提交 a4d076d5 编写于 作者: ZHJ0125's avatar ZHJ0125 🐢

Upload dm9000 code

上级 39228ee3
/*
 *             U-BOOT DM9000A DRIVER
 *              www.davicom.com.tw
 *
 * This program is loaded into SRAM in bootstrap mode, where it waits
 * for commands on UART1 to read and write memory, jump to code etc.
 * A design goal for this program is to be entirely independent of the
 * target board.  Anything with a CL-PS7111 or EP7211 should be able to run
 * this code in bootstrap mode.  All the board specifics can be handled on
 * the host.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *V1.01 -load MAC address from EEPROM
 */
#include <common.h>
#include <command.h>
#include <net.h>
#ifdef CONFIG_DRIVER_DM9000
#include "dm9000x.h"
#define DM9000_ID        0x90000A46
#define DM9010_ID        0x90100A46
#define DM9KS_REG05        (RXCR_Discard_LongPkt|RXCR_Discard_CRCPkt)
#define DM9KS_DISINTR        IMR_SRAM_antoReturn
/*
 * If your bus is 8-bit or 32-bit, you must modify below.
 * Ex. your bus is 8 bit
 *    DM9000_PPTR *(volatile u8 *)(DM9000_BASE)
 */
#define DM9000_BASE        CONFIG_DM9000_BASE
#define DM9000_PPTR        *(volatile u16 *)(DM9000_IO)
#define DM9000_PDATA        *(volatile u16 *)(DM9000_DATA)
#define mdelay(n)       udelay((n)*1000)
static unsigned char ior(int);
static void iow(int, u8);
static void phy_write(int, u16);
static void move8(unsigned char *, int, int);
static void move16(unsigned char *, int, int);
static void move32(unsigned char *, int, int);
static u16 read_srom_word(int);
static void dmfe_init_dm9000(void);
static u32 GetDM9000ID(void);
void DM9000_get_enetaddr (uchar *);
static void eth_reset (void);
void eth_halt(void);
int eth_init(bd_t *);
void (*MoveData)(unsigned char *, int , int);
static void iow(int reg, u8 value)
{
        DM9000_PPTR = reg;
        DM9000_PDATA  =  value & 0xff;
}
static unsigned char ior(int reg)
{
        DM9000_PPTR = reg;
        return DM9000_PDATA & 0xff;
}
static void phy_write(int reg, u16 value)
{
        /* Fill the phyxcer register into REG_0C */
        iow(DM9KS_EPAR, DM9KS_PHY | reg);
        /* Fill the written data into REG_0D & REG_0E */
        iow(DM9KS_EPDRL, (value & 0xff));
        iow(DM9KS_EPDRH, ( (value >> 8) & 0xff));
        iow(DM9KS_EPCR, EPCR_PHY_Sele|EPCR_Write);    /* Issue phyxcer write command */
        udelay(500);            /* Wait write complete */
        iow(DM9KS_EPCR, 0x0);    /* Clear phyxcer write command */
}
/*
        leng: unit BYTE
        selec 0:input(RX)    1:output(TX)
        if selec=0, move data from FIFO to data_ptr
        if selec=1, move data from data_ptr to FIFO
*/
static void move8(unsigned char *data_ptr, int leng, int selec)
{
        int i;
        if (selec)
                for (i=0; i<leng; i++)
                        DM9000_PDATA =(data_ptr[i] & 0xff);
        else
                for (i=0; i<leng; i++)
                        data_ptr[i] = DM9000_PDATA;
}    
static void move16(unsigned char *data_ptr, int leng, int selec)
{
        int i, tmpleng;
        tmpleng = (leng + 1) >> 1;
        if (selec)
                for (i=0; i<tmpleng; i++)
                        DM9000_PDATA =((u16 *)data_ptr)[i];
        else
                for (i=0; i<tmpleng; i++)
                        ((u16 *)data_ptr)[i] = DM9000_PDATA;
}    
static void move32(unsigned char *data_ptr, int leng, int selec)
{
        int i, tmpleng;
        tmpleng = (leng + 3) >> 2;
        if (selec)
                for (i=0; i<tmpleng; i++)
                        DM9000_PDATA = ((u32 *)data_ptr)[i];
        else
                for (i=0; i<tmpleng; i++)
                        ((u32 *)data_ptr)[i]=DM9000_PDATA;
}    
/*
 * Read a word data from EEPROM
 */
static u16 read_srom_word(int offset)
{
        iow(DM9KS_EPAR, offset);
        iow(DM9KS_EPCR, 0x4);
        udelay(200);
        iow(DM9KS_EPCR, 0x0);
