convolution.cpp 91.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/**
 * \file src/opr/impl/dnn/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/dnn/convolution.h"
13
#include "megbrain/opr/io.h"
14 15 16 17 18 19 20 21

#include "megbrain/graph/grad_impl.h"
#include "megbrain/system.h"
#include "megbrain/utils/hash_ct.h"
#include "megbrain/utils/timer.h"

#include "megdnn/oprs/utils.h"

22 23 24 25 26 27 28 29 30 31 32 33 34
//! TODO: here has to be know some megdnn::opr when there is produced midout.h
//! fix it if there is another graceful way.
#include "megdnn/oprs.h"

#include "midout.h"

MIDOUT_DECL(megbrain_opr_convolution)
#define MIDOUT_B(...) \
    MIDOUT_BEGIN(megbrain_opr_convolution, __VA_ARGS__) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

35
#include "../internal/megdnn_opr_wrapper.inl"
36
#include "../internal/invoke.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#include <array>
#include <chrono>
#include <cstring>
#include <thread>


using namespace mgb;
using namespace opr;
using namespace cg::static_infer;
using intl::WorkspaceLimitGetter;

#define CACHE_KEY_VERSION "v2"

#define MGB_FOREACH_FASTRUN_OPR(cb)   \
    cb(ConvolutionForward);           \
    cb(ConvBiasForward);              \
    cb(ConvolutionBackwardData);      \
    cb(ConvolutionBackwardFilter);    \
    cb(Convolution3DForward);         \
    cb(Convolution3DBackwardData);    \
    cb(Convolution3DBackwardFilter);  \
    cb(LocalShareForward);            \
    cb(LocalShareBackwardData);       \
    cb(LocalShareBackwardFilter);     \
    cb(DeformableConvForward);        \
    cb(DeformableConvBackwardFilter); \
    cb(DeformableConvBackwardData);   \
    cb(BatchConvBiasForward);

namespace mgb {
namespace opr {
namespace intl {

#define cb(_Opr)                                           \
    template <>                                            \
    struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \
        static constexpr bool val = true;                  \
    };
MGB_FOREACH_FASTRUN_OPR(cb)

#undef cb

}  // namespace intl
}  // namespace opr
}  // namespace mgb

namespace {

template <class MegDNNOpr>
struct MegDNNOpr2MGBOpr;

#define cb(_Opr)                            \
    template <>                             \
    struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \
        using MGBOpr = opr::_Opr;           \
    };

MGB_FOREACH_FASTRUN_OPR(cb)

#undef cb

template <typename Opr>
struct OprArityTrait;

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <typename Opr, int _arity_in, int _arity_out>
struct OprArityTraitTmpl {
    static constexpr int arity_in = _arity_in;
    static constexpr int arity_out = _arity_out;
    static constexpr int arity = arity_in + arity_out;
};

#define INST_ARITY(_Opr, _in, _out) \
    template <>                     \
    struct OprArityTrait<_Opr> : public OprArityTraitTmpl<_Opr, _in, _out> {};

INST_ARITY(megdnn::ConvolutionBackwardData, 2, 1);
INST_ARITY(megdnn::ConvolutionBackwardFilter, 2, 1);
INST_ARITY(megdnn::Convolution3DForward, 2, 1);
INST_ARITY(megdnn::Convolution3DBackwardData, 2, 1);
INST_ARITY(megdnn::Convolution3DBackwardFilter, 2, 1);
INST_ARITY(megdnn::LocalShareForward, 2, 1);
INST_ARITY(megdnn::LocalShareBackwardData, 2, 1);
INST_ARITY(megdnn::LocalShareBackwardFilter, 2, 1);
INST_ARITY(megdnn::Convolution, 2, 1);
INST_ARITY(megdnn::DeformableConvForward, 4, 1);
INST_ARITY(megdnn::DeformableConvBackwardFilter, 4, 1);
INST_ARITY(megdnn::BatchConvBiasForward, 4, 1);
INST_ARITY(megdnn::ConvBias, 4, 1);
INST_ARITY(megdnn::DeformableConvBackwardData, 5, 3);
127 128 129

#undef INST_ARITY

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
template <typename Opr>
constexpr bool opr_supports_preprocess() {
    return std::is_same<Opr, megdnn::ConvolutionForward>::value ||
           std::is_same<Opr, megdnn::ConvBias>::value;
}

template <typename Opr, bool has_prep>
struct PreprocessFilterImpl {
    using T = union {};
};

template <typename Opr>
struct PreprocessFilterImpl<Opr, true> {
    using T = typename Opr::PreprocessedFilter;
};

template <typename Opr>
using PreprocessFilter =
        typename PreprocessFilterImpl<Opr, opr_supports_preprocess<Opr>()>::T;

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
// timeout delta to be added with fastest known algorithm for new algos
constexpr double TIMEOUT_TOLERANCE = 2;

template <typename Opr>
struct AlgoChooserFuncId {};

#define DEF_FUNC_ID(func)                                                     \
    template <>                                                               \
    struct AlgoChooserFuncId<megdnn::func> {                                  \
        __attribute__(                                                        \
                (unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \
                static_cast<sys::TimedFuncInvoker::FuncId>(                   \
                        MGB_HASH_STR("megdnn::" #func));                      \
    };

MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID)

#undef DEF_FUNC_ID

/* =================== TimedProfiler =================== */

/*!
 * \brief profile a megdnn opr conv with given param
 *
 * This class only provides static methods, and the entry point is
 * TimedProfiler::profile; it would run profiler in a timed environment by
 * sys::TimedFuncInvoker
 *
 * \tparam Opr megdnn opr impl
 */
template <typename Opr>
class TimedProfiler {
    static constexpr int arity_in = OprArityTrait<Opr>::arity_in;
    static constexpr int arity_out = OprArityTrait<Opr>::arity_out;
    static constexpr int arity = OprArityTrait<Opr>::arity;
185

186 187 188 189 190 191 192 193 194 195
    using ConvTensorShapes = std::array<TensorShape, arity>;

public:
    struct Param {
        char algo_name[128];
        size_t workspace;
        DTypeEnum dtypes[arity];
        CompNode::Locator comp_node_loc;
        ConvTensorShapes shapes;
        typename Opr::Param opr_param;
196
        bool allow_weight_preprocess;
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

        //! filled by profile()
        mutable double actual_timeout;
    };

    struct Result {
        double time;
    };

    static Maybe<Result> profile(const Param& param, double& timeout) {
        mgb_assert(timeout >= 0);
        if (!timeout) {
            timeout = timeout_setting;
        } else if (timeout_setting) {
            timeout = std::min(timeout, timeout_setting);
        }
        param.actual_timeout =
                timeout ? timeout : std::numeric_limits<double>::infinity();
        auto res = sys::TimedFuncInvoker::ins().invoke(
                AlgoChooserFuncId<Opr>::ID,
                TParam::from_pod(const_cast<Param&>(param)), timeout);
        if (res.valid())
            return res.val().template as_single_pod<Result>();
        return None;
    }
private:
    using TParam = sys::TimedFuncInvoker::Param;
    using TResult = sys::TimedFuncInvoker::Result;

    static const double timeout_setting;

    static double init_timeout_setting();
    static TResult prof_impl(const TParam& raw_param);
    static void prof_init_device(const TParam& raw_param);
};
template <typename Opr>
const double TimedProfiler<Opr>::timeout_setting =
        TimedProfiler<Opr>::init_timeout_setting();

template <typename Opr>
double TimedProfiler<Opr>::init_timeout_setting() {
#if MGB_ENABLE_FASTRUN
    sys::TimedFuncInvoker::ins().register_func(
            AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl,
            &TimedProfiler<Opr>::prof_init_device);
    auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT");
    if (to_set)
        return std::stod(to_set);
#endif
    return 0;
}

249 250 251 252
#define APPLY(statement, ...)                                  \
    mgb::apply([&](const auto&... args) { return statement; }, \
               std::tuple_cat(__VA_ARGS__))

253 254 255
template <typename Opr>
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl(
        const TParam& raw_param) {
256
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl")))
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    auto&& param = raw_param.as_single_pod<Param>();
    CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
    auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn);
    std::array<TensorLayout, arity> layouts;

    auto from_enum = [&](DTypeEnum enumv) -> DType {
        switch (enumv) {

#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return _dt(1.0f, static_cast<uint8_t>(0))
            cb(dtype::Quantized8Asymm);
#undef cb

#define cb(_dt)                  \
    case DTypeTrait<_dt>::enumv: \
        return _dt(1.0f)

            cb(dtype::QuantizedS8);
276
            cb(dtype::QuantizedS16);
277 278 279 280 281 282 283 284 285 286 287 288 289
            cb(dtype::QuantizedS32);
            default:
                return DType::from_enum(enumv);
#undef cb
        }
    };
    for (int i = 0; i < arity; ++i) {
        layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])};
    }

    megdnn_opr->param() = param.opr_param;
    {
        typename Opr::Algorithm* algo = nullptr;
290
        for (auto i : APPLY(megdnn_opr->get_all_algorithms(args...), layouts)) {
291 292 293 294 295 296 297 298 299
            if (!strcmp(i->name(), param.algo_name)) {
                algo = i;
                break;
            }
        }
        mgb_assert(algo, "algorithm %s not found", param.algo_name);
        megdnn_opr->execution_policy() = {algo};
    }

300 301 302 303 304 305 306 307 308 309
    // Allocate preprocessed weight buffers.
    TensorLayoutArray preprocessed_layout;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (param.allow_weight_preprocess) {
            preprocessed_layout = APPLY(
                    _(megdnn_opr)->deduce_preprocessed_filter_layout(args...),
                    layouts);
        }
    });

310 311 312 313 314 315 316 317
    {
        // first allocate a whole chunk to avoid memory fragmentation (here we
        // rely on memory allocator to reuse memory)
        auto align = cn.get_mem_addr_alignment();
        size_t tot_size = align;
        for (int i = 0; i < arity; ++i) {
            tot_size += layouts[i].span().high_byte + align;
        }
318 319 320
        for (const auto& layout : preprocessed_layout) {
            tot_size += layout.span().high_byte + align;
        }
321 322 323 324 325 326
        tot_size += param.workspace;
        DeviceTensorStorage storage{cn};
        storage.ensure_size(tot_size);
    }

