app_uart_fifo.c 8.6 KB
Newer Older
X
xieyangrun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/**
 * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(APP_UART)
#include "app_uart.h"
#include "app_fifo.h"
#include "nrf_drv_uart.h"
#include "nrf_assert.h"

static nrf_drv_uart_t app_uart_inst = NRF_DRV_UART_INSTANCE(APP_UART_DRIVER_INSTANCE);

static __INLINE uint32_t fifo_length(app_fifo_t * const fifo)
{
  uint32_t tmp = fifo->read_pos;
  return fifo->write_pos - tmp;
}

#define FIFO_LENGTH(F) fifo_length(&F)              /**< Macro to calculate length of a FIFO. */


static app_uart_event_handler_t   m_event_handler;            /**< Event handler function. */
static uint8_t tx_buffer[1];
static uint8_t rx_buffer[1];
static bool m_rx_ovf;

static app_fifo_t                  m_rx_fifo;                               /**< RX FIFO buffer for storing data received on the UART until the application fetches them using app_uart_get(). */
static app_fifo_t                  m_tx_fifo;                               /**< TX FIFO buffer for storing data to be transmitted on the UART when TXD is ready. Data is put to the buffer on using app_uart_put(). */

static void uart_event_handler(nrf_drv_uart_event_t * p_event, void* p_context)
{
    app_uart_evt_t app_uart_event;
    uint32_t err_code;

    switch (p_event->type)
    {
        case NRF_DRV_UART_EVT_RX_DONE:
            // Write received byte to FIFO.
            err_code = app_fifo_put(&m_rx_fifo, p_event->data.rxtx.p_data[0]);
            if (err_code != NRF_SUCCESS)
            {
                app_uart_event.evt_type          = APP_UART_FIFO_ERROR;
                app_uart_event.data.error_code   = err_code;
                m_event_handler(&app_uart_event);
            }
            // Notify that there are data available.
            else if (FIFO_LENGTH(m_rx_fifo) != 0)
            {
                app_uart_event.evt_type = APP_UART_DATA_READY;
                m_event_handler(&app_uart_event);
            }

            // Start new RX if size in buffer.
            if (FIFO_LENGTH(m_rx_fifo) <= m_rx_fifo.buf_size_mask)
            {
                (void)nrf_drv_uart_rx(&app_uart_inst, rx_buffer, 1);
            }
            else
            {
                // Overflow in RX FIFO.
                m_rx_ovf = true;
            }

            break;

        case NRF_DRV_UART_EVT_ERROR:
            app_uart_event.evt_type                 = APP_UART_COMMUNICATION_ERROR;
            app_uart_event.data.error_communication = p_event->data.error.error_mask;
            (void)nrf_drv_uart_rx(&app_uart_inst, rx_buffer, 1);
            m_event_handler(&app_uart_event);
            break;

        case NRF_DRV_UART_EVT_TX_DONE:
            // Get next byte from FIFO.
            if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS)
            {
                (void)nrf_drv_uart_tx(&app_uart_inst, tx_buffer, 1);
            }
            else
            {
                // Last byte from FIFO transmitted, notify the application.
                app_uart_event.evt_type = APP_UART_TX_EMPTY;
                m_event_handler(&app_uart_event);
            }
            break;

        default:
            break;
    }
}


uint32_t app_uart_init(const app_uart_comm_params_t * p_comm_params,
                             app_uart_buffers_t *     p_buffers,
                             app_uart_event_handler_t event_handler,
                             app_irq_priority_t       irq_priority)
{
    uint32_t err_code;

    m_event_handler = event_handler;

    if (p_buffers == NULL)
    {
        return NRF_ERROR_INVALID_PARAM;
    }

    // Configure buffer RX buffer.
    err_code = app_fifo_init(&m_rx_fifo, p_buffers->rx_buf, p_buffers->rx_buf_size);
    VERIFY_SUCCESS(err_code);

    // Configure buffer TX buffer.
    err_code = app_fifo_init(&m_tx_fifo, p_buffers->tx_buf, p_buffers->tx_buf_size);
    VERIFY_SUCCESS(err_code);

    nrf_drv_uart_config_t config = NRF_DRV_UART_DEFAULT_CONFIG;
    config.baudrate = (nrf_uart_baudrate_t)p_comm_params->baud_rate;
    config.hwfc = (p_comm_params->flow_control == APP_UART_FLOW_CONTROL_DISABLED) ?
            NRF_UART_HWFC_DISABLED : NRF_UART_HWFC_ENABLED;
    config.interrupt_priority = irq_priority;
    config.parity = p_comm_params->use_parity ? NRF_UART_PARITY_INCLUDED : NRF_UART_PARITY_EXCLUDED;
    config.pselcts = p_comm_params->cts_pin_no;
    config.pselrts = p_comm_params->rts_pin_no;
    config.pselrxd = p_comm_params->rx_pin_no;
    config.pseltxd = p_comm_params->tx_pin_no;

    err_code = nrf_drv_uart_init(&app_uart_inst, &config, uart_event_handler);
    VERIFY_SUCCESS(err_code);
    m_rx_ovf = false;

    // Turn on receiver if RX pin is connected
    if (p_comm_params->rx_pin_no != UART_PIN_DISCONNECTED)
    {
#ifdef UARTE_PRESENT
        if (!config.use_easy_dma)
#endif
        {
            nrf_drv_uart_rx_enable(&app_uart_inst);
        }

        return nrf_drv_uart_rx(&app_uart_inst, rx_buffer,1);
    }
    else
    {
        return NRF_SUCCESS;
    }
}


uint32_t app_uart_flush(void)
{
    uint32_t err_code;

    err_code = app_fifo_flush(&m_rx_fifo);
    VERIFY_SUCCESS(err_code);

    err_code = app_fifo_flush(&m_tx_fifo);
    VERIFY_SUCCESS(err_code);

    return NRF_SUCCESS;
}


uint32_t app_uart_get(uint8_t * p_byte)
{
    ASSERT(p_byte);
    bool rx_ovf = m_rx_ovf;

    ret_code_t err_code =  app_fifo_get(&m_rx_fifo, p_byte);

    // If FIFO was full new request to receive one byte was not scheduled. Must be done here.
    if(rx_ovf)
    {
        m_rx_ovf = false;
        uint32_t uart_err_code = nrf_drv_uart_rx(&app_uart_inst, rx_buffer, 1);

        // RX resume should never fail.
        APP_ERROR_CHECK(uart_err_code);
    }

    return err_code;
}


uint32_t app_uart_put(uint8_t byte)
{
    uint32_t err_code;
    err_code = app_fifo_put(&m_tx_fifo, byte);
    if (err_code == NRF_SUCCESS)
    {
        // The new byte has been added to FIFO. It will be picked up from there
        // (in 'uart_event_handler') when all preceding bytes are transmitted.
        // But if UART is not transmitting anything at the moment, we must start
        // a new transmission here.
        if (!nrf_drv_uart_tx_in_progress(&app_uart_inst))
        {
            // This operation should be almost always successful, since we've
            // just added a byte to FIFO, but if some bigger delay occurred
            // (some heavy interrupt handler routine has been executed) since
            // that time, FIFO might be empty already.
            if (app_fifo_get(&m_tx_fifo, tx_buffer) == NRF_SUCCESS)
            {
                err_code = nrf_drv_uart_tx(&app_uart_inst, tx_buffer, 1);
            }
        }
    }
    return err_code;
}


uint32_t app_uart_close(void)
{
    nrf_drv_uart_uninit(&app_uart_inst);
    return NRF_SUCCESS;
}
#endif //NRF_MODULE_ENABLED(APP_UART)