        return (ior(DM9KS_EPDRL) + (ior(DM9KS_EPDRH) << 8) );
}
/*
 *    Initilize dm9000 board
 */
static void dmfe_init_dm9000(void)
{
        int io_mode;
        
        /* set the internal PHY power-on, GPIOs normal, and wait 20ms */
        iow(DM9KS_GPR, GPR_PHYUp);
        mdelay(20); /* wait for PHY power-on ready */
        iow(DM9KS_GPR, GPR_PHYDown);/* Power-Down PHY */
        mdelay(1000);    /* compatible with rtl8305s */
        iow(DM9KS_GPR, GPR_PHYUp);    
        mdelay(20);/* wait for PHY power-on ready */
        iow(DM9KS_NCR, NCR_MAC_loopback|NCR_Reset);
        udelay(20);/* wait 20us at least for software reset ok */
        iow(DM9KS_NCR, NCR_MAC_loopback|NCR_Reset);
        udelay(20);/* wait 20us at least for software reset ok */
        /* I/O mode */
        io_mode = ior(DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
        switch (io_mode)
        {
                case DM9KS_BYTE_MODE:
                        printf("DM9000 work in 8 bus width\n");
                        MoveData = move8;
                        break;
                case DM9KS_WORD_MODE:
                        printf("DM9000 work in 16 bus width\n");
                        MoveData = move16;
                        break;
                case DM9KS_DWORD_MODE:
                        printf("DM9000 work in 32 bus width\n");
                        MoveData = move32;
                        break;
                default:
                        printf("DM9000 work in wrong bus width, error\n");
                        break;
        }
        
        /* Set PHY */
        phy_write(4, 0x01e1);
        phy_write(0, 0x1200); /* N-way */
        /* Program operating register */
        iow(DM9KS_NCR, 0);
        iow(DM9KS_TCR, 0);/* TX Polling clear */
        iow(DM9KS_BPTR, 0x30|JPT_600us);/* Less 3kb, 600us */
        iow(DM9KS_SMCR, 0);/* Special Mode */
        iow(DM9KS_NSR, 0x2c);/* clear TX status */
        iow(DM9KS_ISR, 0x0f);/* Clear interrupt status */
        iow(DM9KS_TCR2, TCR2_LedMode1);/* Set LED mode 1 */
#if 0
        /* Data bus current driving/sinking capability  */
        iow(DM9KS_PBCR, 0x60);    /* default: 8mA */
#endif
 
        iow(0x1d, 0x80);/* receive broadcast packet */
        /* Activate DM9000A/DM9010 */
        iow(DM9KS_RXCR, DM9KS_REG05 | RXCR_RxEnable);    
        iow(DM9KS_IMR, DM9KS_DISINTR);
}
/* packet page register access functions */
static u32 GetDM9000ID(void)
{
        u32    id_val;
        DM9000_PPTR = DM9KS_PID_H;
        id_val = (DM9000_PDATA & 0xff) << 8;
        DM9000_PPTR = DM9KS_PID_L;
        id_val+= (DM9000_PDATA & 0xff);
        id_val = id_val << 16;
        
        DM9000_PPTR = DM9KS_VID_H;
        id_val += (DM9000_PDATA & 0xff) << 8;
        DM9000_PPTR = DM9KS_VID_L;
        id_val += (DM9000_PDATA & 0xff);
        
        return id_val;
}
void DM9000_get_enetaddr (uchar * addr)
{
        int i;
        u8 temp;
        eth_reset ();    
        printf ("MAC: ");
        for (i = 0x10; i <= 0x15; i++) {
                temp = ior (i);
                *addr++ = temp;
                printf ("%x:", temp);
        }
        return;
}
static void eth_reset (void)
{
        u32 ID;
        
        ID = GetDM9000ID();
        if ( ID != DM9000_ID)
        {
                printf("not found the dm9000 ID:%x\n",ID);
                return ;
        }else
                printf("found DM9000 ID:%x\n",ID);
        eth_halt();
        dmfe_init_dm9000();
}
void eth_halt (void)
{
        /* RESET devie */
        phy_write(0x00, 0x8000);    /* PHY RESET */
        iow(DM9KS_GPR, GPR_PHYDown);     /* Power-Down PHY */
        iow(DM9KS_IMR, DM9KS_DISINTR);    /* Disable all interrupt */
        iow(DM9KS_RXCR, 0x00);        /* Disable RX */
}
int eth_init (bd_t * bd)
{
        u32 ID;
        int i,j;
        u16 * mac =(u16 *) bd->bi_enetaddr;
        ID = GetDM9000ID();
        if ( ID != DM9000_ID)
        {
                printf("not found the dm9000 ID:%x\n",ID);
                return 1;
        }
        printf("Found DM9000 ID:%x at address %x !\n", ID,  DM9000_BASE);
        dmfe_init_dm9000();
        {
          int env_size;
          char *s = NULL, *e = NULL;
          unsigned char env_mac[20];
          env_size = getenv_r("ethaddr", env_mac, sizeof(env_mac));
          if(env_size != 18)
            {
              printf("\n***ERROR: ethaddr is not set properly!!\n");
#if 0
              for (i=0; i<3; i++) /* read MAC from EEPROM */
                mac[i]= read_srom_word(i);
#else
              mac[0]=0x1100;
              mac[1]=0x3322;
              mac[2]=0x5544;
#endif
            }
          else
            {
              s = env_mac;
              for(i = 0; i < 6; ++i)
                {
                  (bd->bi_enetaddr)[i] = s ? simple_strtoul(s, &e, 16) : 0;
                  if(s)  s = (*e) ? e + 1 : e;
                }
              printf("bd->bi_entaddr: %02x:%02x:%02x:%02x:%02x:%02x\n", bd->bi_enetaddr[0],
                     bd->bi_enetaddr[1], bd->bi_enetaddr[2], bd->bi_enetaddr[3],
                     bd->bi_enetaddr[4], bd->bi_enetaddr[5]);
            }
        }
        printf("[eth_init]MAC:");
        for(i=0,j=0x10; i<6; i++,j++)
          {    
            iow(j,bd->bi_enetaddr[i]);
            printf("%x:",bd->bi_enetaddr[i]);
          }
        printf("\n");
        return 0;
}
/* Get a data block via Ethernet */
extern int eth_rx (void)
{
        unsigned short rxlen;
        unsigned char *addr = NULL;
        u8 RxRead;
        rx_t rx;
        u8 * ptr = (u8*)&rx;
        
        RxRead = ior(DM9KS_MRCMDX);
        RxRead = ior(DM9KS_ISR);
        RxRead = ior(DM9KS_MRCMDX) & 0xff;
        if (RxRead != 1)  /* no data */
                return 0;
        DM9000_PPTR = DM9KS_MRCMD; /* set read ptr ++ */
        /* Read packet status & length */
        MoveData(ptr, 4, 0);
        rxlen = rx.desc.length;        /* get len */
        if(rx.desc.status & (RX_RuntFrame | RX_PhyErr | RX_AlignErr | RX_CRCErr))
                printf ("[dm9ks]RX error %x\n", rx.desc.status);    
        if (rxlen > PKTSIZE_ALIGN + PKTALIGN)
                printf ("packet too big! %d %d\n", rxlen, PKTSIZE_ALIGN + PKTALIGN);
        addr = (unsigned char *)NetRxPackets[0];
        MoveData(addr, rxlen, 0);
        /* Pass the packet up to the protocol layers. */
        NetReceive (NetRxPackets[0], rxlen);
        return rxlen;
}
/* Send a data block via Ethernet. */
extern int eth_send (volatile void *packet, int length)
{
        volatile unsigned char *addr;
        int    length1 = length;
        DM9000_PPTR = DM9KS_MWCMD;/* data copy ready set */
        /* copy data */
        addr = packet;
        MoveData(addr,length,1);
        /* set packet length  */
        iow(DM9KS_TXPLH, (length1 >> 8) & 0xff);  
        iow(DM9KS_TXPLL, length1 & 0xff);
        /* start transmit */
        iow(DM9KS_TCR, TCR_TX_Request);
        while (1)/* wait for tx complete */
        {
                if (ior(DM9KS_NSR)& (NSR_TX2END|NSR_TX1END))    
                        break;
        }
        return 0;
}
#endif                /* CONFIG_DRIVER_DM9000 */
/*
* dm9000 Ethernet
*/
#ifndef _DM9000X_H_
#define _DM9000X_H_
#define DM9000_ID 0x90000A46
/* although the registers are 16 bit, they are 32-bit aligned.
*/
#define DM9000_NCR 0x00
#define DM9000_NSR 0x01
#define DM9000_TCR 0x02
#define DM9000_TSR1 0x03
#define DM9000_TSR2 0x04
#define DM9000_RCR 0x05
#define DM9000_RSR 0x06
#define DM9000_ROCR 0x07
#define DM9000_BPTR 0x08
#define DM9000_FCTR 0x09
#define DM9000_FCR 0x0A
#define DM9000_EPCR 0x0B
#define DM9000_EPAR 0x0C
#define DM9000_EPDRL 0x0D
#define DM9000_EPDRH 0x0E
#define DM9000_WCR 0x0F
#define DM9000_PAR 0x10
#define DM9000_MAR 0x16
#define DM9000_GPCR 0x1e
#define DM9000_GPR 0x1f
#define DM9000_TRPAL 0x22
#define DM9000_TRPAH 0x23
#define DM9000_RWPAL 0x24
#define DM9000_RWPAH 0x25
#define DM9000_VIDL 0x28
#define DM9000_VIDH 0x29
#define DM9000_PIDL 0x2A
#define DM9000_PIDH 0x2B
#define DM9000_CHIPR 0x2C
#define DM9000_SMCR 0x2F
#define DM9000_LPCR 0x34 // Led Pin Control Register
#define DM9000_TCR2 0x2D // Led Pin Control Register
#define CHIPR_DM9000A 0x19
#define CHIPR_DM9000B 0x1B
#define DM9000_MRCMDX 0xF0
#define DM9000_MRCMD 0xF2
#define DM9000_MRRL 0xF4
#define DM9000_MRRH 0xF5
#define DM9000_MWCMDX 0xF6
#define DM9000_MWCMD 0xF8
#define DM9000_MWRL 0xFA
#define DM9000_MWRH 0xFB
#define DM9000_TXPLL 0xFC
#define DM9000_TXPLH 0xFD
#define DM9000_ISR 0xFE
#define DM9000_IMR 0xFF
#define NCR_EXT_PHY (1<<7)
#define NCR_WAKEEN (1<<6)
#define NCR_FCOL (1<<4)
#define NCR_FDX (1<<3)
#define NCR_LBK (3<<1)
#define NCR_RST (1<<0)
#define NSR_SPEED (1<<7)
#define NSR_LINKST (1<<6)
#define NSR_WAKEST (1<<5)
#define NSR_TX2END (1<<3)
#define NSR_TX1END (1<<2)
#define NSR_RXOV (1<<1)
#define TCR_TJDIS (1<<6)
#define TCR_EXCECM (1<<5)
#define TCR_PAD_DIS2 (1<<4)
#define TCR_CRC_DIS2 (1<<3)
#define TCR_PAD_DIS1 (1<<2)
#define TCR_CRC_DIS1 (1<<1)
#define TCR_TXREQ (1<<0)
#define TSR_TJTO (1<<7)
#define TSR_LC (1<<6)
#define TSR_NC (1<<5)
#define TSR_LCOL (1<<4)
#define TSR_COL (1<<3)
#define TSR_EC (1<<2)
#define RCR_WTDIS (1<<6)
#define RCR_DIS_LONG (1<<5)
#define RCR_DIS_CRC (1<<4)
#define RCR_ALL (1<<3)
#define RCR_RUNT (1<<2)
#define RCR_PRMSC (1<<1)
#define RCR_RXEN (1<<0)
#define RSR_RF (1<<7)
#define RSR_MF (1<<6)
#define RSR_LCS (1<<5)
#define RSR_RWTO (1<<4)
#define RSR_PLE (1<<3)
#define RSR_AE (1<<2)
#define RSR_CE (1<<1)
#define RSR_FOE (1<<0)
#define FCTR_HWOT(ot) (( ot & 0xf ) << 4 )
#define FCTR_LWOT(ot) ( ot & 0xf )
#define IMR_PAR (1<<7)
#define IMR_ROOM (1<<3)
#define IMR_ROM (1<<2)
#define IMR_PTM (1<<1)
#define IMR_PRM (1<<0)
#define ISR_ROOS (1<<3)
#define ISR_ROS (1<<2)
#define ISR_PTS (1<<1)
#define ISR_PRS (1<<0)
#define ISR_CLR_STATUS (ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS)
#define EPCR_REEP (1<<5)
#define EPCR_WEP (1<<4)
#define EPCR_EPOS (1<<3)
#define EPCR_ERPRR (1<<2)
#define EPCR_ERPRW (1<<1)
#define EPCR_ERRE (1<<0)
#define GPCR_GEP_CNTL (1<<0)
#define DM9000_PKT_RDY 0x01/* Packet ready to receive */
#define DM9000_PKT_MAX 1536/* Received packet max size */
/* DM9000A / DM9000B definitions */
#define IMR_LNKCHNG (1<<5)
#define IMR_UNDERRUN (1<<4)
#define ISR_LNKCHNG (1<<5)
#define ISR_UNDERRUN (1<<4)
#endif /* _DM9000X_H_ */
/*
dm9000.c: Version 1.2 12/15/2003
A Davicom DM9000 ISA NIC fast Ethernet driver for Linux.
Copyright (C) 1997 Sten Wang
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
(C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
V0.11 06/20/2001 REG_0A bit3=1, default enable BP with DA match
06/22/2001 Support DM9801 progrmming
E3: R25 = ((R24 + NF) & 0x00ff) | 0xf000
E4: R25 = ((R24 + NF) & 0x00ff) | 0xc200
R17 = (R17 & 0xfff0) | NF + 3
E5: R25 = ((R24 + NF - 3) & 0x00ff) | 0xc200
R17 = (R17 & 0xfff0) | NF
v1.00 modify by simon 2001.9.5
change for kernel 2.4.x
v1.1 11/09/2001 fix force mode bug
v1.2 03/18/2003 Weilun Huang <weilun_huang@davicom.com.tw>:
Fixed phy reset.
Added tx/rx 32 bit mode.
Cleaned up for kernel merge.
--------------------------------------
12/15/2003 Initial port to u-boot by Sascha Hauer <saschahauer@web.de>
TODO: Homerun NIC and longrun NIC are not functional, only internal at the
moment.
*/
#include <common.h>
#include <command.h>
#include <net.h>
#include <asm/io.h>
#ifdef CONFIG_DRIVER_DM9000
#include "dm9000x.h"
/* Board/System/Debug information/definition ---------------- */
#define DM9801_NOISE_FLOOR 0x08
#define DM9802_NOISE_FLOOR 0x05
/* #define CONFIG_DM9000_DEBUG */
#ifdef CONFIG_DM9000_DEBUG
#define DM9000_DBG(fmt,args...) printf(fmt ,##args)
#else /* */
#define DM9000_DBG(fmt,args...)