    // allocate input and output memory
327 328 329
    std::array<DeviceTensorND, arity_in> inp_val;
    std::array<DeviceTensorND, arity_out> out_val;
    DeviceTensorND workspace;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    for (int i = 0; i < arity_in; ++i) {
        inp_val[i]
                .comp_node(cn)
                .dtype(layouts[i].dtype)
                .resize(layouts[i]);
    }
    for (int i = 0; i < arity_out; ++i) {
        out_val[i]
                .comp_node(cn)
                .dtype(layouts[arity_in + i].dtype)
                .resize(layouts[arity_in + i]);
    }
    megdnn::Workspace mdn_workspace;

    // allocate workspace
    if (param.workspace) {
        workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace});
        mdn_workspace.size = param.workspace;
        mdn_workspace.raw_ptr = workspace.raw_ptr();
    }

351 352 353 354 355 356 357
    // allocate storage for preprocessed filter
    SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size());
    for (size_t i = 0; i < preprocessed_layout.size(); i++) {
        flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype,
                      preprocessed_layout[i].format};
    }

358 359 360 361
    for (int i = 0; i < arity_in; ++i) {
        fill_zero_dev_tensor(inp_val[i]);
    }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    PreprocessFilter<Opr> prep_flt;
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        if (!preprocessed_layout.empty()) {
            auto&& pf = _(prep_flt);
            pf.algorithm_id = nullptr;
            pf.tensors.resize(flt_val.size());
            for (size_t i = 0; i < flt_val.size(); i++) {
                pf.tensors[i] = flt_val[i].as_megdnn();
            }
            APPLY(_(megdnn_opr)->exec_preprocess(args..., &pf, mdn_workspace),
                  std::forward_as_tuple(layouts[0], inp_val[1].as_megdnn()),
                  array_skip<2>(layouts));
        }
    });

377 378 379 380
    RealTimer timer;
    auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER),
         ev_end = cn.create_event(CompNode::Event::NEED_TIMER);
    ev_start->record();
381 382 383 384 385 386 387 388 389 390
    if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
        auto&& opr = _(megdnn_opr);
        PreprocessFilter<Opr>* pf =
                preprocessed_layout.empty() ? nullptr : &prep_flt;
        APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace), inp_val,
              out_val);
    }, /* else */ [&](auto _) {
        APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace), inp_val,
              out_val);
    });
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    ev_end->record();

    double next_report_time = 0.5;
    while (!ev_end->finished()) {
        if (timer.get_secs() >= next_report_time) {
            mgb_log_warn(
                    "profiling conv algo %s already took %.3f/%.3f secs"
                    " (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ",
                    param.algo_name, timer.get_secs(), param.actual_timeout);
            next_report_time = timer.get_secs() + 1;
        }
        using namespace std::literals;
        std::this_thread::sleep_for(1000us);
    }

    mgb_assert(ev_start->finished());
    return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)});
408
    MIDOUT_E
409 410 411 412
};

template <typename Opr>
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) {
413
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device")))
414 415 416 417
    auto&& param = raw_param.as_single_pod<Param>();
    CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc);
    // wait for cuda init, so its time does not get accounted in timeout
    cn.sync();
418
    MIDOUT_E
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
}

/* =================== AlgoChooser =================== */
/*!
 * \brief choose algorithm according to ExecutionPolicy
 *
 * This class only provides static methods, and the entry point is
 * AlgoChooser::setup_algo. When profiling is needed, it would first try to
 * retrive profiling stats from cache, and run TimedProfiler when necessary
 *
 * \tparam Opr megdnn operator impl
 */
template <typename Opr>
class AlgoChooser {
    static constexpr int arity_in = OprArityTrait<Opr>::arity_in;
    static constexpr int arity_out = OprArityTrait<Opr>::arity_out;
    static constexpr int arity = OprArityTrait<Opr>::arity;
436

437 438 439 440 441 442 443 444
    using ImplAlgo = typename Opr::Algorithm*;
    using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr;
    using ConvTensorLayouts = std::array<TensorLayout, arity>;

    class ExeContext {
        const ConvTensorLayouts& m_layouts;
        Opr* m_megdnn_opr;
        const MGBOpr* m_mgb_opr;
445
        bool m_allow_weight_preprocess;
446 447 448

    public:
        ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr,
449
                   const MGBOpr* mgb_opr, bool allow_weight_preprocess)
450 451
                : m_layouts{layouts},
                  m_megdnn_opr{megdnn_opr},
452 453
                  m_mgb_opr{mgb_opr},
                  m_allow_weight_preprocess{allow_weight_preprocess} {
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            mgb_assert(m_layouts.size() == layouts.size());
            static_assert(
                    std::tuple_size<ConvTensorLayouts>::value == 3 ||
                            std::tuple_size<ConvTensorLayouts>::value == 5 ||
                            std::tuple_size<ConvTensorLayouts>::value == 8,
                    "Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for "
                    "deformable conv)");
        }

        Opr* megdnn_opr() const { return m_megdnn_opr; }

        const MGBOpr* mgb_opr() const { return m_mgb_opr; }

        const TensorLayout& inp_layout(size_t idx) const {
            return m_layouts[idx];
        }

        const ConvTensorLayouts& layouts() const { return m_layouts; }

        ImplAlgo choose_by_heuristic(bool reproducible = false) const {
            auto opr = m_mgb_opr;
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    opr->owner_graph(), opr->comp_node(),
                    opr->execution_policy().workspace_limit);
478 479 480
            return APPLY(m_megdnn_opr->get_algorithm_heuristic(
                                 args..., workspace_limit, reproducible),
                         m_layouts);
481 482 483 484 485 486
        }

        //! get all candidate algos, and the one choose_by_heuristic() is
        //! put first
        std::vector<ImplAlgo> get_all_candidates() const {
            auto heu = choose_by_heuristic();
487 488
            auto&& ret =
                    APPLY(m_megdnn_opr->get_all_algorithms(args...), m_layouts);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
            bool found = false;
            for (size_t i = 0; i < ret.size(); ++i) {
                if (ret[i] == heu) {
                    found = true;
                    std::swap(ret[i], ret[0]);
                    break;
                }
            }
            mgb_assert(found,
                       "algo got by heuristic not found in "
                       "candidate list");
            return std::move(ret);
        }

        //! get candidate algos with workspace limit.
        std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const {
505
            auto&& all_algos = get_all_candidates();
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
            auto opr = m_mgb_opr;
            auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit(
                    opr->owner_graph(), opr->comp_node(),
                    opr->execution_policy().workspace_limit);
            std::vector<ImplAlgo> ret;
            for (auto&& algo : all_algos) {
                if (get_workspace_size_bytes(algo) <= workspace_limit) {
                    ret.push_back(algo);
                }
            }
            return ret;
        }

        //! get workspace size required for specific algo
        size_t get_workspace_size_bytes(ImplAlgo algo) const {
521 522 523 524
            m_megdnn_opr->execution_policy() = {algo};
            size_t result;
            if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
                auto&& opr = _(m_megdnn_opr);
525
                auto prep = this->construct_fake_preprocess_filter();
526 527 528 529 530 531 532 533 534 535 536 537
                PreprocessFilter<Opr>* prep_ptr =
                        prep.valid() ? &prep.val() : nullptr;
                result = std::max(
                        APPLY(opr->get_preprocess_workspace_in_bytes(args...),
                              m_layouts),
                        APPLY(opr->get_workspace_in_bytes(args..., prep_ptr),
                              m_layouts));
            }, /* else */ [&](auto _) {
                result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...),
                               m_layouts);
            });
            return result;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
        }

        /*!
         * \brief profile a single algorithm
         *
         * This is actually a wrapper that constructs param and call
         * TimedProfiler<Opr>::profile for the actual profiling
         *
         * \param[in,out] timeout set the timeout, and return the actual
         *      timeout used during profiling
         */
        Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo(
                ImplAlgo algo, double& timeout) const;

    private:
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        Maybe<PreprocessFilter<Opr>> construct_fake_preprocess_filter() const {
            Maybe<PreprocessFilter<Opr>> result = None;
            if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) {
                if (!m_allow_weight_preprocess)
                    return;
                auto opr = _(m_megdnn_opr);
                auto layout =
                        APPLY(opr->deduce_preprocessed_filter_layout(args...),
                              m_layouts);
                if (layout.empty())
                    return;
                result = PreprocessFilter<Opr>{};
                auto& res = result.val();
                res.algorithm_id = nullptr;
                res.tensors.resize(layout.size());
                for (size_t i = 0; i < layout.size(); i++) {
                    res.tensors[i] = megdnn::TensorND(nullptr, layout[i]);
                }
            });
            return result;
        }
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    };

    //! entrance for getting algorithm according to execution strategy
    static ImplAlgo get_algo(ExeContext& ctx) {
        using S = mixin::Convolution::ExecutionPolicy::Strategy;
        MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE);
        switch (ctx.mgb_opr()->execution_policy().strategy) {
            case S::HEURISTIC:
                return ctx.choose_by_heuristic();
            case S::HEURISTIC_REPRODUCIBLE:
                return ctx.choose_by_heuristic(true);
            case S::PROFILE_HEURISTIC: {
                ImplAlgo algo = choose_by_profile(ctx, false, false);
                if (algo == nullptr)
                    algo = ctx.choose_by_heuristic();
                return algo;
            }
#if MGB_ENABLE_FASTRUN
            case S::PROFILE:
                return choose_by_profile(ctx, false);
            case S::PROFILE_REPRODUCIBLE:
                return choose_by_profile(ctx, true);
#endif
            default:
                mgb_throw(GraphError,
                          "bad convolution ExecutionPolicy strategy");
        }
    }

603 604 605 606
    static void get_origin_param_and_layouts(const ExeContext&,
                                             ConvTensorLayouts&,
                                             typename Opr::Param&) {}

607 608 609 610 611 612 613 614 615 616 617 618 619
    //! get all profile result, either by retrieving cache or profiling
    static AlgoChooserProfileCache::Result get_profile_result(
            ExeContext& ctx, bool enable_update);

    static ImplAlgo choose_by_profile(ExeContext& ctx,
                                      bool require_reproducible,
                                      bool enable_update = true);

public:
    /*!
     * \brief setup algorithm and return workspace size
     */
    static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr,
620 621
                             const MGBOpr* mgb_opr,
                             bool allow_weight_preprocess = false) {
622 623 624 625
        if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) {
            return 0;
        }

