create_gpu_kernel_outlining_pass.cpp 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU dialect kernel outlining pass.
//
//===----------------------------------------------------------------------===//
/**
 * \file src/jit/impl/mlir/ir/create_gpu_kernel_outlining_pass.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 *
 * This file has been modified by Megvii ("Megvii Modifications").
22
 * All Megvii Modifications are Copyright (C) 2014-2020 Megvii Inc. All rights
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 * reserved.
 *
 */

#include "megbrain_build_config.h"
#if MGB_JIT && MGB_JIT_MLIR

#include "megbrain/jit/mlir/ir/passes.h"

#include <mlir/Dialect/GPU/GPUDialect.h>
#include <mlir/Dialect/GPU/Passes.h>
#include <mlir/Dialect/GPU/Utils.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
#include <mlir/IR/BlockAndValueMapping.h>
#include <mlir/IR/Builders.h>
#include <mlir/IR/SymbolTable.h>
#include <mlir/Transforms/RegionUtils.h>

#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"

using namespace mlir;

47
namespace {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
template <typename OpTy>
static void createForAllDimensions(OpBuilder& builder, Location loc,
                                   SmallVectorImpl<Value>& values) {
    for (StringRef dim : {"x", "y", "z"}) {
        Value v = builder.create<OpTy>(loc, builder.getIndexType(),
                                       builder.getStringAttr(dim));
        values.push_back(v);
    }
}

// Add operations generating block/thread ids and grid/block dimensions at the
// beginning of the `launchFuncOpBody` region. Add mapping from argument in
// entry block of `launchOpBody`, to the corresponding result value of the added
// operations.
static void injectGpuIndexOperations(Location loc, Region& launchFuncOpBody,
                                     Region& launchOpBody,
                                     BlockAndValueMapping& map) {
    OpBuilder builder(loc->getContext());
    Block& firstBlock = launchOpBody.front();
    builder.setInsertionPointToStart(&launchFuncOpBody.front());
    SmallVector<Value, 12> indexOps;
    createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
    createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
    createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
    createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
    // Replace the leading 12 function args with the respective thread/block
    // index operations. Iterate backwards since args are erased and indices
    // change.
    for (auto indexOp : enumerate(indexOps))
        map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
}

static bool isSinkingBeneficiary(Operation* op) {
    return isa<ConstantOp, DimOp>(op);
}

84
LogicalResult sink_operations_into_launch_op(gpu::LaunchOp launchOp) {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    Region& launchOpBody = launchOp.body();

    // Identify uses from values defined outside of the scope of the launch
    // operation.
    llvm::SetVector<Value> sinkCandidates;
    getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);

    llvm::SetVector<Value> sunkValues;
    llvm::SetVector<Operation*> sunkOperations;
    for (Value operand : sinkCandidates) {
        Operation* operandOp = operand.getDefiningOp();
        if (!operandOp || !isSinkingBeneficiary(operandOp))
            continue;
        // Only sink operations that do not create new sinkCandidates.
        if (!llvm::all_of(operandOp->getOperands(),
                          [&sinkCandidates](Value value) {
                              return sinkCandidates.count(value);
                          }))
            continue;
        sunkValues.insert(operand);
        sunkOperations.insert(operandOp);
    }

    // Insert operations so that the defs get cloned before uses.
    BlockAndValueMapping map;
    OpBuilder builder(launchOpBody);
    DenseSet<Operation*> processed;
    SmallVector<Operation*, 2> clonedOps;
    while (processed.size() != sunkOperations.size()) {
        auto startSize = processed.size();
        for (Operation* sunkOperation : sunkOperations) {
            if (processed.count(sunkOperation))
                continue;

            // Operation cant be cloned yet if any of its operands is also being
            // sunk, but isnt cloned yet.
            if (llvm::any_of(sunkOperation->getOperands(), [&sunkValues,
                                                            &map](Value value) {
                    return sunkValues.count(value) && !map.lookupOrNull(value);
                }))
                continue;