#endif /* */
enum DM9000_PHY_mode { DM9000_10MHD = 0, DM9000_100MHD =
1, DM9000_10MFD = 4, DM9000_100MFD = 5, DM9000_AUTO =
8, DM9000_1M_HPNA = 0x10
};
enum DM9000_NIC_TYPE { FASTETHER_NIC = 0, HOMERUN_NIC = 1, LONGRUN_NIC = 2
};
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
u32 runt_length_counter; /* counter: RX length < 64byte */
u32 long_length_counter; /* counter: RX length > 1514byte */
u32 reset_counter; /* counter: RESET */
u32 reset_tx_timeout; /* RESET caused by TX Timeout */
u32 reset_rx_status; /* RESET caused by RX Statsus wrong */
u16 tx_pkt_cnt;
u16 queue_start_addr;
u16 dbug_cnt;
u8 phy_addr;
u8 device_wait_reset; /* device state */
u8 nic_type; /* NIC type */
unsigned char srom[128];
} board_info_t;
board_info_t dmfe_info;
/* For module input parameter */
static int media_mode = DM9000_AUTO;
static u8 nfloor = 0;
/* function declaration ------------------------------------- */
int eth_init(bd_t * bd);
int eth_send(volatile void *, int);
int eth_rx(void);
void eth_halt(void);
static int dm9000_probe(void);
static u16 phy_read(int);
static void phy_write(int, u16);
u16 read_srom_word(int);
static u8 DM9000_ior(int);
static void DM9000_iow(int reg, u8 value);
/* DM9000 network board routine ---------------------------- */
#define DM9000_outb(d,r) ( *(volatile u8 *)r = d )
#define DM9000_outw(d,r) ( *(volatile u16 *)r = d )
#define DM9000_outl(d,r) ( *(volatile u32 *)r = d )
#define DM9000_inb(r) (*(volatile u8 *)r)
#define DM9000_inw(r) (*(volatile u16 *)r)
#define DM9000_inl(r) (*(volatile u32 *)r)
#ifdef CONFIG_DM9000_DEBUG
static void
dump_regs(void)
{
DM9000_DBG("\n");
DM9000_DBG("NCR (0x00): %02x\n", DM9000_ior(0));
DM9000_DBG("NSR (0x01): %02x\n", DM9000_ior(1));
DM9000_DBG("TCR (0x02): %02x\n", DM9000_ior(2));
DM9000_DBG("TSRI (0x03): %02x\n", DM9000_ior(3));
DM9000_DBG("TSRII (0x04): %02x\n", DM9000_ior(4));
DM9000_DBG("RCR (0x05): %02x\n", DM9000_ior(5));
DM9000_DBG("RSR (0x06): %02x\n", DM9000_ior(6));
DM9000_DBG("ISR (0xFE): %02x\n", DM9000_ior(ISR));
DM9000_DBG("\n");
}
#endif /* */
/*
Search DM9000 board, allocate space and register it
*/
int
dm9000_probe(void)
{
u32 id_val;
id_val = DM9000_ior(DM9000_VIDL);
id_val |= DM9000_ior(DM9000_VIDH) << 8;
id_val |= DM9000_ior(DM9000_PIDL) << 16;
id_val |= DM9000_ior(DM9000_PIDH) << 24;
if (id_val == DM9000_ID) {
printf("dm9000 i/o: 0x%x, id: 0x%x \n", CONFIG_DM9000_BASE,
id_val);
return 0;
} else {
printf("dm9000 not found at 0x%08x id: 0x%08x\n",
CONFIG_DM9000_BASE, id_val);
return -1;
}
}
/* Set PHY operationg mode
*/
static void
set_PHY_mode(void)
{
u16 phy_reg4 = 0x01e1, phy_reg0 = 0x1000;
if (!(media_mode & DM9000_AUTO)) {
switch (media_mode) {
case DM9000_10MHD:
phy_reg4 = 0x21;
phy_reg0 = 0x0000;
break;
case DM9000_10MFD:
phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9000_100MHD:
phy_reg4 = 0x81;
phy_reg0 = 0x2000;
break;
case DM9000_100MFD:
phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
}
phy_write(4, phy_reg4); /* Set PHY media mode */
phy_write(0, phy_reg0); /* Tmp */
}
DM9000_iow(DM9000_GPCR, 0x01); /* Let GPIO0 output */
DM9000_iow(DM9000_GPR, 0x00); /* Enable PHY */
}
/*
Init HomeRun DM9801
*/
static void
program_dm9801(u16 HPNA_rev)
{
__u16 reg16, reg17, reg24, reg25;
if (!nfloor)
nfloor = DM9801_NOISE_FLOOR;
reg16 = phy_read(16);
reg17 = phy_read(17);
reg24 = phy_read(24);
reg25 = phy_read(25);
switch (HPNA_rev) {
case 0xb900: /* DM9801 E3 */
reg16 |= 0x1000;
reg25 = ((reg24 + nfloor) & 0x00ff) | 0xf000;
break;
case 0xb901: /* DM9801 E4 */
reg25 = ((reg24 + nfloor) & 0x00ff) | 0xc200;
reg17 = (reg17 & 0xfff0) + nfloor + 3;
break;
case 0xb902: /* DM9801 E5 */
case 0xb903: /* DM9801 E6 */
default:
reg16 |= 0x1000;
reg25 = ((reg24 + nfloor - 3) & 0x00ff) | 0xc200;
reg17 = (reg17 & 0xfff0) + nfloor;
}
phy_write(16, reg16);
phy_write(17, reg17);
phy_write(25, reg25);
}
/*
Init LongRun DM9802
*/
static void
program_dm9802(void)
{
__u16 reg25;
if (!nfloor)
nfloor = DM9802_NOISE_FLOOR;
reg25 = phy_read(25);
reg25 = (reg25 & 0xff00) + nfloor;
phy_write(25, reg25);
}
/* Identify NIC type
*/
static void
identify_nic(void)
{
struct board_info *db = &dmfe_info; /* Point a board information structure */
u16 phy_reg3;
DM9000_iow(DM9000_NCR, NCR_EXT_PHY);
phy_reg3 = phy_read(3);
switch (phy_reg3 & 0xfff0) {
case 0xb900:
if (phy_read(31) == 0x4404) {
db->nic_type = HOMERUN_NIC;
program_dm9801(phy_reg3);
DM9000_DBG("found homerun NIC\n");
} else {
db->nic_type = LONGRUN_NIC;
DM9000_DBG("found longrun NIC\n");
program_dm9802();
}
break;
default:
db->nic_type = FASTETHER_NIC;
break;
}
DM9000_iow(DM9000_NCR, 0);
}
/* General Purpose dm9000 reset routine */
static void
dm9000_reset(void)
{
DM9000_DBG("resetting\n");
DM9000_iow(DM9000_NCR, NCR_RST);
udelay(1000); /* delay 1ms */
}
/* Initilize dm9000 board
*/
int
eth_init(bd_t * bd)
{
int i, oft, lnk;
DM9000_DBG("eth_init()\n");
/* RESET device */
dm9000_reset();
dm9000_probe();
/* NIC Type: FASTETHER, HOMERUN, LONGRUN */
identify_nic();
/* GPIO0 on pre-activate PHY */
DM9000_iow(DM9000_GPR, 0x00); /*REG_1F bit0 activate phyxcer */
/* Set PHY */
set_PHY_mode();
/* Program operating register */
DM9000_iow(DM9000_NCR, 0x0); /* only intern phy supported by now */
DM9000_iow(DM9000_TCR, 0); /* TX Polling clear */
DM9000_iow(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
DM9000_iow(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */
DM9000_iow(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */
DM9000_iow(DM9000_SMCR, 0); /* Special Mode */
DM9000_iow(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */
DM9000_iow(DM9000_ISR, 0x0f); /* Clear interrupt status */
/* Set Node address */
for (i = 0; i < 6; i++)
((u16 *) bd->bi_enetaddr)[i] = read_srom_word(i);
if (is_zero_ether_addr(bd->bi_enetaddr) ||
is_multicast_ether_addr(bd->bi_enetaddr)) {
/* try reading from environment */
u8 i;
char *s, *e;
s = getenv ("ethaddr");
for (i = 0; i < 6; ++i) {
bd->bi_enetaddr[i] = s ?
simple_strtoul (s, &e, 16) : 0;
if (s)
s = (*e) ? e + 1 : e;
}
}
printf("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", bd->bi_enetaddr[0],
bd->bi_enetaddr[1], bd->bi_enetaddr[2], bd->bi_enetaddr[3],
bd->bi_enetaddr[4], bd->bi_enetaddr[5]);
for (i = 0, oft = 0x10; i < 6; i++, oft++)
DM9000_iow(oft, bd->bi_enetaddr[i]);
for (i = 0, oft = 0x16; i < 8; i++, oft++)
DM9000_iow(oft, 0xff);
/* read back mac, just to be sure */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
DM9000_DBG("%02x:", DM9000_ior(oft));
DM9000_DBG("\n");
/* Activate DM9000 */
DM9000_iow(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */
DM9000_iow(DM9000_IMR, IMR_PAR); /* Enable TX/RX interrupt mask */
i = 0;
while (!(phy_read(1) & 0x20)) { /* autonegation complete bit */
udelay(1000);
i++;
if (i == 10000) {
printf("could not establish link\n");
return 0;
}
}
/* see what we've got */
lnk = phy_read(17) >> 12;
printf("operating at ");
switch (lnk) {
case 1:
printf("10M half duplex ");
break;
case 2:
printf("10M full duplex ");
break;
case 4:
printf("100M half duplex ");
break;
case 8:
printf("100M full duplex ");
break;
default:
printf("unknown: %d ", lnk);
break;
}
printf("mode\n");
return 0;
}
/*
Hardware start transmission.
Send a packet to media from the upper layer.
*/
int
eth_send(volatile void *packet, int length)
{
char *data_ptr;
u32 tmplen, i;
int tmo;
DM9000_DBG("eth_send: length: %d\n", length);
for (i = 0; i < length; i++) {
if (i % 8 == 0)
DM9000_DBG("\nSend: 02x: ", i);
DM9000_DBG("%02x ", ((unsigned char *) packet)[i]);
} DM9000_DBG("\n");
/* Move data to DM9000 TX RAM */
data_ptr = (char *) packet;
DM9000_outb(DM9000_MWCMD, DM9000_IO);
#ifdef CONFIG_DM9000_USE_8BIT
/* Byte mode */
for (i = 0; i < length; i++)
DM9000_outb((data_ptr[i] & 0xff), DM9000_DATA);
#endif /* */
#ifdef CONFIG_DM9000_USE_16BIT
tmplen = (length + 1) / 2;
for (i = 0; i < tmplen; i++)
DM9000_outw(((u16 *) data_ptr)[i], DM9000_DATA);
#endif /* */
#ifdef CONFIG_DM9000_USE_32BIT
tmplen = (length + 3) / 4;
for (i = 0; i < tmplen; i++)
DM9000_outl(((u32 *) data_ptr)[i], DM9000_DATA);
#endif /* */
/* Set TX length to DM9000 */
DM9000_iow(DM9000_TXPLL, length & 0xff);
DM9000_iow(DM9000_TXPLH, (length >> 8) & 0xff);
/* Issue TX polling command */
DM9000_iow(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
/* wait for end of transmission */
tmo = get_timer(0) + 5 * CFG_HZ;
while (DM9000_ior(DM9000_TCR) & TCR_TXREQ) {
if (get_timer(0) >= tmo) {
printf("transmission timeout\n");
break;
}
}
DM9000_DBG("transmit done\n\n");
return 0;
}
/*
Stop the interface.
The interface is stopped when it is brought.
*/
void
eth_halt(void)
{
DM9000_DBG("eth_halt\n");
/* RESET devie */
phy_write(0, 0x8000); /* PHY RESET */
DM9000_iow(DM9000_GPR, 0x01); /* Power-Down PHY */
DM9000_iow(DM9000_IMR, 0x80); /* Disable all interrupt */
DM9000_iow(DM9000_RCR, 0x00); /* Disable RX */
}
/*
Received a packet and pass to upper layer
*/
int
eth_rx(void)
{
u8 rxbyte, *rdptr = (u8 *) NetRxPackets[0];
u16 RxStatus, RxLen = 0;
u32 tmplen, i;
#ifdef CONFIG_DM9000_USE_32BIT
u32 tmpdata;
#endif
/* Check packet ready or not */
DM9000_ior(DM9000_MRCMDX); /* Dummy read */
rxbyte = DM9000_inb(DM9000_DATA); /* Got most updated data */
if (rxbyte == 0)
return 0;
/* Status check: this byte must be 0 or 1 */
if (rxbyte > 1) {
DM9000_iow(DM9000_RCR, 0x00); /* Stop Device */
DM9000_iow(DM9000_ISR, 0x80); /* Stop INT request */
DM9000_DBG("rx status check: %d\n", rxbyte);
}
DM9000_DBG("receiving packet\n");
/* A packet ready now & Get status/length */
DM9000_outb(DM9000_MRCMD, DM9000_IO);
#ifdef CONFIG_DM9000_USE_8BIT
RxStatus = DM9000_inb(DM9000_DATA) + (DM9000_inb(DM9000_DATA) << 8);
RxLen = DM9000_inb(DM9000_DATA) + (DM9000_inb(DM9000_DATA) << 8);
#endif /* */
#ifdef CONFIG_DM9000_USE_16BIT
RxStatus = DM9000_inw(DM9000_DATA);
RxLen = DM9000_inw(DM9000_DATA);
#endif /* */
#ifdef CONFIG_DM9000_USE_32BIT
tmpdata = DM9000_inl(DM9000_DATA);
RxStatus = tmpdata;
RxLen = tmpdata >> 16;
#endif /* */
DM9000_DBG("rx status: 0x%04x rx len: %d\n", RxStatus, RxLen);
/* Move data from DM9000 */
/* Read received packet from RX SRAM */
#ifdef CONFIG_DM9000_USE_8BIT
for (i = 0; i < RxLen; i++)
rdptr[i] = DM9000_inb(DM9000_DATA);
#endif /* */
#ifdef CONFIG_DM9000_USE_16BIT
tmplen = (RxLen + 1) / 2;
for (i = 0; i < tmplen; i++)
((u16 *) rdptr)[i] = DM9000_inw(DM9000_DATA);
#endif /* */
#ifdef CONFIG_DM9000_USE_32BIT
tmplen = (RxLen + 3) / 4;
for (i = 0; i < tmplen; i++)
((u32 *) rdptr)[i] = DM9000_inl(DM9000_DATA);
#endif /* */
if ((RxStatus & 0xbf00) || (RxLen < 0x40)
|| (RxLen > DM9000_PKT_MAX)) {
if (RxStatus & 0x100) {
printf("rx fifo error\n");
}
if (RxStatus & 0x200) {
printf("rx crc error\n");
}
if (RxStatus & 0x8000) {
printf("rx length error\n");
}
if (RxLen > DM9000_PKT_MAX) {
printf("rx length too big\n");
dm9000_reset();
}
} else {
/* Pass to upper layer */
DM9000_DBG("passing packet to upper layer\n");
NetReceive(NetRxPackets[0], RxLen);
return RxLen;
}
return 0;
}
/*
Read a word data from SROM
*/
u16
read_srom_word(int offset)
{
DM9000_iow(DM9000_EPAR, offset);
DM9000_iow(DM9000_EPCR, 0x4);
udelay(8000);
DM9000_iow(DM9000_EPCR, 0x0);
return (DM9000_ior(DM9000_EPDRL) + (DM9000_ior(DM9000_EPDRH) << 8));
}
void
write_srom_word(int offset, u16 val)
{
DM9000_iow(DM9000_EPAR, offset);
DM9000_iow(DM9000_EPDRH, ((val >> 8) & 0xff));
DM9000_iow(DM9000_EPDRL, (val & 0xff));
DM9000_iow(DM9000_EPCR, 0x12);
udelay(8000);
DM9000_iow(DM9000_EPCR, 0);
}
/*
Read a byte from I/O port
*/
static u8
DM9000_ior(int reg)
{
DM9000_outb(reg, DM9000_IO);
return DM9000_inb(DM9000_DATA);
}
/*
Write a byte to I/O port
*/
static void
DM9000_iow(int reg, u8 value)
{
DM9000_outb(reg, DM9000_IO);
DM9000_outb(value, DM9000_DATA);
}
/*
Read a word from phyxcer
*/
static u16
phy_read(int reg)
{
u16 val;
/* Fill the phyxcer register into REG_0C */
DM9000_iow(DM9000_EPAR, DM9000_PHY | reg);
DM9000_iow(DM9000_EPCR, 0xc); /* Issue phyxcer read command */
udelay(100); /* Wait read complete */
DM9000_iow(DM9000_EPCR, 0x0); /* Clear phyxcer read command */
val = (DM9000_ior(DM9000_EPDRH) << 8) | DM9000_ior(DM9000_EPDRL);
/* The read data keeps on REG_0D & REG_0E */
DM9000_DBG("phy_read(%d): %d\n", reg, val);
return val;
}
/*
Write a word to phyxcer
*/
static void
phy_write(int reg, u16 value)
{
/* Fill the phyxcer register into REG_0C */
DM9000_iow(DM9000_EPAR, DM9000_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
DM9000_iow(DM9000_EPDRL, (value & 0xff));
DM9000_iow(DM9000_EPDRH, ((value >> 8) & 0xff));
DM9000_iow(DM9000_EPCR, 0xa); /* Issue phyxcer write command */
udelay(500); /* Wait write complete */
DM9000_iow(DM9000_EPCR, 0x0); /* Clear phyxcer write command */
DM9000_DBG("phy_write(reg:%d, value:%d)\n", reg, value);
}
#endif /* CONFIG_DRIVER_DM9000 */
/*
* dm9000 Ethernet
*/
#ifdef CONFIG_DRIVER_DM9000
#define DM9000_ID 0x90000A46
#define DM9000_PKT_MAX 1536 /* Received packet max size */
#define DM9000_PKT_RDY 0x01 /* Packet ready to receive */
/* although the registers are 16 bit, they are 32-bit aligned.
