981 3982 3983 3984 3985
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3986 3987


Y
Yu Yang 已提交
3988
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3989
    """
Y
Yu Yang 已提交
3990
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3991
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3992 3993 3994 3995 3996 3997

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

3998 3999
    Returns:
        Variable: The global run counter.
Y
Yu Yang 已提交
4000 4001
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4002 4003
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4004 4005 4006 4007 4008
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4009
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
4010 4011 4012
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4013 4014
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4015 4016 4017
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4018 4019


4020
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4021
    """
C
caoying03 已提交
4022 4023
    Gives a new shape to the input Tensor without changing its data.

4024 4025 4026 4027 4028
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4029

4030
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4031

4032 4033 4034 4035
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4036
    2. 0 means the actual dimension value is going to be copied from the
4037 4038 4039 4040
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4041 4042

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4043
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4044
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4045

4046
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4047 4048
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4049 4050
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4051
    dimensions.
C
caoying03 已提交
4052

4053
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4054 4055 4056 4057
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4058 4059

    Args:
4060
        x(variable): The input tensor.
C
caoying03 已提交
4061 4062
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4063 4064 4065 4066 4067
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4068 4069 4070 4071
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.
4072
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4073

4074 4075
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4076 4077 4078

    Examples:
        .. code-block:: python
G
guosheng 已提交
4079

4080
            data = fluid.layers.data(
4081
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4082
            reshaped = fluid.layers.reshape(
4083
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4084 4085 4086 4087 4088
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4104 4105 4106 4107
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
4108 4109 4110
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
4111 4112 4113 4114 4115
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4116 4117


Y
yangyaming 已提交
4118
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4119
    """
Y
Yibing Liu 已提交
4120 4121 4122 4123 4124 4125
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be 
    considered as target LoD first, otherwise :attr:`y.data` would be 
    considered as target LoD. If :attr:`y` is not provided, target LoD should 
    be specified by :attr:`target_lod`. If target LoD is specified by 
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4126 4127 4128 4129 4130 4131

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4132
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4133 4134 4135
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4136
            target_lod: [4, 2]
Y
yangyaming 已提交
4137 4138

            then we get a 1-level LoDTensor:
4139
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4140 4141 4142 4143 4144 4145
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4146
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4147 4148 4149 4150
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4151
                y.data = [[2, 4]]
Y
yangyaming 已提交
4152 4153 4154
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4155
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4156 4157 4158 4159 4160 4161
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4162
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4163 4164 4165 4166
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4167
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4168 4169 4170 4171
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4172
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4173 4174 4175 4176 4177
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
Y
Yibing Liu 已提交
4178 4179
        y (Variable|None): If provided, output's LoD would be derived 
                           from :attr:`y`.
Y
yangyaming 已提交
4180
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4181
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4182 4183

    Returns:
Y
Yibing Liu 已提交
4184
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4185 4186

    Raises:
Y
Yibing Liu 已提交
4187
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4254 4255
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4283 4284 4285 4286


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4287
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4288
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4289

G
guosheng 已提交
4290 4291 4292 4293
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4316
                         The length of :attr:paddings must be
G
guosheng 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4327

G
guosheng 已提交
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4342 4343 4344 4345 4346 4347 4348 4349 4350


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4351 4352
    called label-smoothing regularization (LSR).

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4376
                              be :math:`(1, class\_num)`.
4377 4378
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4407 4408 4409 4410


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
4411
    Region of interest pooling (also known as RoI pooling) is to perform
4412 4413
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
4414 4415 4416 4417
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
4418 4419 4420 4421 4422 4423 4424
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
4425 4426
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
4427 4428 4429 4430 4431 4432 4433 4434
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
4435
        pool_out (Variable): The output is a 4-D tensor of the shape
4436 4437 4438
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
4439 4440
        .. code-block:: python

4441
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4487 4488
        .. code-block:: python

W
whs 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4500 4501


4502 4503 4504 4505 4506
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4507
    """
4508
    Resize a batch of images.
F
stash  
fengjiayi 已提交
4509

4510 4511 4512 4513 4514
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w), 
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4515

4516
    Args:
4517
        input (Variable): The input tensor of image resize layer,
4518 4519
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4520
        out_shape(list|tuple|Variable|None): Output shape of image resize
4521 4522
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4523
        scale(float|None): The multiplier for the input height or width.
4524 4525 4526
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4527 4528
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4529 4530
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4531 4532 4533 4534

