drv_usart.c 18.9 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Copyright (c) 2006-2018, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
8
 * 2018-10-30     SummerGift   first version
9 10 11 12 13 14 15 16 17 18 19 20
 */
 
#include "board.h"
#include "drv_usart.h"
#include "drv_config.h"

#ifdef RT_USING_SERIAL

//#define DRV_DEBUG
#define LOG_TAG             "drv.usart"
#include <drv_log.h>

21 22
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) \
    && !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_LPUART1)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#error "Please define at least one BSP_USING_UARTx"
/* this driver can be disabled at menuconfig → RT-Thread Components → Device Drivers */
#endif

#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_config(struct rt_serial_device *serial);
#endif

enum
{
#ifdef BSP_USING_UART1
    UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
    UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
    UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
    UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
    UART5_INDEX,
#endif
48 49 50
#ifdef BSP_USING_LPUART1
    LPUART1_INDEX,
#endif
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
};

static struct stm32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
        UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
        UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
        UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
        UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
        UART5_CONFIG,
#endif
70 71 72
#ifdef BSP_USING_LPUART1
        LPUART1_CONFIG,
#endif
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
};

static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};

static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
    struct stm32_uart *uart;
    RT_ASSERT(serial != RT_NULL);
    RT_ASSERT(cfg != RT_NULL);
    uart = (struct stm32_uart *)serial->parent.user_data;
    RT_ASSERT(uart != RT_NULL);

    uart->handle.Instance          = uart->config->Instance;
    uart->handle.Init.BaudRate     = cfg->baud_rate;
    uart->handle.Init.HwFlowCtl    = UART_HWCONTROL_NONE;
    uart->handle.Init.Mode         = UART_MODE_TX_RX;
    uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
    switch (cfg->data_bits)
    {
    case DATA_BITS_8:
        uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
        break;
    case DATA_BITS_9:
        uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
        break;
    default:
        uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
        break;
    }
    switch (cfg->stop_bits)
    {
    case STOP_BITS_1:
        uart->handle.Init.StopBits   = UART_STOPBITS_1;
        break;
    case STOP_BITS_2:
        uart->handle.Init.StopBits   = UART_STOPBITS_2;
        break;
    default:
        uart->handle.Init.StopBits   = UART_STOPBITS_1;
        break;
    }
    switch (cfg->parity)
    {
    case PARITY_NONE:
        uart->handle.Init.Parity     = UART_PARITY_NONE;
        break;
    case PARITY_ODD:
        uart->handle.Init.Parity     = UART_PARITY_ODD;
        break;
    case PARITY_EVEN:
        uart->handle.Init.Parity     = UART_PARITY_EVEN;
        break;
    default:
        uart->handle.Init.Parity     = UART_PARITY_NONE;
        break;
    }

    if (HAL_UART_Init(&uart->handle) != HAL_OK)
    {
        return -RT_ERROR;
    }

    return RT_EOK;
}

static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
    struct stm32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
    rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
#endif
    
    RT_ASSERT(serial != RT_NULL);
    uart = (struct stm32_uart *)serial->parent.user_data;
    RT_ASSERT(uart != RT_NULL);

    switch (cmd)
    {
    /* disable interrupt */
    case RT_DEVICE_CTRL_CLR_INT:
        /* disable rx irq */
        NVIC_DisableIRQ(uart->config->irq_type);
        /* disable interrupt */
        __HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
        break;
    /* enable interrupt */
    case RT_DEVICE_CTRL_SET_INT:
        /* enable rx irq */
        NVIC_EnableIRQ(uart->config->irq_type);
        /* enable interrupt */
        __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
        break;

#ifdef RT_SERIAL_USING_DMA
    case RT_DEVICE_CTRL_CONFIG:
        if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
        {
            stm32_dma_config(serial);
        }
        break;
#endif
    }
    return RT_EOK;
}

static int stm32_putc(struct rt_serial_device *serial, char c)
{
    struct stm32_uart *uart;
    RT_ASSERT(serial != RT_NULL);

    uart = (struct stm32_uart *)serial->parent.user_data;
    UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
185
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
186
    || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    uart->handle.Instance->TDR = c;
#else
    uart->handle.Instance->DR = c;
#endif
    while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
    return 1;
}

static int stm32_getc(struct rt_serial_device *serial)
{
    int ch;
    struct stm32_uart *uart;
    RT_ASSERT(serial != RT_NULL);
    uart = (struct stm32_uart *)serial->parent.user_data;
    RT_ASSERT(uart != RT_NULL);

    ch = -1;
    if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
    {
206
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
207
    || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0)
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        ch = uart->handle.Instance->RDR & 0xff;
#else
        ch = uart->handle.Instance->DR & 0xff;
#endif
    }
    return ch;
}

static const struct rt_uart_ops stm32_uart_ops =
{
    .configure = stm32_configure,
    .control = stm32_control,
    .putc = stm32_putc,
    .getc = stm32_getc,
};

/**
 * Uart common interrupt process. This need add to uart ISR.
 *
 * @param serial serial device
 */
static void uart_isr(struct rt_serial_device *serial)
{
    struct stm32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
    rt_size_t recv_total_index, recv_len;
    rt_base_t level;
#endif
    
    RT_ASSERT(serial != RT_NULL);

    uart = (struct stm32_uart *) serial->parent.user_data;
    RT_ASSERT(uart != RT_NULL);

    /* UART in mode Receiver -------------------------------------------------*/
    if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
        (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
    {
        rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
    }
#ifdef RT_SERIAL_USING_DMA
    else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET) &&
             (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
    {
        level = rt_hw_interrupt_disable();
        recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma.handle));
        recv_len = recv_total_index - uart->dma.last_index;
        uart->dma.last_index = recv_total_index;
        rt_hw_interrupt_enable(level);

        if (recv_len)
        {
            rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
        }
        __HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
    }
#endif
    else
    {
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
        {
            __HAL_UART_CLEAR_OREFLAG(&uart->handle);
        }
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
        {
            __HAL_UART_CLEAR_NEFLAG(&uart->handle);
        }
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
        {
            __HAL_UART_CLEAR_FEFLAG(&uart->handle);
        }
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
        {
            __HAL_UART_CLEAR_PEFLAG(&uart->handle);
        }
283
#if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
284
    && !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
        {
            UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
        }
#endif
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
        {
            UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
        }
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
        {
            UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
        }
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET)
        {
            UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
        }
        if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
        {
            UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
        }
    }
}

#if defined(BSP_USING_UART1)
void USART1_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART1_INDEX].serial));
    
    /* leave interrupt */
    rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
void UART1_DMA_RX_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma.handle);

    /* leave interrupt */
    rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
#endif /* BSP_USING_UART1 */

#if defined(BSP_USING_UART2)
void USART2_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART2_INDEX].serial));

    /* leave interrupt */
    rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
void UART2_DMA_RX_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma.handle);

    /* leave interrupt */
    rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
#endif /* BSP_USING_UART2 */

#if defined(BSP_USING_UART3)
void USART3_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART3_INDEX].serial));
    
    /* leave interrupt */
    rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
void UART3_DMA_RX_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma.handle);

    /* leave interrupt */
    rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
#endif /* BSP_USING_UART3*/

#if defined(BSP_USING_UART4)
void UART4_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART4_INDEX].serial));
    
    /* leave interrupt */
    rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
void UART4_DMA_RX_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma.handle);

    /* leave interrupt */
    rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
#endif /* BSP_USING_UART4*/

#if defined(BSP_USING_UART5)
void UART5_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[UART5_INDEX].serial));
    
    /* leave interrupt */
    rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
void UART5_DMA_RX_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma.handle);

    /* leave interrupt */
    rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
#endif /* BSP_USING_UART5*/

434
#if defined(BSP_USING_LPUART1)
435
void LPUART1_IRQHandler(void)
436 437 438 439 440 441 442 443 444
{
    /* enter interrupt */
    rt_interrupt_enter();

    uart_isr(&(uart_obj[LPUART1_INDEX].serial));
    
    /* leave interrupt */
    rt_interrupt_leave();
}
445 446 447 448 449 450 451 452 453 454 455
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA)
void LPUART1_DMA_RX_IRQHandler(void)
{
    /* enter interrupt */
    rt_interrupt_enter();

    HAL_DMA_IRQHandler(&uart_obj[LPUART1_INDEX].dma.handle);

    /* leave interrupt */
    rt_interrupt_leave();
}
456 457
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_LPUART1_RX_USING_DMA) */
#endif /* BSP_USING_LPUART1*/
458

459 460 461 462 463 464 465 466 467 468 469 470
#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_config(struct rt_serial_device *serial)
{
    RT_ASSERT(serial != RT_NULL);
    struct stm32_uart *uart = (struct stm32_uart *)serial->parent.user_data;
    RT_ASSERT(uart != RT_NULL);
    struct rt_serial_rx_fifo *rx_fifo;
    
    LOG_D("%s dma config start", uart->config->name);

    {
        rt_uint32_t tmpreg= 0x00U;
471 472
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
	|| defined(SOC_SERIES_STM32L0)
473 474 475 476 477 478 479 480 481 482
        /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
        SET_BIT(RCC->AHBENR, uart->config->dma_rx->dma_rcc);
        tmpreg = READ_BIT(RCC->AHBENR, uart->config->dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
        /* enable DMA clock && Delay after an RCC peripheral clock enabling*/
        SET_BIT(RCC->AHB1ENR, uart->config->dma_rx->dma_rcc);
        tmpreg = READ_BIT(RCC->AHB1ENR, uart->config->dma_rx->dma_rcc);
#endif  
        UNUSED(tmpreg);   /* To avoid compiler warnings */
    }
483

484 485
    __HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma.handle);

486
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)
487 488 489 490
    uart->dma.handle.Instance                 = uart->config->dma_rx->Instance;
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
    uart->dma.handle.Instance                 = uart->config->dma_rx->Instance;
    uart->dma.handle.Init.Channel             = uart->config->dma_rx->channel;
491
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    uart->dma.handle.Instance                 = uart->config->dma_rx->Instance;
    uart->dma.handle.Init.Request             = uart->config->dma_rx->request;
#endif
    uart->dma.handle.Init.Direction           = DMA_PERIPH_TO_MEMORY;
    uart->dma.handle.Init.PeriphInc           = DMA_PINC_DISABLE;
    uart->dma.handle.Init.MemInc              = DMA_MINC_ENABLE;
    uart->dma.handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
    uart->dma.handle.Init.MemDataAlignment    = DMA_MDATAALIGN_BYTE;
    uart->dma.handle.Init.Mode                = DMA_CIRCULAR;
    uart->dma.handle.Init.Priority            = DMA_PRIORITY_MEDIUM;
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
    uart->dma.handle.Init.FIFOMode            = DMA_FIFOMODE_DISABLE;
#endif
    if (HAL_DMA_DeInit(&(uart->dma.handle)) != HAL_OK)
    {
        RT_ASSERT(0);
    }

    if (HAL_DMA_Init(&(uart->dma.handle)) != HAL_OK)
    {
        RT_ASSERT(0);
    }

    rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
    
    /* Start DMA transfer */
    if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
    {
        /* Transfer error in reception process */
        RT_ASSERT(0);
    }

    /* enable interrupt */
    __HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
    
    /* enable rx irq */
    HAL_NVIC_SetPriority(uart->config->dma_rx->dma_irq, 0, 0);
    HAL_NVIC_EnableIRQ(uart->config->dma_rx->dma_irq);
    
    HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
    HAL_NVIC_EnableIRQ(uart->config->irq_type);
    
    LOG_D("%s dma RX instance: %x", uart->config->name, uart->dma.handle.Instance);
    LOG_D("%s dma config done", uart->config->name);
}