*/
#define DM9000_NCR 0x00
#define DM9000_NSR 0x01
#define DM9000_TCR 0x02
#define DM9000_TSR1 0x03
#define DM9000_TSR2 0x04
#define DM9000_RCR 0x05
#define DM9000_RSR 0x06
#define DM9000_ROCR 0x07
#define DM9000_BPTR 0x08
#define DM9000_FCTR 0x09
#define DM9000_FCR 0x0A
#define DM9000_EPCR 0x0B
#define DM9000_EPAR 0x0C
#define DM9000_EPDRL 0x0D
#define DM9000_EPDRH 0x0E
#define DM9000_WCR 0x0F
#define DM9000_PAR 0x10
#define DM9000_MAR 0x16
#define DM9000_GPCR 0x1e
#define DM9000_GPR 0x1f
#define DM9000_TRPAL 0x22
#define DM9000_TRPAH 0x23
#define DM9000_RWPAL 0x24
#define DM9000_RWPAH 0x25
#define DM9000_VIDL 0x28
#define DM9000_VIDH 0x29
#define DM9000_PIDL 0x2A
#define DM9000_PIDH 0x2B
#define DM9000_CHIPR 0x2C
#define DM9000_SMCR 0x2F
#define DM9000_PHY 0x40 /* PHY address 0x01 */
#define DM9000_MRCMDX 0xF0
#define DM9000_MRCMD 0xF2
#define DM9000_MRRL 0xF4
#define DM9000_MRRH 0xF5
#define DM9000_MWCMDX 0xF6
#define DM9000_MWCMD 0xF8
#define DM9000_MWRL 0xFA
#define DM9000_MWRH 0xFB
#define DM9000_TXPLL 0xFC
#define DM9000_TXPLH 0xFD
#define DM9000_ISR 0xFE
#define DM9000_IMR 0xFF
#define NCR_EXT_PHY (1<<7)
#define NCR_WAKEEN (1<<6)
#define NCR_FCOL (1<<4)
#define NCR_FDX (1<<3)
#define NCR_LBK (3<<1)
#define NCR_RST (1<<0)
#define NSR_SPEED (1<<7)
#define NSR_LINKST (1<<6)
#define NSR_WAKEST (1<<5)
#define NSR_TX2END (1<<3)
#define NSR_TX1END (1<<2)
#define NSR_RXOV (1<<1)
#define TCR_TJDIS (1<<6)
#define TCR_EXCECM (1<<5)
#define TCR_PAD_DIS2 (1<<4)
#define TCR_CRC_DIS2 (1<<3)
#define TCR_PAD_DIS1 (1<<2)
#define TCR_CRC_DIS1 (1<<1)
#define TCR_TXREQ (1<<0)
#define TSR_TJTO (1<<7)
#define TSR_LC (1<<6)
#define TSR_NC (1<<5)
#define TSR_LCOL (1<<4)
#define TSR_COL (1<<3)
#define TSR_EC (1<<2)
#define RCR_WTDIS (1<<6)
#define RCR_DIS_LONG (1<<5)
#define RCR_DIS_CRC (1<<4)
#define RCR_ALL (1<<3)
#define RCR_RUNT (1<<2)
#define RCR_PRMSC (1<<1)
#define RCR_RXEN (1<<0)
#define RSR_RF (1<<7)
#define RSR_MF (1<<6)
#define RSR_LCS (1<<5)
#define RSR_RWTO (1<<4)
#define RSR_PLE (1<<3)
#define RSR_AE (1<<2)
#define RSR_CE (1<<1)
#define RSR_FOE (1<<0)
#define FCTR_HWOT(ot) (( ot & 0xf ) << 4 )
#define FCTR_LWOT(ot) ( ot & 0xf )
#define IMR_PAR (1<<7)
#define IMR_ROOM (1<<3)
#define IMR_ROM (1<<2)
#define IMR_PTM (1<<1)
#define IMR_PRM (1<<0)
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册