626
        ExeContext ctx(layouts, megdnn_opr, mgb_opr, allow_weight_preprocess);
627 628 629 630

        auto algo = get_algo(ctx);
        size_t workspace = ctx.get_workspace_size_bytes(algo);
        mgb_log_debug(
631
                "%s: input shapes (%s %s, %s %s) -> (%s %s): algo=%s "
632 633
                "workspace=%.2fMiB reproducible=%d",
                mgb_opr->dyn_typeinfo()->name,
634
                layouts[0].to_string().c_str(),
635
                layouts[0].dtype.name(),
636
                layouts[1].to_string().c_str(),
637
                layouts[1].dtype.name(),
638
                layouts[layouts.size() - 1].to_string().c_str(),
639 640
                layouts[layouts.size() - 1].dtype.name(),
                 algo->name(),
641 642 643 644 645 646 647 648 649 650
                workspace / (1024 * 1024.0), algo->is_reproducible());
        megdnn_opr->execution_policy() = {algo};
        return workspace;
    }
};

template <typename Opr>
AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result(
        ExeContext& ctx, bool enable_update) {
    AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache();
651 652 653 654 655 656 657

    ConvTensorLayouts origin_layouts = ctx.layouts();
    typename Opr::Param origin_param = ctx.mgb_opr()->param();
    get_origin_param_and_layouts(ctx, origin_layouts, origin_param);
    AlgoChooserProfileCache::Key cache_key{origin_layouts.data(),
                                           origin_layouts.size(), &origin_param,
                                           sizeof(origin_param)};
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    {
        auto&& rst = cache.get(cache_key);
        if (rst.valid())
            return rst.val();
    }

    AlgoChooserProfileCache::Result prof_rst;
    if (!enable_update)
        return prof_rst;

    std::string str_on_inp_shape = ssprintf(
            "on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(),
            ctx.layouts()[1].to_string().c_str());
    double cur_timeout = 0;
    RealTimer timer;
    for (auto algo : ctx.get_all_candidates_with_workspace_limit()) {
        Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst;
        std::string msg = ssprintf("profiling %s algorithm %s %s",
                                   ctx.mgb_opr()->dyn_typeinfo()->name,
                                   algo->name(), str_on_inp_shape.c_str());
        timer.reset();
        MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); }
680 681 682 683 684
        MGB_CATCH(std::exception & exc, {
            mgb_log_warn("caught exception during %s: %s", msg.c_str(),
                         exc.what());
            continue;
        })
685 686 687
        MGB_CATCH(..., {
            mgb_log_warn("caught exception during %s", msg.c_str());
            continue;
688 689
        })
        if (!cur_rst.valid()) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
            mgb_log_warn("timeout when %s; timeout setting: %.3fsec",
                         msg.c_str(), cur_timeout);
            continue;
        }
        if (!cur_timeout) {
            cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE;
        } else {
            cur_timeout =
                    std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE);
        }
        auto&& rst = cur_rst.val();
        mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(),
                      rst.workspace, rst.time);
        prof_rst.push_back(rst);
    }
    mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s",
               str_on_inp_shape.c_str());

    cache.put(cache_key, prof_rst);
    return prof_rst;
}

712 713 714 715 716 717 718 719 720
template <>
void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts(
        const ExeContext& ctx, ConvTensorLayouts& layouts,
        megdnn::ConvBias::Param& param) {
    auto format = static_cast<megdnn::param::ConvBias::Format>(
            ctx.megdnn_opr()->param().format);
    size_t output_block_size = ctx.megdnn_opr()->param().output_block_size;
    megdnn::ConvBias::deduce_winograd_origin_layout_and_param(
            format, output_block_size, ctx.layouts()[0], ctx.layouts()[1],
721
            layouts[1], param);
722 723
}

724 725 726
template <typename Opr>
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile(
        ExeContext& ctx, bool require_reproducible, bool enable_update) {
727
    MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile")))
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    auto opr = ctx.mgb_opr();
    if (opr->owner_graph()->options().no_profiling_on_shape_change) {
        auto algo = ctx.megdnn_opr()->execution_policy().algorithm;
        if (algo)
            return algo;
    }

    std::unordered_map<std::string, ImplAlgo> algo_map;
    for (auto i : ctx.get_all_candidates()) {
        auto ins = algo_map.emplace(i->name(), i);
        mgb_assert(ins.second, "duplicated algo name: %s", i->name());
    }

    auto&& prof = get_profile_result(ctx, enable_update);
    if (prof.empty())
        return nullptr;
    for (auto&& i : prof) {
        if ((!require_reproducible || i.reproducible)) {
            auto iter = algo_map.find(i.algo);
            mgb_assert(
                    iter != algo_map.end(),
                    "algorithm %s exists in "
                    "profiling result but not in algo_map; please report this "
                    "bug; opr: %s{%s}, shapes: %s %s %s",
                    ctx.mgb_opr()->cname(), ctx.mgb_opr()->dyn_typeinfo()->name,
                    ctx.layouts()[0].TensorShape::to_string().c_str(),
                    ctx.layouts()[1].TensorShape::to_string().c_str(),
                    ctx.layouts()[2].TensorShape::to_string().c_str(),
                    i.algo.c_str());
            return iter->second;
        }
    }

    mgb_log_error(
            "Workspace requirement (%zu) could not be satisfied. Abort now to "
            "avoid further problems",
            WorkspaceLimitGetter::get_workspace_limit(
                    opr->owner_graph(), opr->comp_node(),
                    opr->execution_policy().workspace_limit));
    mgb_trap();
768
    MIDOUT_E
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
}

template <typename Opr>
Maybe<AlgoChooserProfileCache::ResultEntry>
AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo,
                                                  double& timeout) const {
    typename TimedProfiler<Opr>::Param param;
    auto name = algo->name();
    // force check copy size <= dest len-1 from gcc8 for safe
    auto len = sizeof(param.algo_name);
    strncpy(param.algo_name, name, len - 1);
    param.algo_name[len - 1] = '\0';
    mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2],
               "algo name too long: %s; len=%zu", name, strlen(name));
    param.workspace = get_workspace_size_bytes(algo);
    for (int i = 0; i < arity; ++i) {
        auto&& src = m_layouts[i];
        mgb_assert(src.format.is_default() &&
                           (src.dtype.category() == DTypeCategory::FLOAT ||
                            src.dtype.category() == DTypeCategory::INT ||
                            src.dtype.category() == DTypeCategory::QUANTIZED),
                   "unsupported layout in profiling: %s",
                   src.to_string().c_str());
        param.dtypes[i] = src.dtype.enumv();
    }
    param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator();
    mgb_assert(param.shapes.size() == m_layouts.size());
    for (size_t i = 0; i < param.shapes.size(); ++i)
        param.shapes[i] = m_layouts[i];
    param.opr_param = m_megdnn_opr->param();
799
    param.allow_weight_preprocess = m_allow_weight_preprocess;
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

    auto rst = TimedProfiler<Opr>::profile(param, timeout);
    // MIOpen conv profiles all available algos when a specfic shape is
    // provided for the first time, which probably adds to the result time.
    // Therefore, a second profile execution is needed.
    if (strncmp(name, "MIOpen", 6) == 0)
        rst = TimedProfiler<Opr>::profile(param, timeout);
    if (!rst.valid())
        return None;
    return AlgoChooserProfileCache::ResultEntry{
            algo->name(), algo->is_reproducible(), rst.val().time,
            param.workspace};
}

}  // anonymous namespace

/* ==================== misc impl  ==================== */

mixin::Convolution::~Convolution() = default;

void mixin::Convolution::set_execution_policy(const ExecutionPolicy& policy) {
    mgb_throw_if(
            m_policy_accessed, InternalError,
            "attempt to modify ExecutionPolicy after it has been accessed");
    m_policy = policy;
}

template <class MgbOpr, class MegDNNOpr>
void mixin::Convolution::init_output_static_infer_desc_for_bwd_data(
        cg::OperatorNodeBase* self) {
    using namespace cg::static_infer;
    auto&& mgr = self->owner_graph()->static_infer_manager();

    DepVal inp_deps;
    inp_deps.reserve(4);
    for (int i = 0; i < 2; ++i) {
        inp_deps.push_back({self->input(i), DepType::SHAPE});
    }

    // output shape
    if (self->input().size() == 3) {
        mgr.register_shape_infer(self->output(0),
                                 ShapeInferDesc::make_identity(self->input(2)));
    } else {
        auto infer_shp = [self](TensorShape& dest, const InpVal& inp) {
            TensorLayout ol{self->output(0)->dtype()};
            static_cast<MgbOpr*>(self)->megdnn_opr()->deduce_layout(
                    {inp.val.at(0).shape(), self->input(0)->dtype()},
                    {inp.val.at(1).shape(), self->input(1)->dtype()}, ol);
            dest = ol;
            return true;
        };
        mgr.register_shape_infer(self->output(0),
                                 {SourceType::DEP, inp_deps, infer_shp});
    }

    // workspace size
    auto infer_wk = [self](TensorShape& dest, const InpVal& inp) {
        auto&& iv = inp.val;
        dest.ndim = 1;
        dest.shape[0] = AlgoChooser<MegDNNOpr>::setup_algo(
                {TensorLayout{iv[0].shape(), self->input(0)->dtype(),
                              self->input(0)->format()},
                 {iv[1].shape(), self->input(1)->dtype(),
                  self->input(1)->format()},
                 {iv.at(2).shape(), self->output(0)->dtype(),
                  self->output(0)->format()}},
                static_cast<MgbOpr*>(self)->megdnn_opr(),
                static_cast<MgbOpr*>(self));
        return true;
    };
    inp_deps.push_back({self->output(0), DepType::SHAPE});
    auto workspace_dep_var =
            WorkspaceLimitGetter::register_to_graph(self->owner_graph());
    if (workspace_dep_var) {
        inp_deps.push_back({workspace_dep_var, DepType::VALUE});
    }
    mgr.register_shape_infer(self->output(1),
                             {SourceType::DEP, inp_deps, infer_wk});
}

#define IMPL_CONV(_cls, _prof_name)                                  \
    void _cls::init_profile_cache() {                                \
        std::string name(_prof_name CACHE_KEY_VERSION);              \
        name.append(megdnn_opr()->get_algorithm_set_name());         \
        m_profile_cache = std::make_unique<AlgoChooserProfileCache>( \
                comp_node(), name.c_str());                          \
    }                                                                \
    std::pair<const void*, size_t> _cls::param_blob() const {        \
        return {&param(), sizeof(Param)};                            \
    }                                                                \
    MGB_DYN_TYPE_OBJ_FINAL_IMPL(_cls)

AlgoChooserProfileCache& mixin::Convolution::profile_cache() const {
    if (!m_profile_cache) {
        const_cast<Convolution*>(this)->init_profile_cache();
        mgb_assert(m_profile_cache);
    }
    return *m_profile_cache;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
class mixin::WeightPreprocessExecutor::PreprocessedFilterExecDep final
        : public cg::GraphExecutable::ExecDependency {
    std::unique_ptr<PreprocessedFilter> m_pf;
    SmallVector<DeviceTensorND> m_filter_storage;

public:
    explicit PreprocessedFilterExecDep(
            std::unique_ptr<PreprocessedFilter> preprocessed_filter,
            SmallVector<DeviceTensorND> filter_storage)
            : m_pf(std::move(preprocessed_filter)),
              m_filter_storage(std::move(filter_storage)) {}
};

void mixin::WeightPreprocessExecutor::mixin_update_preprocessed_filter(
        cg::OperatorNodeBase& opr) {
    if (!mixin_allow_weight_preprocess(opr)) return;

    auto new_layout = deduce_preprocessed_filter_layout();
    if (new_layout.empty()) {
        // Weight preprocess was needed before, but no longer needed.
        if (m_preprocessed_filter) {
            m_preprocessed_filter.reset();
            m_filter_storage.clear();
        }
        return;
    }

    bool should_update = false;
    size_t new_size = new_layout.size();
    if (!m_preprocessed_filter ||
        m_preprocessed_filter->tensors.size() != new_size) {
        should_update = true;
    } else {
        for (size_t i = 0; i < new_size; i++) {
            if (!new_layout[i].eq_layout(
                        m_preprocessed_filter->tensors[i].layout)) {
                should_update = true;
                break;
            }
        }
    }
    if (!should_update) return;

    if (!m_preprocessed_filter) {
        m_preprocessed_filter.reset(new PreprocessedFilter{});
    }
    m_preprocessed_filter->tensors.resize(new_size);
    m_filter_storage.resize(new_size);
    m_preprocessed_filter->algorithm_id = nullptr;
    for (size_t i = 0; i < new_size; i++) {
        m_filter_storage[i] = {opr.output(0)->comp_node(), new_layout[i],
                               new_layout[i].dtype, new_layout[i].format};
        m_preprocessed_filter->tensors[i] = m_filter_storage[i].as_megdnn();
    }
    scn_do_execute_preprocess();
}

void mixin::WeightPreprocessExecutor::record_preprocessed_weight(
        cg::GraphExecutable::ExecDependencyArray& deps) {
    deps.emplace_back(new PreprocessedFilterExecDep{
            std::move(m_preprocessed_filter), std::move(m_filter_storage)});
}

bool mixin::WeightPreprocessExecutor::mixin_allow_weight_preprocess(
        const cg::OperatorNodeBase& opr) const {
    bool param_merged = opr.input(1)
                                ->owner_opr()
                                ->same_type<opr::MultipleDeviceTensorHolder>();
    return opr.input(1)->contain_flag(VarNode::Flag::PERSISTENT_DEVICE_VALUE) &&
           (cg::is_const_var_value(opr.input(1)) || param_merged);
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/* ==================== ConvolutionForward  ==================== */

IMPL_CONV(ConvolutionForward, "conv_fwd");

ConvolutionForward::ConvolutionForward(VarNode* src, VarNode* filter,
                                       const Param& param,
                                       const ExecutionPolicy& policy,
                                       const OperatorNodeConfig& config)
        : Super{src->owner_graph(), config, "conv", {src, filter}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter});
}

SymbolVar ConvolutionForward::make(SymbolVar src, SymbolVar filter,
                                   const Param& param,
                                   const ExecutionPolicy& policy,
                                   const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<ConvolutionForward>(
            src.node(), filter.node(), param, policy, config);
}

void ConvolutionForward::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
                               output_dtype);
    output(0)->dtype(output_dtype);
}

1002
#ifdef MGB_ENABLE_GRAD
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
MGB_IMPL_OPR_GRAD(ConvolutionForward) {
    mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
               "only float data type supported for grad");
    mgb_assert(wrt_idx == 0 || wrt_idx == 1);
    mgb_assert(out_grad.size() == 2);
    if (wrt_idx == 0) {
        // data
        SymbolVar grad = ConvolutionBackwardData::make(
                opr.input(1), out_grad[0], opr.input(0), opr.param(),
                opr.execution_policy());
        return grad.node();
    } else {
        // filter
        SymbolVar grad = ConvolutionBackwardFilter::make(
                opr.input(0), out_grad[0], opr.input(1), opr.param(),
                opr.execution_policy());
        return grad.node();
    }
}
1022
#endif
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

size_t ConvolutionForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::ConvolutionForward>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[1], input(1)->dtype(), input(1)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
1033
            megdnn_opr(), this, allow_weight_preprocess());
1034 1035 1036 1037 1038 1039 1040
}

void ConvolutionForward::init_output_format() {
    mgb_assert(output().size() == 2);
    output(0)->format(input(0)->format());
}

1041
void ConvolutionForward::scn_do_execute() {
1042
    update_preprocessed_filter();
1043 1044
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
                       input(1)->dev_tensor().as_megdnn(),
1045 1046
                       output(0)->dev_tensor().as_megdnn(),
                       preprocessed_filter(),
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
                       intl::get_megdnn_workspace_from_var(output().back()));
}

void ConvolutionForward::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void ConvolutionForward::init_output_static_infer_desc() {
    Super::set_nr_managed_outputs(this->output().size() - 1);
    Super::init_output_static_infer_desc();
    init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<
                    megdnn::ConvolutionForward>::val);
}

void ConvolutionForward::get_output_var_shape(
        const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
    TensorLayout input_layout{inp_shape[0], input(0)->dtype(),
                              input(0)->format()};
    TensorLayout filter_layout{inp_shape[1], input(1)->dtype(),
                               input(1)->format()};
    TensorLayout dst_layout{output(0)->dtype(), output(0)->format()};
    megdnn_opr()->deduce_layout(input_layout, filter_layout, dst_layout);
    out_shape[0] = dst_layout;
}

void ConvolutionForward::record_execute_deps(
        cg::GraphExecutable::ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    record_preprocessed_weight(deps);
}

SmallVector<TensorLayout>
ConvolutionForward::deduce_preprocessed_filter_layout() {
    return megdnn_opr()->deduce_preprocessed_filter_layout(
            input(0)->layout(), input(1)->layout(), output(0)->layout());
}

void ConvolutionForward::scn_do_execute_preprocess() {
    megdnn_opr()->exec_preprocess(
            input(0)->layout(), input(1)->dev_tensor().as_megdnn(),
            output(0)->layout(), preprocessed_filter(),
            intl::get_megdnn_workspace_from_var(output().back()));
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/* ==================== ConvolutionBackwardData  ==================== */
IMPL_CONV(ConvolutionBackwardData, "conv_bwd_data");

ConvolutionBackwardData::ConvolutionBackwardData(
        VarNode* filter, VarNode* diff, VarNode* src_for_shp,
        const Param& param, const ExecutionPolicy& policy,
        const OperatorNodeConfig& config)
        : Super{filter->owner_graph(),
                config,
                "conv_bwd_data",
                {filter, diff}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({filter, diff});
    if (src_for_shp) {
        add_input({src_for_shp});
    }
}

SymbolVar ConvolutionBackwardData::make(SymbolVar filter, SymbolVar diff,
                                        SymbolVar src, const Param& param,
                                        const ExecutionPolicy& policy,
                                        const OperatorNodeConfig& config) {
    return filter.insert_single_output_opr<ConvolutionBackwardData>(
            filter.node(), diff.node(), src.node(), param, policy, config);
}

SymbolVar ConvolutionBackwardData::make(SymbolVar filter, SymbolVar data,
                                        const Param& param,
                                        const ExecutionPolicy& policy,
                                        const OperatorNodeConfig& config) {
    return make(filter, data, {}, param, policy, config);
}

void ConvolutionBackwardData::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void ConvolutionBackwardData::init_output_static_infer_desc() {
    init_output_static_infer_desc_for_bwd_data<ConvolutionBackwardData,
                                               megdnn::ConvolutionBackwardData>(
            this);
}

void ConvolutionBackwardData::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    megdnn_opr()->deduce_dtype(input(0)->dtype(), input(1)->dtype(),
                               output_dtype);
    output(0)->dtype(output_dtype);
}

void ConvolutionBackwardData::init_output_format() {
    mgb_assert(output().size() == 2);
    output(0)->format(input(1)->format());
}

cg::OperatorNodeBase::NodeProp* ConvolutionBackwardData::do_make_node_prop()
        const {
    auto prop = Super::Super::do_make_node_prop();
    if (input().size() == 3) {
        using D = NodeProp::DepType;
        prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
    }
    return prop;
}

void ConvolutionBackwardData::scn_do_execute() {
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
                       input(1)->dev_tensor().as_megdnn(),
                       output(0)->dev_tensor().as_megdnn(),
                       intl::get_megdnn_workspace_from_var(output(1)));
}

1165
#ifdef MGB_ENABLE_GRAD
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
MGB_IMPL_OPR_GRAD(ConvolutionBackwardData) {
    mgb_assert(!out_grad[1]);
    if (wrt_idx == 0) {
        return ConvolutionBackwardFilter::make(out_grad[0], opr.input(1),
                                               opr.input(0), opr.param(),
                                               opr.execution_policy())
                .node();
    }
    if (wrt_idx == 1) {
        return Convolution::make(out_grad[0], opr.input(0), opr.param(),
                                 opr.execution_policy())
                .node();
    }
    return nullptr;
}
1181
#endif
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

/* ==================== ConvolutionBackwardFilter  ==================== */
IMPL_CONV(ConvolutionBackwardFilter, "conv_bwd_filter");

ConvolutionBackwardFilter::ConvolutionBackwardFilter(
        VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
        const ExecutionPolicy& policy, const OperatorNodeConfig& config)
        : Super({src->owner_graph(),
                 config,
                 "conv_bwd_filter",
                 {src, diff, filter}},
                2, false) {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, diff, filter});
}

SymbolVar ConvolutionBackwardFilter::make(SymbolVar src, SymbolVar diff,
                                          SymbolVar filter, const Param& param,
                                          const ExecutionPolicy& policy,
                                          const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<ConvolutionBackwardFilter>(
            src.node(), diff.node(), filter.node(), param, policy, config);
}

size_t ConvolutionBackwardFilter::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::ConvolutionBackwardFilter>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[1], input(1)->dtype(), input(1)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

1219
#ifdef MGB_ENABLE_GRAD
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
MGB_IMPL_OPR_GRAD(ConvolutionBackwardFilter) {
    mgb_assert(!out_grad[1]);
    if (wrt_idx == 0) {
        return ConvolutionBackwardData::make(out_grad[0], opr.input(1),
                                             opr.input(0), opr.param(),
                                             opr.execution_policy())
                .node();
    }
    if (wrt_idx == 1) {
        return Convolution::make(opr.input(0), out_grad[0], opr.param(),
                                 opr.execution_policy())
                .node();
    }
    return nullptr;
}
1235
#endif
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/* ==================== Convolution3DForward ==================== */

IMPL_CONV(Convolution3DForward, "conv3d_fwd");

Convolution3DForward::Convolution3DForward(VarNode* src, VarNode* filter,
                                           const Param& param,
                                           const ExecutionPolicy& policy,
                                           const OperatorNodeConfig& config)
        : Super{src->owner_graph(), config, "conv3d", {src, filter}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter});
}

SymbolVar Convolution3DForward::make(SymbolVar src, SymbolVar filter,
                                     const Param& param,
                                     const ExecutionPolicy& policy,
                                     const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<Convolution3DForward>(
            src.node(), filter.node(), param, policy, config);
}

void Convolution3DForward::init_output_dtype() {
    switch (param().data_type) {
        case Param::DataType::FLOAT:
            output(0)->dtype(input(0)->dtype());
            break;
#if !MEGDNN_DISABLE_FLOAT16
        case Param::DataType::FLOAT_IO16xC32:
            mgb_assert(input(0)->dtype() == dtype::Float16(),
                       "invalid input dtype %s", input(0)->name().c_str());
            output(0)->dtype(input(0)->dtype());
            break;
#endif
        default:
            mgb_throw(MegBrainError, "bad data_type enum");
    }
}

1275
#ifdef MGB_ENABLE_GRAD
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
MGB_IMPL_OPR_GRAD(Convolution3DForward) {
    mgb_assert(opr.param().data_type ==
                       Convolution3DForward::Param::DataType::FLOAT,
               "only float data type supported for grad");
    mgb_assert(wrt_idx == 0 || wrt_idx == 1);
    mgb_assert(out_grad.size() == 2);
    if (wrt_idx == 0) {
        // data
        SymbolVar grad = Convolution3DBackwardData::make(
                opr.input(1), out_grad[0], opr.input(0), opr.param(),
                opr.execution_policy());
        return grad.node();
    } else {
        // filter
        SymbolVar grad = Convolution3DBackwardFilter::make(
                opr.input(0), out_grad[0], opr.input(1), opr.param(),
                opr.execution_policy());
        return grad.node();
    }
}
1296
#endif
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

size_t Convolution3DForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::Convolution3DForward>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[1], input(1)->dtype(), input(1)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

/* ==================== Convolution3DBackwardData  ==================== */
IMPL_CONV(Convolution3DBackwardData, "conv3d_bwd_data");

Convolution3DBackwardData::Convolution3DBackwardData(
        VarNode* filter, VarNode* diff, VarNode* src_for_shp,
        const Param& param, const ExecutionPolicy& policy,
        const OperatorNodeConfig& config)
        : Super{filter->owner_graph(),
                config,
                "conv3d_bwd_data",
                {filter, diff}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({filter, diff});
    if (src_for_shp) {
        add_input({src_for_shp});
    }
}

SymbolVar Convolution3DBackwardData::make(SymbolVar filter, SymbolVar diff,
                                          SymbolVar src, const Param& param,
                                          const ExecutionPolicy& policy,
                                          const OperatorNodeConfig& config) {
    return filter.insert_single_output_opr<Convolution3DBackwardData>(
            filter.node(), diff.node(), src.node(), param, policy, config);
}

SymbolVar Convolution3DBackwardData::make(SymbolVar filter, SymbolVar data,
                                          const Param& param,
                                          const ExecutionPolicy& policy,
                                          const OperatorNodeConfig& config) {
    return make(filter, data, {}, param, policy, config);
}

void Convolution3DBackwardData::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void Convolution3DBackwardData::init_output_static_infer_desc() {
    init_output_static_infer_desc_for_bwd_data<
            Convolution3DBackwardData, megdnn::Convolution3DBackwardData>(this);
}

cg::OperatorNodeBase::NodeProp* Convolution3DBackwardData::do_make_node_prop()
        const {
    auto prop = Super::Super::do_make_node_prop();
    if (input().size() == 3) {
        using D = NodeProp::DepType;
        prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
    }
    return prop;
}

void Convolution3DBackwardData::scn_do_execute() {
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
                       input(1)->dev_tensor().as_megdnn(),
                       output(0)->dev_tensor().as_megdnn(),
                       intl::get_megdnn_workspace_from_var(output(1)));
}

1370
#ifdef MGB_ENABLE_GRAD
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
MGB_IMPL_OPR_GRAD(Convolution3DBackwardData) {
    mgb_assert(!out_grad[1]);
    if (wrt_idx == 0) {
        return Convolution3DBackwardFilter::make(out_grad[0], opr.input(1),
                                                 opr.input(0), opr.param(),
                                                 opr.execution_policy())
                .node();
    }
    if (wrt_idx == 1) {
        return Convolution3D::make(out_grad[0], opr.input(0), opr.param(),
                                   opr.execution_policy())
                .node();
    }
    return nullptr;
}
1386
#endif
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

/* ==================== Convolution3DBackwardFilter  ==================== */
IMPL_CONV(Convolution3DBackwardFilter, "conv3d_bwd_filter");

Convolution3DBackwardFilter::Convolution3DBackwardFilter(
        VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
        const ExecutionPolicy& policy, const OperatorNodeConfig& config)
        : Super({src->owner_graph(),
                 config,
                 "conv3d_bwd_filter",
                 {src, diff, filter}},
                2, false) {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, diff, filter});
}

SymbolVar Convolution3DBackwardFilter::make(SymbolVar src, SymbolVar diff,
                                            SymbolVar filter,
                                            const Param& param,
                                            const ExecutionPolicy& policy,
                                            const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<Convolution3DBackwardFilter>(
            src.node(), diff.node(), filter.node(), param, policy, config);
}

size_t Convolution3DBackwardFilter::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::Convolution3DBackwardFilter>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[1], input(1)->dtype(), input(1)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

/* ========================== MaskConvolution  ========================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(MaskConvolution);

MaskConvolution::MaskConvolution(VarNode* src, VarNode* filter, VarNode* mask,
                                 const Param& param,
                                 const OperatorNodeConfig& config)
        : Super(src->owner_graph(), config, "mask_conv_fwd",
                {src, filter, mask}) {
    init_megdnn_opr(*this, param);
    add_input({src, filter, mask});
}

SymbolVar MaskConvolution::make(SymbolVar src, SymbolVar filter, SymbolVar mask,
                                const Param& param,
                                const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<MaskConvolution>(
            src.node(), filter.node(), mask.node(), param, config);
}

void MaskConvolution::init_output_dtype() {
    auto dtype = input(2)->dtype();
    mgb_assert(dtype == dtype::Int32() || dtype == dtype::Int16() ||
                       dtype == dtype::Int8(),
               "dtype must be int8, int16 or int32, while get %s",
               dtype.name());
    output(0)->dtype(input(0)->dtype());
}

MGB_DYN_TYPE_OBJ_FINAL_IMPL(MaskPropagate);

MaskPropagate::MaskPropagate(VarNode* src, const Param& param,
                             const OperatorNodeConfig& config)
        : Super(src->owner_graph(), config, "mask_propagate", {src}) {
    init_megdnn_opr(*this, param);
    add_input({src});
}

void MaskPropagate::init_output_dtype() {
    auto dtype = input(0)->dtype();
    mgb_assert(dtype == dtype::Int32() || dtype == dtype::Int16() ||
               dtype == dtype::Int8());
    output(0)->dtype(dtype);
}

SymbolVar MaskPropagate::make(SymbolVar src, const Param& param,
                              const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<MaskPropagate>(src.node(), param,
                                                       config);
}

/* ==================== ConvBiasForward  ==================== */
IMPL_CONV(ConvBiasForward, "conv_bias_fwd");

ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter,
                                 const Param& param,
                                 const ExecutionPolicy& policy,
                                 const OperatorNodeConfig& config)
        : Super{src->owner_graph(), config, "conv_bias", {src, filter}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter});
}

ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter, VarNode* bias,
                                 const Param& param,
                                 const ExecutionPolicy& policy,
                                 const OperatorNodeConfig& config)
        : Super{src->owner_graph(), config, "conv_bias", {src, filter, bias}} {
    m_policy = policy;
    init_megdnn_opr(*this, param);
    add_input({src, filter, bias});
}

ConvBiasForward::ConvBiasForward(VarNode* src, VarNode* filter, VarNode* bias,
                                 VarNode* z, const Param& param,
                                 const ExecutionPolicy& policy,
                                 const OperatorNodeConfig& config)
        : Super{src->owner_graph(),
                config,
                "conv_bias",
                {src, filter, bias, z}} {
    m_policy = policy;
    init_megdnn_opr(*this, param);
    add_input({src, filter, bias, z});
}

void ConvBiasForward::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter,
                                const Param& param,
                                const ExecutionPolicy& policy,
                                const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<ConvBiasForward>(
            src.node(), filter.node(), param, policy, config);
}

SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter, SymbolVar bias,
                                const Param& param,
                                const ExecutionPolicy& policy,
                                const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<ConvBiasForward>(
            src.node(), filter.node(), bias.node(), param, policy, config);
}

SymbolVar ConvBiasForward::make(SymbolVar src, SymbolVar filter, SymbolVar bias,
                                SymbolVar z, const Param& param,
                                const ExecutionPolicy& policy,
                                const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<ConvBiasForward>(
            src.node(), filter.node(), bias.node(), z.node(), param, policy,
            config);
}

void ConvBiasForward::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    DType i0, i1, i2, i3;
    mgb_assert(input().size() >= 2 && input().size() <= 4);
    i0 = input(0)->dtype();
    i1 = input(1)->dtype();
    if (input().size() >= 3)
        i2 = input(2)->dtype();
    if (input().size() == 4)
        i3 = input(3)->dtype();
    megdnn_opr()->deduce_dtype(i0, i1, i2, i3, output_dtype);
    output(0)->dtype(output_dtype);
}

size_t ConvBiasForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    auto mo = megdnn_opr();
    TensorLayout i0, i1, i2, i3;
    mgb_assert(input_shapes.size() >= 2 && input_shapes.size() <= 4);
    i0 = {input_shapes[0], input(0)->dtype(), input(0)->format()};
    i1 = {input_shapes[1], input(1)->dtype(), input(1)->format()};
    if (input_shapes.size() >= 3)
        i2 = {input_shapes[2], input(2)->dtype(), input(2)->format()};
    else {
        DType dtype;
        mo->deduce_dtype(input(0)->dtype(), input(1)->dtype(), DType{}, DType{},
                         dtype);
        i2 = {{}, dtype};
    }
    if (input_shapes.size() == 4)
        i3 = {input_shapes[3], input(3)->dtype(), input(3)->format()};
    else
        i3 = {{}, output(0)->dtype(), output(0)->format()};

    return AlgoChooser<megdnn::ConvBias>::setup_algo(
            {i0,
             i1,
             i2,
             i3,
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
1582
            mo, this, allow_weight_preprocess());
1583 1584 1585
}

void ConvBiasForward::scn_do_execute() {
1586 1587
    update_preprocessed_filter();

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
    auto&& inp = input();
    auto mo = megdnn_opr();
    if (inp.size() == 2) {
        TensorLayout bias_layout;
        bias_layout.ndim = 0;
        if (output(0)->dtype().enumv() == DTypeEnum::QuantizedS8) {
            bias_layout.dtype = dtype::QuantizedS32(
                    output(0)->dtype().param<dtype::QuantizedS8>().scale);
        } else {
            bias_layout.dtype = output(0)->dtype();
        }
        TensorLayout z_layout;
        z_layout.ndim = 0;
        z_layout.dtype = output(0)->dtype();
        megdnn::TensorND bias_tensor{nullptr, bias_layout};
        megdnn::TensorND z_tensor{nullptr, z_layout};
        mo->exec(inp[0]->dev_tensor().as_megdnn(),
                 inp[1]->dev_tensor().as_megdnn(), bias_tensor, z_tensor,
1606
                 output(0)->dev_tensor().as_megdnn(), preprocessed_filter(),
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
                 intl::get_megdnn_workspace_from_var(output().back()));

    } else if (inp.size() == 3) {
        TensorLayout z_layout;
        z_layout.ndim = 0;
        z_layout.dtype = output(0)->dtype();
        megdnn::TensorND z_tensor{nullptr, z_layout};

        mo->exec(inp[0]->dev_tensor().as_megdnn(),
                 inp[1]->dev_tensor().as_megdnn(),
                 inp[2]->dev_tensor().as_megdnn(), z_tensor,
1618
                 output(0)->dev_tensor().as_megdnn(), preprocessed_filter(),
1619 1620 1621 1622 1623 1624 1625
                 intl::get_megdnn_workspace_from_var(output().back()));
    } else {
        mgb_assert(inp.size() == 4);
        mo->exec(inp[0]->dev_tensor().as_megdnn(),
                 inp[1]->dev_tensor().as_megdnn(),
                 inp[2]->dev_tensor().as_megdnn(),
                 inp[3]->dev_tensor().as_megdnn(),
1626
                 output(0)->dev_tensor().as_megdnn(), preprocessed_filter(),
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
                 intl::get_megdnn_workspace_from_var(output().back()));
    }
}

void ConvBiasForward::get_output_var_shape(const TensorShapeArray& inp_shape,
                                           TensorShapeArray& out_shape) const {
    auto mo = megdnn_opr();
    TensorLayout dst;
    mo->deduce_layout({inp_shape[0], input(0)->dtype(), input(0)->format()},
                      {inp_shape[1], input(1)->dtype(), input(0)->format()}, {},
                      {}, dst);
    out_shape[0] = dst;
}

void ConvBiasForward::init_output_static_infer_desc() {
    Super::set_nr_managed_outputs(this->output().size() - 1);
    Super::init_output_static_infer_desc();
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<
                    megdnn::ConvBiasForward>::val);
}

void ConvBiasForward::init_output_format() {
    mgb_assert(output().size() == 2);
    output(0)->format(input(0)->format());
}

void ConvBiasForward::check_winograd_param_valid(
        const megdnn::ConvBias::WinogradParam& param,
        const DType& dtype) {
    if (dtype.enumv() == DTypeEnum::Float32) {
        mgb_assert(param.channel_block_size == 1 ||
                           param.channel_block_size == 4 ||
                           param.channel_block_size == 8,
                   "only support 1/4/8 for the channel_block_size of "
                   "winograd param, got %u",
                   param.channel_block_size);
    } else {
        mgb_assert((MEGDNN_FLOAT16_SELECT(dtype.enumv() == DTypeEnum::Float16,
                                          false) ||
                    dtype.enumv() == DTypeEnum::QuantizedS8 ||
                    dtype.enumv() == DTypeEnum::Quantized8Asymm) &&
                           (param.channel_block_size == 1 ||
1670
                            param.channel_block_size == 4 ||
1671
                            param.channel_block_size == 8),
1672
                   "only support 1/4/8 for the channel_block_size of "
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
                   "winograd param, got %u",
                   param.channel_block_size);
    }
}

megdnn::param::MatrixMul::Format ConvBiasForward::get_matmul_format(
        const megdnn::ConvBias::WinogradParam& param) {
    switch (param.channel_block_size) {
        case 1:
            return megdnn::param::MatrixMul::Format::DEFAULT;
            break;
        case 4:
            return megdnn::param::MatrixMul::Format::MK4;
            break;
        case 8:
            return megdnn::param::MatrixMul::Format::MK8;
            break;
        default:
            mgb_throw(InternalError,
                      "Only Support 1/4/8 for "
                      "channel_block_size, got: %u",
                      param.channel_block_size);
    }
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
SmallVector<TensorLayout> ConvBiasForward::deduce_preprocessed_filter_layout() {
    TensorLayout i2, i3;
    if (input().size() > 2) {
        i2 = input(2)->layout();
    }
    if (input().size() > 3) {
        i3 = input(3)->layout();
    }
    return megdnn_opr()->deduce_preprocessed_filter_layout(
            input(0)->layout(), input(1)->layout(), i2, i3,
            output(0)->layout());
}

void ConvBiasForward::scn_do_execute_preprocess() {
    TensorLayout bias_layout(output(0)->dtype()), z_layout(output(0)->dtype());
    if (input().size() > 2) {
        bias_layout = input(2)->layout();
    }
    if (input().size() > 3) {
        z_layout = input(3)->layout();
    }
    megdnn_opr()->exec_preprocess(
            input(0)->layout(), input(1)->dev_tensor().as_megdnn(), bias_layout,
            z_layout, output(0)->layout(), preprocessed_filter(),
            intl::get_megdnn_workspace_from_var(output().back()));
}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
/* ===================== LocalShareForward ==================== */

IMPL_CONV(LocalShareForward, "local_share");

LocalShareForward::LocalShareForward(VarNode* src, VarNode* filter,
                                     const Param& param,
                                     const ExecutionPolicy& policy,
                                     const OperatorNodeConfig& config)
        : Super{src->owner_graph(), config, "local_share", {src, filter}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter});
}

SymbolVar LocalShareForward::make(SymbolVar src, SymbolVar filter,
                                  const Param& param,
                                  const ExecutionPolicy& policy,
                                  const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<LocalShareForward>(
            src.node(), filter.node(), param, policy, config);
}

void LocalShareForward::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
    output_dtype = dtype::Float32();
    output(0)->dtype(output_dtype);
}

void LocalShareForward::init_output_format() {
    mgb_assert(output().size() == 2);
    output(0)->format(input(0)->format());
}

size_t LocalShareForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 2 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::LocalShareForward>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[1], input(1)->dtype(), input(1)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

1771
#ifdef MGB_ENABLE_GRAD
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
MGB_IMPL_OPR_GRAD(LocalShareForward) {
    mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT,
            "only float data type supported for grad");
    mgb_assert(wrt_idx == 0 || wrt_idx == 1);
    mgb_assert(out_grad.size() == 2);
    if (wrt_idx == 0) {
        // data
        SymbolVar grad = LocalShareBackwardData::make(
                opr.input(1), out_grad[0], opr.input(0),
                opr.param(), opr.execution_policy());
        return grad.node();
    } else {
        // filter
        SymbolVar grad = LocalShareBackwardFilter::make(
                opr.input(0), out_grad[0], opr.input(1),
                opr.param(), opr.execution_policy());
        return grad.node();
    }
}
1791
#endif
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

/* ===================== LocalShareBackwardData ==================== */

IMPL_CONV(LocalShareBackwardData, "local_share_bwd_data");

LocalShareBackwardData::LocalShareBackwardData(VarNode* filter, VarNode* diff,
                                               VarNode* src_for_shp,
                                               const Param& param,
                                               const ExecutionPolicy& policy,
                                               const OperatorNodeConfig& config)
        : Super{filter->owner_graph(), config, "local_share_bwd_data", {filter, diff}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({filter, diff});
    if (src_for_shp) {
        add_input({src_for_shp});
    }
}