            Operation* clonedOp = builder.clone(*sunkOperation, map);
            // Only replace uses within the launch op.
            for (auto result : llvm::enumerate(sunkOperation->getResults())) {
                auto replacement = clonedOp->getResult(result.index());
                for (auto& use :
                     llvm::make_early_inc_range(result.value().getUses()))
                    if (use.getOwner()->getParentOfType<gpu::LaunchOp>() ==
                        launchOp)
                        use.set(replacement);
            }
            processed.insert(sunkOperation);
        }
        if (startSize == processed.size())
            return launchOp.emitError(
                    "found illegal cyclic dependency between operations while "
                    "sinking");
    }
    return success();
}

// Outline the `gpu.launch` operation body into a kernel function. Replace
// `gpu.terminator` operations by `gpu.return` in the generated function.
static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
                                            StringRef kernelFnName,
                                            SmallVector<Value, 4>& operands) {
    Location loc = launchOp.getLoc();
    // Create a builder with no insertion point, insertion will happen
    // separately due to symbol table manipulation.
    OpBuilder builder(launchOp.getContext());
    Region& launchOpBody = launchOp.body();

    llvm::SetVector<Value> operandsSet;
    // Identify uses from values defined outside of the scope of the launch
    // operation.
    getUsedValuesDefinedAbove(launchOpBody, operandsSet);

    // reorder the operands which match the input order
    llvm::SetVector<Value> insertedOperands;
    for (auto& item : launchOp.getParentOfType<FuncOp>().getArguments()) {
        if (operandsSet.contains(item)) {
            operands.push_back(item);
            insertedOperands.insert(item);
        }
    }
    for (Value operand : operandsSet) {
        if (!insertedOperands.contains(operand)) {
            operands.push_back(operand);
        }
    }

    // Create the gpu.func operation.
    SmallVector<Type, 4> kernelOperandTypes;
    kernelOperandTypes.reserve(operands.size());
    for (Value operand : operands) {
        kernelOperandTypes.push_back(operand.getType());
    }
    FunctionType type =
            FunctionType::get(kernelOperandTypes, {}, launchOp.getContext());
    auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type);
    outlinedFunc.setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
                         builder.getUnitAttr());
    BlockAndValueMapping map;

    // Map the arguments corresponding to the launch parameters like blockIdx,
    // threadIdx, etc.
    Region& outlinedFuncBody = outlinedFunc.body();
    injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);

    // Map arguments from gpu.launch region to the arguments of the gpu.func
    // operation.
    Block& entryBlock = outlinedFuncBody.front();
    for (auto operand : enumerate(operands))
        map.map(operand.value(), entryBlock.getArgument(operand.index()));

    // Clone the region of the gpu.launch operation into the gpu.func operation.
    // TODO: If cloneInto can be modified such that if a mapping for
    // a block exists, that block will be used to clone operations into (at the
    // end of the block), instead of creating a new block, this would be much
    // cleaner.
    launchOpBody.cloneInto(&outlinedFuncBody, map);

    // Branch from entry of the gpu.func operation to the block that is cloned
    // from the entry block of the gpu.launch operation.
    Block& launchOpEntry = launchOpBody.front();
    Block* clonedLaunchOpEntry = map.lookup(&launchOpEntry);
    builder.setInsertionPointToEnd(&entryBlock);
    builder.create<BranchOp>(loc, clonedLaunchOpEntry);

    outlinedFunc.walk([](gpu::TerminatorOp op) {
        OpBuilder replacer(op);
        replacer.create<gpu::ReturnOp>(op.getLoc());
        op.erase();
    });
    return outlinedFunc;
}

// Replace `gpu.launch` operations with an `gpu.launch_func` operation launching
// `kernelFunc`. The kernel func contains the body of the `gpu.launch` with
// constant region arguments inlined.
static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
                                  gpu::GPUFuncOp kernelFunc,
                                  ValueRange operands) {
    OpBuilder builder(launchOp);
    builder.create<gpu::LaunchFuncOp>(
            launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
            launchOp.getBlockSizeOperandValues(), operands);
    launchOp.erase();
}