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4535

4536 4537 4538
    Examples:
        .. code-block:: python

4539
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4540
    """
4541 4542 4543 4544
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4545 4546
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4547 4548
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4549 4550 4551 4552

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4553 4554 4555
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4556
    if out_shape is not None:
B
baiyf 已提交
4557 4558 4559
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4560 4561 4562 4563 4564 4565
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4566 4567 4568 4569
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4570 4571
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4572
        type=resample_methods[resample],
4573
        inputs=inputs,
4574 4575 4576 4577
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4578 4579


4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
@templatedoc(op_type="bilinear_interp")
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.

        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
    Resize a batch of images. The short edge of input images will be 
    resized to the given 'out_short_len'. The long edge of input images 
    will be resized proportionately to make images' length-width ratio 
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
        resample (str): resample method, default: BILINEAR.

    Returns:
        out (Variable): The output is a 4-D tensor of the shape
                        (num_batches, channls, out_h, out_w).
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4636 4637 4638 4639 4640 4641 4642
def gather(input, index):
    """
    Output is obtained by gathering entries of the outer-most dimension 
    of X indexed by `index` and concatenate them together.

    .. math::

4643
        Out = X[Index]
W
whs 已提交
4644 4645 4646 4647 4648 4649 4650


    .. code-block:: text


                Given:

4651 4652
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
        input (Variable): The source input with rank>=1. 
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
4670

W
whs 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
4699 4700 4701 4702
    
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
4703
    """
F
stash  
fengjiayi 已提交
4704 4705 4706
    helper = LayerHelper("random_crop", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
4707 4708 4709
    if seed is None:
        seed = random.randint(-65536, 65535)

F
stash  
fengjiayi 已提交
4710
    if isinstance(seed, int):
F
fengjiayi 已提交
4711
        seed_value = seed
F
fengjiayi 已提交
4712 4713 4714 4715 4716 4717 4718 4719
        seed = helper.create_tmp_variable(dtype="int64")
        helper.append_op(
            type="fill_constant",
            inputs={},
            outputs={"Out": seed},
            attrs={
                "dtype": seed.dtype,
                "shape": [1],
F
fengjiayi 已提交
4720 4721
                "value": float(seed_value),
                "force_cpu": True
F
fengjiayi 已提交
4722
            })
F
stash  
fengjiayi 已提交
4723 4724
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
F
fengjiayi 已提交
4725
    seed_out = helper.create_tmp_variable(dtype="int64")
F
stash  
fengjiayi 已提交
4726 4727
    helper.append_op(
        type="random_crop",
4728
        inputs={"X": x,
F
stash  
fengjiayi 已提交
4729 4730 4731 4732 4733
                "Seed": seed},
        outputs={"Out": out,
                 "SeedOut": seed_out},
        attrs={"shape": shape})
    return out
4734 4735


W
wanghaoshuang 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
def log(x):
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

        Out = \\ln(x)

    Args:
        x (Variable): Input tensor. 

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

            output = fluid.layers.log(x)
    """
    helper = LayerHelper('log', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="log", inputs={"X": input}, outputs={"Out": out})
    return out


def relu(x):
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
    where the rectified linear function, y = max(0, x), is applied to
    the tensor elementwise.

    .. math::

        Out = \\max(0, x)

    Args:
        x (Variable): The input tensor. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.relu(x)
    """
    helper = LayerHelper('relu', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(type="relu", inputs={"X": input}, outputs={"Out": out})
    return out
4790 4791


4792 4793 4794 4795 4796 4797 4798 4799
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
    semantic image segmentation, which first computes the IOU for each 
    semantic class and then computes the average over classes. 
    IOU is defined as follows: 
    
    .. math::
4800 4801

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
4802 4803 4804 4805 4806 4807 4808

    The predictions are accumulated in a confusion matrix and mean-IOU 
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
4809
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
4810
                           Its shape should be the same as input.
4811
        num_classes (int): The possible number of labels.
4812 4813 4814 4815 4816 4817 4818 4819 4820

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. 

    Examples:

        .. code-block:: python
4821
            
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
        inputs={"predictions": input,
                "labels": label},
        outputs={
            "out_mean_iou": out_mean_iou,
            "out_wrong": out_wrong,
            "out_correct": out_correct
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct