utils.cpp 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/**
 * \file dnn/src/common/utils.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "src/common/utils.h"
#include "megdnn/handle.h"

#include <cstdarg>
#include <cstring>
#include <mutex>
#include <numeric>

using namespace megdnn;

namespace {
std::string svsprintf(const char* fmt, va_list ap_orig) {
    int size = 100; /* Guess we need no more than 100 bytes */
    char* p;

    if ((p = (char*)malloc(size)) == nullptr)
        return "svsprintf: malloc failed";

    for (;;) {
        va_list ap;
        va_copy(ap, ap_orig);
        int n = vsnprintf(p, size, fmt, ap);
        va_end(ap);

        if (n < 0)
            return "svsprintf: vsnprintf failed";

        if (n < size) {
            std::string rst(p);
            free(p);
            return rst;
        }

        size = n + 1;

        char* np = (char*)realloc(p, size);
        if (!np) {
            free(p);
            return "svsprintf: realloc failed";
        } else
            p = np;
    }
}
}  // anonymous namespace

std::string megdnn::ssprintf(const char* fmt, ...) {
    va_list ap;
    va_start(ap, fmt);
    auto rst = svsprintf(fmt, ap);
    va_end(ap);
    return rst;
}

void megdnn::__assert_fail__(const char* file, int line, const char* func,
                             const char* expr, const char* msg_fmt, ...) {
    std::string msg;
    if (msg_fmt) {
        va_list ap;
        va_start(ap, msg_fmt);
        msg = "\nextra message: ";
        msg.append(svsprintf(msg_fmt, ap));
        va_end(ap);
    }
    msg = ssprintf("assertion `%s' failed at %s:%d: %s%s", expr, file, line,
                   func, msg.c_str());
    megdnn_throw(msg.c_str());
}

bool megdnn::get_next_addr(size_t* idx, const size_t* shp, size_t n,
                           size_t stride) {
    auto errmsg = [&]() {
        std::string res;
        res.append(megdnn_mangle("idx={"));
        for (size_t i = 0; i < n; ++i) {
            res.append(std::to_string(idx[i]));
            if (i + 1 < n)
                res.append(megdnn_mangle(","));
        }
        res.append(megdnn_mangle("}, shp={"));
        for (size_t i = 0; i < n; ++i) {
            res.append(std::to_string(shp[i]));
            if (i + 1 < n)
                res.append(megdnn_mangle(","));
        }
        res.append(megdnn_mangle("}, n="));
        res.append(std::to_string(n));
        res.append(megdnn_mangle(", stride="));
        res.append(std::to_string(stride));
        return res;
    };
    MEGDNN_MARK_USED_VAR(errmsg);
    for (size_t i = 0; i < n; ++i) {
        megdnn_assert(idx[i] < shp[i], "%s", errmsg().c_str());
    }
    idx[n - 1] += stride;
    megdnn_assert(idx[n - 1] <= shp[n - 1], "%s", errmsg().c_str());
    size_t i;
    for (i = n; i > 1; --i)
        if (idx[i - 1] == shp[i - 1]) {
            idx[i - 1] = 0;
            ++idx[i - 2];
        } else {
            break;
        }
    if (i == 1 && idx[0] == shp[0]) {
        idx[0] = 0;
        return false;
    }
    return true;
}

int megdnn::get_linear_addr_noncont(size_t* index, const TensorLayout& layout) {
    int ans = 0;
    rep(i, layout.ndim) { ans += index[i] * layout.stride[i]; }
    return ans;
}

size_t megdnn::get_linear_addr(size_t* index, const size_t* shape, size_t n) {
    size_t base = 1;
    size_t ans = 0;
    for (size_t i = n; i > 0; --i) {
        ans += index[i - 1] * base;
        base *= shape[i - 1];
    }
    return ans;
}

size_t megdnn::infer_conv_shape(size_t inp, size_t flt, size_t stride,
                                size_t pad, bool is_floor) {
    megdnn_assert(inp + 2 * pad >= flt, "input=%zu padding=%zu filter=%zu", inp,
                  pad, flt);
    if (is_floor) {
        return (inp + 2 * pad - flt) / stride + 1;
    }
    return (inp + 2 * pad - flt + stride - 1) / stride + 1;
}

void megdnn::infer_conv_shape2d(size_t ih, size_t iw, size_t fh, size_t fw,
                                size_t sh, size_t sw, size_t ph, size_t pw,
                                size_t& oh, size_t& ow, bool is_floor) {
    oh = infer_conv_shape(ih, fh, sh, ph, is_floor);
    ow = infer_conv_shape(iw, fw, sw, pw, is_floor);
}