SymbolVar LocalShareBackwardData::make(SymbolVar filter, SymbolVar diff,
                                       SymbolVar src, const Param& param,
                                       const ExecutionPolicy& policy,
                                       const OperatorNodeConfig& config) {
    return filter.insert_single_output_opr<LocalShareBackwardData>(
            filter.node(), diff.node(), src.node(), param, policy, config);
}

void LocalShareBackwardData::init_output_static_infer_desc() {
    init_output_static_infer_desc_for_bwd_data<LocalShareBackwardData,
                                               megdnn::LocalShareBackwardData>(
            this);
}

void LocalShareBackwardData::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
    output_dtype = dtype::Float32();
    output(0)->dtype(output_dtype);
}

void LocalShareBackwardData::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

cg::OperatorNodeBase::NodeProp* LocalShareBackwardData::do_make_node_prop()
        const {
    auto prop = Super::Super::do_make_node_prop();
    mgb_assert(input().size() == 3);
    using D = NodeProp::DepType;
    prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::SHAPE});
    return prop;
}

void LocalShareBackwardData::scn_do_execute() {
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
                       input(1)->dev_tensor().as_megdnn(),
                       output(0)->dev_tensor().as_megdnn(),
                       intl::get_megdnn_workspace_from_var(output(1)));
}

1852
#ifdef MGB_ENABLE_GRAD
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
MGB_IMPL_OPR_GRAD(LocalShareBackwardData) {
    mgb_assert(!out_grad[1]);
    if (wrt_idx == 0) {
        return LocalShareBackwardFilter::make(out_grad[0], opr.input(1),
                                              opr.input(0), opr.param(),
                                              opr.execution_policy())
                .node();
    }
    if (wrt_idx == 1) {
        return LocalShare::make(out_grad[0], opr.input(0), opr.param(),
                                opr.execution_policy())
                .node();
    }
    return nullptr;
}
1868
#endif
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

/* ==================== LocalShareBackwardFilter  ==================== */

IMPL_CONV(LocalShareBackwardFilter, "local_share_bwd_filter");

LocalShareBackwardFilter::LocalShareBackwardFilter(
        VarNode* src, VarNode* diff, VarNode* filter, const Param& param,
        const ExecutionPolicy& policy, const OperatorNodeConfig& config)
        : Super({src->owner_graph(),
                 config,
                 "local_share_bwd_filter",
                 {src, diff, filter}},
                2, false) {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, diff, filter});
}

SymbolVar LocalShareBackwardFilter::make(
        SymbolVar src, SymbolVar diff, SymbolVar filter,
        const Param &param,
        const ExecutionPolicy &policy,
        const OperatorNodeConfig &config) {

    return src.insert_single_output_opr<LocalShareBackwardFilter>(
            src.node(), diff.node(), filter.node(), param, policy, config);
}

size_t LocalShareBackwardFilter::get_workspace_size_bytes(
        const TensorShapeArray &input_shapes,
        const TensorShapeArray &output_shapes) const {
    mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::LocalShareBackwardFilter>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
            {input_shapes[1], input(1)->dtype(), input(1)->format()},
            {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

1909
#ifdef MGB_ENABLE_GRAD
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) {
    mgb_assert(!out_grad[1]);
    if (wrt_idx == 0) {
        return LocalShareBackwardData::make(out_grad[0], opr.input(1),
                opr.input(0), opr.param(), opr.execution_policy()).node();
    }
    if (wrt_idx == 1) {
        return LocalShare::make(
                opr.input(0), out_grad[0], opr.param(), opr.execution_policy()).
            node();
    }
    return nullptr;
}
1923
#endif
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

/* ===================== DeformableConvForward ==================== */

IMPL_CONV(DeformableConvForward, "deformable_conv");

DeformableConvForward::DeformableConvForward(VarNode* src, VarNode* filter,
                                             VarNode* offset, VarNode* mask,
                                             const Param& param,
                                             const ExecutionPolicy& policy,
                                             const OperatorNodeConfig& config)
        : Super{src->owner_graph(),
                config,
                "deformable_conv",
                {src, filter, offset, mask}} {
    mgb_assert(src->dtype() == dtype::Float32() &&
                       filter->dtype() == dtype::Float32() &&
                       offset->dtype() == dtype::Float32() &&
                       mask->dtype() == dtype::Float32(),
               "input should be float32, got %s, %s, %s, %s",
               src->dtype().name(), filter->dtype().name(),
               offset->dtype().name(), mask->dtype().name());

    init_megdnn_opr(*this, param);
    m_policy = policy;

    add_input({src, filter, offset, mask});
}

SymbolVar DeformableConvForward::make(SymbolVar src, SymbolVar filter,
                                      SymbolVar offset, SymbolVar mask,
                                      const Param& param,
                                      const ExecutionPolicy& policy,
                                      const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<DeformableConvForward>(
            src.node(), filter.node(), offset.node(), mask.node(), param,
            policy, config);
}

void DeformableConvForward::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
    output_dtype = dtype::Float32();
    output(0)->dtype(output_dtype);
}

void DeformableConvForward::init_output_format() {
    mgb_assert(output().size() == 2);
    output(0)->format(input(0)->format());
}

size_t DeformableConvForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 4 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::DeformableConvForward>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[1], input(1)->dtype(), input(1)->format()},
             {input_shapes[2], input(2)->dtype(), input(2)->format()},
             {input_shapes[3], input(3)->dtype(), input(3)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

1988
#ifdef MGB_ENABLE_GRAD
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
MGB_IMPL_OPR_GRAD(DeformableConvForward) {
    mgb_assert(opr.input(0)->dtype() == dtype::Float32(),
               "only float data type supported for grad");
    mgb_assert(wrt_idx < 4);
    mgb_assert(!out_grad[1]);
    mgb_assert(out_grad.size() == 2);

    // data, offset and mask
    auto grad_arr = DeformableConvBackwardData::make_all(
            opr.input(0), opr.input(1), opr.input(2), opr.input(3), out_grad[0],
            opr.param(), opr.execution_policy(), opr.config());
    // filter
    auto filter_grad = DeformableConvBackwardFilter::make(
            opr.input(0), opr.input(1), opr.input(2), opr.input(3), out_grad[0],
            opr.param(), opr.execution_policy(), opr.config());

    SymbolVarArray grads = {grad_arr[0], filter_grad, grad_arr[1], grad_arr[2]};
    return grads[wrt_idx].node();
}
2008
#endif
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

/* ==================== DeformableConvBackwardData  ==================== */

IMPL_CONV(DeformableConvBackwardData, "deformalbe_conv_backward_data");

DeformableConvBackwardData::DeformableConvBackwardData(
        VarNode* src, VarNode* filter, VarNode* offset, VarNode* mask,
        VarNode* diff, const Param& param, const ExecutionPolicy& policy,
        const OperatorNodeConfig& config)
        : Super{filter->owner_graph(),
                config,
                "deformable_conv_backward_data",
                {src, filter, offset, mask, diff}} {
    mgb_assert(src->dtype() == dtype::Float32() and
                       filter->dtype() == dtype::Float32() and
                       offset->dtype() == dtype::Float32() and
                       mask->dtype() == dtype::Float32() and
                       diff->dtype() == dtype::Float32(),
               "input should be float32, got %s, %s, %s, %s %s",
               src->dtype().name(), filter->dtype().name(),
               offset->dtype().name(), mask->dtype().name(),
               diff->dtype().name());

    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter, offset, mask, diff});
}

SymbolVarArray DeformableConvBackwardData::make_all(
        SymbolVar src, SymbolVar filter, SymbolVar offset, SymbolVar mask,
        SymbolVar diff, const Param& param, const ExecutionPolicy& policy,
        const OperatorNodeConfig& config) {
    auto graph = src.node()->owner_graph();

    auto back_node =
            graph->insert_opr(std::make_unique<DeformableConvBackwardData>(
                    src.node(), filter.node(), offset.node(), mask.node(),
                    diff.node(), param, policy, config));

    return {back_node->output(0), back_node->output(1), back_node->output(2)};
}

SymbolVar DeformableConvBackwardData::make(SymbolVar src, SymbolVar filter,
                                           SymbolVar offset, SymbolVar mask,
                                           SymbolVar diff, const Param& param,
                                           const ExecutionPolicy& policy,
                                           const OperatorNodeConfig& config) {
    auto&& all =
            make_all(src, filter, offset, mask, diff, param, policy, config);
    return all[0];
}

void DeformableConvBackwardData::scn_do_execute() {
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),   // src
                       input(1)->dev_tensor().as_megdnn(),   // filter
                       input(2)->dev_tensor().as_megdnn(),   // offset
                       input(3)->dev_tensor().as_megdnn(),   // mask
                       input(4)->dev_tensor().as_megdnn(),   // diff
                       output(0)->dev_tensor().as_megdnn(),  // src_grad
                       output(1)->dev_tensor().as_megdnn(),  // offset_grad
                       output(2)->dev_tensor().as_megdnn(),  // mask_grad
                       intl::get_megdnn_workspace_from_var(output(3)));
}

void DeformableConvBackwardData::get_output_var_shape(
        const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
    TensorShape im_shp = inp_shape[0];
    TensorShape offset_shp = inp_shape[2];
    TensorShape mask_shp = inp_shape[3];

    mgb_assert(im_shp.ndim == 4, "invalid src shape: %s",
               im_shp.to_string().c_str());
    mgb_assert(offset_shp.ndim == 4, "invalid offset shape: %s",
               offset_shp.to_string().c_str());
    mgb_assert(mask_shp.ndim == 4, "invalid mask shape: %s",
               mask_shp.to_string().c_str());
    mgb_assert(out_shape.size() == 3);

    out_shape[0] = im_shp;
    out_shape[1] = offset_shp;
    out_shape[2] = mask_shp;
}

size_t DeformableConvBackwardData::get_workspace_size_bytes(
        const TensorShapeArray& inp_shape,
        const TensorShapeArray& out_shape) const {
    size_t ws = AlgoChooser<megdnn::DeformableConvBackwardData>::setup_algo(
            {TensorLayout{inp_shape[0], input(0)->dtype(), input(0)->format()},
             {inp_shape[1], input(1)->dtype(), input(1)->format()},
             {inp_shape[2], input(2)->dtype(), input(2)->format()},
             {inp_shape[3], input(3)->dtype(), input(3)->format()},
             {inp_shape[4], input(4)->dtype(), input(4)->format()},
             {out_shape[0], output(0)->dtype(), output(0)->format()},
             {out_shape[1], output(1)->dtype(), output(1)->format()},
             {out_shape[2], output(2)->dtype(), output(2)->format()}},
            megdnn_opr(), this);
    return ws;
}

void DeformableConvBackwardData::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    mgb_assert(!output_dtype.valid() || output_dtype == dtype::Float32());
    output_dtype = dtype::Float32();
    output(0)->dtype(output_dtype);
    output(1)->dtype(output_dtype);
    output(2)->dtype(output_dtype);
}

void DeformableConvBackwardData::init_output_format() {
    mgb_assert(output().size() == 4);
    output(0)->format(input(0)->format());
    output(1)->format(input(2)->format());
    output(2)->format(input(3)->format());
}

cg::OperatorNodeBase::NodeProp* DeformableConvBackwardData::do_make_node_prop()
        const {
    auto prop = Super::Super::do_make_node_prop();
    using D = NodeProp::DepType;
    mgb_assert(input().size() == 5);
    prop->reset_dep_type(input(), {D::DEV_VALUE, D::DEV_VALUE, D::DEV_VALUE,
                                   D::DEV_VALUE, D::DEV_VALUE});
    return prop;
}

void DeformableConvBackwardData::init_output_static_infer_desc() {
    Super::set_nr_managed_outputs(this->output().size() - 1);
    Super::init_output_static_infer_desc();
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<
                    megdnn::DeformableConvBackwardData>::val);
}