/**
  * @brief  UART error callbacks
  * @param  huart: UART handle
  * @note   This example shows a simple way to report transfer error, and you can
  *         add your own implementation.
  * @retval None
  */
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
    RT_ASSERT(huart != NULL);
    struct stm32_uart *uart = (struct stm32_uart *)huart;
    LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
    UNUSED(uart);
}

/**
  * @brief  Rx Transfer completed callback
  * @param  huart: UART handle
  * @note   This example shows a simple way to report end of DMA Rx transfer, and
  *         you can add your own implementation.
  * @retval None
  */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
    struct rt_serial_device *serial;
    struct stm32_uart *uart;
    rt_size_t recv_len;
    rt_base_t level;

    RT_ASSERT(huart != NULL);
    uart = (struct stm32_uart *)huart;
    serial = &uart->serial;

    level = rt_hw_interrupt_disable();

    recv_len = serial->config.bufsz - uart->dma.last_index;
    uart->dma.last_index = 0;

    rt_hw_interrupt_enable(level);
    if (recv_len)
    {
        rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
    }
}
#endif  /* RT_SERIAL_USING_DMA */

static void stm32_uart_get_dma_config(void)
{
#ifdef BSP_UART1_RX_USING_DMA
    uart_obj[UART1_INDEX].uart_dma_flag = 1;
    static struct dma_config uart1_dma_rx = UART1_DMA_CONFIG;
    uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
#endif
#ifdef BSP_UART2_RX_USING_DMA
    uart_obj[UART2_INDEX].uart_dma_flag = 1;
    static struct dma_config uart2_dma_rx = UART2_DMA_CONFIG;
    uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
#endif
#ifdef BSP_UART3_RX_USING_DMA
    uart_obj[UART3_INDEX].uart_dma_flag = 1;
    static struct dma_config uart3_dma_rx = UART3_DMA_CONFIG;
    uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
#endif
#ifdef BSP_UART4_RX_USING_DMA
    uart_obj[UART4_INDEX].uart_dma_flag = 1;
    static struct dma_config uart4_dma_rx = UART4_DMA_CONFIG;
    uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
#endif
#ifdef BSP_UART5_RX_USING_DMA
    uart_obj[UART5_INDEX].uart_dma_flag = 1;
    static struct dma_config uart5_dma_rx = UART5_DMA_CONFIG;
    uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
#endif
611 612
#ifdef BSP_LPUART1_RX_USING_DMA
    uart_obj[LPUART1_INDEX].uart_dma_flag = 1;
613 614
    static struct dma_config lpuart1_dma_rx = LPUART1_DMA_CONFIG;
    uart_config[LPUART1_INDEX].dma_rx = &lpuart1_dma_rx;
615
#endif
616 617 618 619 620 621 622
}

int rt_hw_usart_init(void)
{
    rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
    struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
    rt_err_t result = 0;
623

624 625 626 627 628 629 630
    stm32_uart_get_dma_config();
    
    for (int i = 0; i < obj_num; i++)
    {
        uart_obj[i].config = &uart_config[i];
        uart_obj[i].serial.ops    = &stm32_uart_ops;
        uart_obj[i].serial.config = config;
631 632

#if defined(RT_SERIAL_USING_DMA)
633 634 635 636 637 638 639 640
        if(uart_obj[i].uart_dma_flag)
        {
            /* register UART device */
            result = rt_hw_serial_register(&uart_obj[i].serial,uart_obj[i].config->name,
                                           RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX| RT_DEVICE_FLAG_DMA_RX 
                                           ,&uart_obj[i]);
        }
        else
641
#endif
642 643 644 645 646 647 648 649 650 651 652 653 654
        {
            /* register UART device */
            result = rt_hw_serial_register(&uart_obj[i].serial,uart_obj[i].config->name,
                                           RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX
                                           ,&uart_obj[i]);
        }
        RT_ASSERT(result == RT_EOK);
    }

    return result;
}

#endif /* RT_USING_SERIAL */