WorkspaceBundle::WorkspaceBundle(void* ptr, SmallVector<size_t> sizes_in_bytes,
                                 size_t align_in_bytes)
        : m_ptr(ptr),
          m_sizes(std::move(sizes_in_bytes)),
          m_align_in_bytes(align_in_bytes) {
    m_aligned_sizes.reserve(m_sizes.size());
    for (auto size : m_sizes) {
        auto aligned_size = size;
        if (size % m_align_in_bytes != 0) {
            aligned_size += m_align_in_bytes - size % m_align_in_bytes;
        }
        m_aligned_sizes.push_back(aligned_size);
    }
}

void* WorkspaceBundle::ptr() const {
    return m_ptr;
}

void* WorkspaceBundle::get(size_t i) const {
    auto addr = reinterpret_cast<uintptr_t>(m_ptr);
    if (addr % m_align_in_bytes != 0)
        addr += m_align_in_bytes - addr % m_align_in_bytes;
    for (size_t j = 0; j < i; ++j) {
        addr += m_aligned_sizes[j];
    }
    return reinterpret_cast<void*>(addr);
}

size_t WorkspaceBundle::nr_workspace() const {
    return m_sizes.size();
}

size_t WorkspaceBundle::get_size(size_t i) const {
    return m_sizes[i];
}

void WorkspaceBundle::set(void* ptr) {
    m_ptr = ptr;
}

size_t WorkspaceBundle::total_size_in_bytes() const {
    //! return 0 if the WorkspaceBundle is empty
    size_t size =
            std::accumulate(m_aligned_sizes.begin(), m_aligned_sizes.end(),
                            static_cast<size_t>(0));
    return size ? size + m_align_in_bytes : size;
}

size_t megdnn::count_not_ones_in_shape(const TensorShape& shape) {
    size_t res = 0u;
    for (size_t i = 0; i < shape.ndim; ++i)
        res += (shape[i] != 1u);
    return res;
}

bool megdnn::is_nhwc_contig_wc(const TensorLayout& layout) {
    return layout.ndim == 4 &&
           (layout.stride[3] == 1 || layout.shape[3] == 1) &&
           (layout.stride[2] == static_cast<ptrdiff_t>(layout.shape[3]) ||
            layout.shape[2] == 1);
}

megcoreDeviceHandle_t megdnn::get_device_handle(Handle* handle) {
    megcoreStatus_t status;
    megcoreDeviceHandle_t dev_handle;
    megcoreComputingHandle_t comp_handle = handle->megcore_computing_handle();
    status = megcoreGetDeviceHandle(comp_handle, &dev_handle);
    megdnn_assert(status == megcoreSuccess);
    return dev_handle;
}

// clang-format off
float megdnn::mul_scale(DType lhs, DType rhs) {
#define cb_binary(dt1, dt2)                        \
    if ((lhs.enumv() == DTypeTrait<dt1>::enumv) && \
        (rhs.enumv() == DTypeTrait<dt2>::enumv))   \
        return lhs.param<dt1>().scale * rhs.param<dt2>().scale;
    cb_binary(::megdnn::dtype::QuantizedS8, ::megdnn::dtype::QuantizedS16)
#undef cb_binary

    megdnn_assert(lhs.enumv() == rhs.enumv());
#define cb(dt)                                \
    if (lhs.enumv() == DTypeTrait<dt>::enumv) \
        return lhs.param<dt>().scale * rhs.param<dt>().scale;
    MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
    MEGDNN_FOREACH_QUANTIZED_LOWBIT_DTYPE(cb)
#undef cb
    megdnn_assert_internal(0);
}
// clang-format on

template <>
uint8_t megdnn::convert<dt_quint4, uint8_t>(dt_quint4 src, uint8_t dst,
                                            size_t offset) {
    uint8_t _src =
            std::min(src.as_uint8(), DTypeTrait<dtype::Quantized4Asymm>::max());
    if (offset == 0) {
        _src &= 0xF;
        dst &= 0xF0;
        dst |= _src;
    } else {
        _src <<= 4;
        dst &= 0xF;
        dst |= _src;
    }
    return dst;
}

template <>
dt_quint4 megdnn::convert<uint8_t, dt_quint4>(uint8_t src, dt_quint4 dst,
                                              size_t offset) {
    src >>= (offset << 2);
    src &= 0xF;
    dst = dt_quint4(src);
    return dst;
}

template <>
int8_t megdnn::convert<dt_qint4, int8_t>(dt_qint4 src, int8_t dst,
                                         size_t offset) {
    int8_t _src = std::max(
            std::min(src.as_int8(), DTypeTrait<dtype::QuantizedS4>::max()),
            DTypeTrait<dtype::QuantizedS4>::min());
    if (offset == 0) {
        _src &= 0xF;
        dst &= 0xF0;
        dst |= _src;
    } else {
        _src <<= 4;
        dst &= 0xF;
        dst |= _src;
    }
    return dst;
}

template <>
dt_qint4 megdnn::convert<int8_t, dt_qint4>(int8_t src, dt_qint4 dst,
                                           size_t offset) {
    src <<= (4 - (offset << 2));
    src >>= 4;
    dst = dt_qint4(src);
    return dst;
}

/* ======================== CpuNDRange ======================== */
std::string CpuNDRange::to_string() const {
    std::string ret;
    for (size_t i = 0; i < m_dimension; i++) {
        ret += megdnn::ssprintf(" %zu", m_dim[i]);
    }
    return ret;
}

size_t& CpuNDRange::operator[](size_t idx) {
    megdnn_assert(idx < m_dimension, "invalid index: %zu expected < %zu", idx,
                  m_dimension);
    return m_dim[idx];
}

// vim: syntax=cpp.doxygen