/* ==================== DeformableConvBackwardFilter  ==================== */

IMPL_CONV(DeformableConvBackwardFilter, "deformalbe_conv_backward_filter");

DeformableConvBackwardFilter::DeformableConvBackwardFilter(
        VarNode* src, VarNode* filter, VarNode* offset, VarNode* mask,
        VarNode* diff, const Param& param, const ExecutionPolicy& policy,
        const OperatorNodeConfig& config)
        : Super({src->owner_graph(),
                 config,
                 "deformable_conv_backward_filter",
                 {src, filter, offset, mask, diff}},
                1, false) {
    mgb_assert(src->dtype() == dtype::Float32() and
                       filter->dtype() == dtype::Float32() and
                       offset->dtype() == dtype::Float32() and
                       mask->dtype() == dtype::Float32() and
                       diff->dtype() == dtype::Float32(),
               "input should be float32, got %s, %s, %s, %s %s",
               src->dtype().name(), filter->dtype().name(),
               offset->dtype().name(), mask->dtype().name(),
               diff->dtype().name());
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter, offset, mask, diff});
}

SymbolVar DeformableConvBackwardFilter::make(SymbolVar src, SymbolVar filter,
                                             SymbolVar offset, SymbolVar mask,
                                             SymbolVar diff, const Param& param,
                                             const ExecutionPolicy& policy,
                                             const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<DeformableConvBackwardFilter>(
            src.node(), filter.node(), offset.node(), mask.node(), diff.node(),
            param, policy, config);
}

void DeformableConvBackwardFilter::scn_do_execute() {
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),   // src
                       input(2)->dev_tensor().as_megdnn(),   // offset
                       input(3)->dev_tensor().as_megdnn(),   // mask
                       input(4)->dev_tensor().as_megdnn(),   // diff
                       output(0)->dev_tensor().as_megdnn(),  // filter_diff
                       intl::get_megdnn_workspace_from_var(output(1)));
}

size_t DeformableConvBackwardFilter::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    mgb_assert(input_shapes.size() == 5 && output_shapes.size() == 1);
    return AlgoChooser<megdnn::DeformableConvBackwardFilter>::setup_algo(
            {TensorLayout{input_shapes[0], input(0)->dtype(),
                          input(0)->format()},
             {input_shapes[2], input(2)->dtype(), input(2)->format()},
             {input_shapes[3], input(3)->dtype(), input(3)->format()},
             {input_shapes[4], input(4)->dtype(), input(4)->format()},
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            megdnn_opr(), this);
}

/* ==================== BatchConvBiasForward  ==================== */
IMPL_CONV(BatchConvBiasForward, "batch_conv_bias_fwd");

BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
                                           const Param& param,
                                           const ExecutionPolicy& policy,
                                           const OperatorNodeConfig& config)
        : Super{src->owner_graph(), config, "batch_conv_bias", {src, filter}} {
    init_megdnn_opr(*this, param);
    m_policy = policy;
    add_input({src, filter});
}

BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
                                           VarNode* bias, const Param& param,
                                           const ExecutionPolicy& policy,
                                           const OperatorNodeConfig& config)
        : Super{src->owner_graph(),
                config,
                "batch_conv_bias",
                {src, filter, bias}} {
    m_policy = policy;
    init_megdnn_opr(*this, param);
    add_input({src, filter, bias});
}

BatchConvBiasForward::BatchConvBiasForward(VarNode* src, VarNode* filter,
                                           VarNode* bias, VarNode* z,
                                           const Param& param,
                                           const ExecutionPolicy& policy,
                                           const OperatorNodeConfig& config)
        : Super{src->owner_graph(),
                config,
                "batch_conv_bias",
                {src, filter, bias, z}} {
    m_policy = policy;
    init_megdnn_opr(*this, param);
    add_input({src, filter, bias, z});
}

void BatchConvBiasForward::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
                                     const Param& param,
                                     const ExecutionPolicy& policy,
                                     const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<BatchConvBiasForward>(
            src.node(), filter.node(), param, policy, config);
}

SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
                                     SymbolVar bias, const Param& param,
                                     const ExecutionPolicy& policy,
                                     const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<BatchConvBiasForward>(
            src.node(), filter.node(), bias.node(), param, policy, config);
}

SymbolVar BatchConvBiasForward::make(SymbolVar src, SymbolVar filter,
                                     SymbolVar bias, SymbolVar z,
                                     const Param& param,
                                     const ExecutionPolicy& policy,
                                     const OperatorNodeConfig& config) {
    return src.insert_single_output_opr<BatchConvBiasForward>(
            src.node(), filter.node(), bias.node(), z.node(), param, policy,
            config);
}

void BatchConvBiasForward::init_output_dtype() {
    DType output_dtype = config().output_dtype();
    DType i0, i1, i2, i3;
    mgb_assert(input().size() >= 2 && input().size() <= 4);
    i0 = input(0)->dtype();
    i1 = input(1)->dtype();
    if (input().size() >= 3)
        i2 = input(2)->dtype();
    if (input().size() == 4)
        i3 = input(3)->dtype();
    megdnn_opr()->deduce_dtype(i0, i1, i2, i3, output_dtype);
    output(0)->dtype(output_dtype);
}

size_t BatchConvBiasForward::get_workspace_size_bytes(
        const TensorShapeArray& input_shapes,
        const TensorShapeArray& output_shapes) const {
    auto mo = megdnn_opr();
    TensorLayout i0, i1, i2, i3;
    mgb_assert(input_shapes.size() >= 2 && input_shapes.size() <= 4);
    i0 = {input_shapes[0], input(0)->dtype(), input(0)->format()};
    i1 = {input_shapes[1], input(1)->dtype(), input(1)->format()};
    if (input_shapes.size() >= 3)
        i2 = {input_shapes[2], input(2)->dtype(), input(2)->format()};
    else {
        DType dtype;
        mo->deduce_dtype(input(0)->dtype(), input(1)->dtype(), DType{}, DType{},
                         dtype);
        i2 = {{}, dtype};
    }
    if (input_shapes.size() == 4)
        i3 = {input_shapes[3], input(3)->dtype(), input(3)->format()};
    else
        i3 = {{}, output(0)->dtype(), output(0)->format()};

    return AlgoChooser<megdnn::BatchConvBias>::setup_algo(
            {i0,
             i1,
             i2,
             i3,
             {output_shapes[0], output(0)->dtype(), output(0)->format()}},
            mo, this);
}

void BatchConvBiasForward::scn_do_execute() {
    auto&& inp = input();
    auto mo = megdnn_opr();
    if (inp.size() == 2) {
        TensorLayout bias_layout;
        bias_layout.ndim = 0;
        if (output(0)->dtype().enumv() == DTypeEnum::QuantizedS8) {
            bias_layout.dtype = dtype::QuantizedS32(
                    output(0)->dtype().param<dtype::QuantizedS8>().scale);
        } else {
            bias_layout.dtype = output(0)->dtype();
        }
        TensorLayout z_layout;
        z_layout.ndim = 0;
        z_layout.dtype = output(0)->dtype();
        megdnn::TensorND bias_tensor{nullptr, bias_layout};
        megdnn::TensorND z_tensor{nullptr, z_layout};
        mo->exec(inp[0]->dev_tensor().as_megdnn(),
                 inp[1]->dev_tensor().as_megdnn(), bias_tensor, z_tensor,
                 output(0)->dev_tensor().as_megdnn(),
                 intl::get_megdnn_workspace_from_var(output().back()));

    } else if (inp.size() == 3) {
        TensorLayout z_layout;
        z_layout.ndim = 0;
        z_layout.dtype = output(0)->dtype();
        megdnn::TensorND z_tensor{nullptr, z_layout};

        mo->exec(inp[0]->dev_tensor().as_megdnn(),
                 inp[1]->dev_tensor().as_megdnn(),
                 inp[2]->dev_tensor().as_megdnn(), z_tensor,
                 output(0)->dev_tensor().as_megdnn(),
                 intl::get_megdnn_workspace_from_var(output().back()));
    } else {
        mgb_assert(inp.size() == 4);
        mo->exec(inp[0]->dev_tensor().as_megdnn(),
                 inp[1]->dev_tensor().as_megdnn(),
                 inp[2]->dev_tensor().as_megdnn(),
                 inp[3]->dev_tensor().as_megdnn(),
                 output(0)->dev_tensor().as_megdnn(),
                 intl::get_megdnn_workspace_from_var(output().back()));
    }
}

void BatchConvBiasForward::get_output_var_shape(
        const TensorShapeArray& inp_shape, TensorShapeArray& out_shape) const {
    auto mo = megdnn_opr();
    TensorLayout dst;
    mo->deduce_layout({inp_shape[0], input(0)->dtype(), input(0)->format()},
                      {inp_shape[1], input(1)->dtype(), input(0)->format()}, {},
                      {}, dst);
    out_shape[0] = dst;
}

void BatchConvBiasForward::init_output_static_infer_desc() {
    Super::set_nr_managed_outputs(this->output().size() - 1);
    Super::init_output_static_infer_desc();
    this->init_output_static_infer_desc_workspace(
            intl::AutoAddWorkspaceNeedLimitGetter<
                    megdnn::BatchConvBiasForward>::val);
}

void BatchConvBiasForward::init_output_format() {
    mgb_assert(output().size() == 2);
    output(0)->format(input(0)->format());
}

#undef IMPL_CONV
#undef MGB_FOREACH_FASTRUN_OPR

2386
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}