/// Pass that moves the kernel of each LaunchOp into its separate nested module.
///
/// This pass moves the kernel code of each LaunchOp into a function created
/// inside a nested module. It also creates an external function of the same
/// name in the parent module.
///
/// The gpu.modules are intended to be compiled to a cubin blob independently in
/// a separate pass. The external functions can then be annotated with the
/// symbol of the cubin accessor function.
class GpuKernelOutliningPass
        : public PassWrapper<GpuKernelOutliningPass, OperationPass<ModuleOp>> {
public:
    void runOnOperation() override {
        SymbolTable symbolTable(getOperation());
        bool modified = false;
        for (auto func : getOperation().getOps<FuncOp>()) {
            // Insert just after the function.
            Block::iterator insertPt(func.getOperation()->getNextNode());
            auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
                SmallVector<Value, 4> operands;
                std::string kernelFnName =
                        Twine(op.getParentOfType<FuncOp>().getName(), "_kernel")
                                .str();

                // Pull in instructions that can be sunk
261
                if (failed(sink_operations_into_launch_op(op)))
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
                    return WalkResult::interrupt();
                gpu::GPUFuncOp outlinedFunc =
                        outlineKernelFuncImpl(op, kernelFnName, operands);

                // Create nested module and insert outlinedFunc. The module will
                // originally get the same name as the function, but may be
                // renamed on insertion into the parent module.
                auto kernelModule =
                        createKernelModule(outlinedFunc, symbolTable);
                symbolTable.insert(kernelModule, insertPt);

                // Potentially changes signature, pulling in constants.
                convertToLaunchFuncOp(op, outlinedFunc, operands);
                modified = true;
                return WalkResult::advance();
            });
            if (funcWalkResult.wasInterrupted())
                return signalPassFailure();
        }

        // If any new module was inserted in this module, annotate this module
        // as a container module.
        if (modified)
            getOperation().setAttr(
                    gpu::GPUDialect::getContainerModuleAttrName(),
                    UnitAttr::get(&getContext()));
    }

private:
    // Returns a gpu.module containing kernelFunc and all callees (recursive).
    gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
                                        const SymbolTable& parentSymbolTable) {
        // TODO: This code cannot use an OpBuilder because it must be inserted
        // into a SymbolTable by the caller. SymbolTable needs to be refactored
        // to prevent manual building of Ops with symbols in code using
        // SymbolTables and then this needs to use the OpBuilder.
        auto context = getOperation().getContext();
        OpBuilder builder(context);
        OperationState state(kernelFunc.getLoc(),
                             gpu::GPUModuleOp::getOperationName());
        gpu::GPUModuleOp::build(builder, state, kernelFunc.getName());
        auto kernelModule = cast<gpu::GPUModuleOp>(Operation::create(state));
        SymbolTable symbolTable(kernelModule);
        symbolTable.insert(kernelFunc);

        SmallVector<Operation*, 8> symbolDefWorklist = {kernelFunc};
        while (!symbolDefWorklist.empty()) {
            if (Optional<SymbolTable::UseRange> symbolUses =
                        SymbolTable::getSymbolUses(
                                symbolDefWorklist.pop_back_val())) {
                for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
                    StringRef symbolName = symbolUse.getSymbolRef()
                                                   .cast<FlatSymbolRefAttr>()
                                                   .getValue();
                    if (symbolTable.lookup(symbolName))
                        continue;

                    Operation* symbolDefClone =
                            parentSymbolTable.lookup(symbolName)->clone();
                    symbolDefWorklist.push_back(symbolDefClone);
                    symbolTable.insert(symbolDefClone);
                }
            }
        }

        return kernelModule;
    }
};
}  // namespace

std::unique_ptr<mlir::Pass> mgb::jit::create_gpu_kernel_outlining_pass() {
    return std::make_unique<GpuKernelOutliningPass>();
}

#endif  // MGB_JIT && MGB_JIT_MLIR

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}