nrf_spi_mngr.c 12.5 KB
Newer Older
X
xieyangrun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * Copyright (c) 2017 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
#include "sdk_common.h"

#if NRF_MODULE_ENABLED(NRF_SPI_MNGR)
#include "nrf_spi_mngr.h"
#include "nrf_assert.h"
#include "app_util_platform.h"


static ret_code_t start_transfer(nrf_spi_mngr_t const * p_nrf_spi_mngr)
{
    ASSERT(p_nrf_spi_mngr != NULL);

    // use a local variable to avoid using two volatile variables in one
    // expression
    uint8_t curr_transfer_idx = p_nrf_spi_mngr->p_nrf_spi_mngr_cb->current_transfer_idx;
    nrf_spi_mngr_transfer_t const * p_transfer =
        &p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction->p_transfers[curr_transfer_idx];

    return nrf_drv_spi_transfer(&p_nrf_spi_mngr->spi,
                                p_transfer->p_tx_data, p_transfer->tx_length,
                                p_transfer->p_rx_data, p_transfer->rx_length);
}


static void transaction_begin_signal(nrf_spi_mngr_t const * p_nrf_spi_mngr)
{
    ASSERT(p_nrf_spi_mngr != NULL);

    nrf_spi_mngr_transaction_t const * p_current_transaction =
        p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction;


    if (p_current_transaction->begin_callback != NULL)
    {
        void * p_user_data = p_current_transaction->p_user_data;
        p_current_transaction->begin_callback(p_user_data);
    }
}


static void transaction_end_signal(nrf_spi_mngr_t const * p_nrf_spi_mngr,
                                   ret_code_t             result)
{
    ASSERT(p_nrf_spi_mngr != NULL);

    nrf_spi_mngr_transaction_t const * p_current_transaction =
        p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction;

    if (p_current_transaction->end_callback != NULL)
    {
        void * p_user_data = p_current_transaction->p_user_data;
        p_current_transaction->end_callback(result, p_user_data);
    }
}


static void spi_event_handler(nrf_drv_spi_evt_t const * p_event,
                              void *                    p_context);


// This function starts pending transaction if there is no current one or
// when 'switch_transaction' parameter is set to true. It is important to
// switch to new transaction without setting 'p_nrf_spi_mngr->p_curr_transaction'
// to NULL in between, since this pointer is used to check idle status - see
// 'nrf_spi_mngr_is_idle()'.
static void start_pending_transaction(nrf_spi_mngr_t const * p_nrf_spi_mngr,
                                      bool                   switch_transaction)
{
    ASSERT(p_nrf_spi_mngr != NULL);

    while (1)
    {
        bool start_transaction = false;
        nrf_spi_mngr_cb_t * p_cb = p_nrf_spi_mngr->p_nrf_spi_mngr_cb;

        CRITICAL_REGION_ENTER();
        if (switch_transaction || nrf_spi_mngr_is_idle(p_nrf_spi_mngr))
        {
            if (nrf_queue_pop(p_nrf_spi_mngr->p_queue,
                              (void *)(&p_cb->p_current_transaction))
                == NRF_SUCCESS)
            {
                start_transaction = true;
            }
            else
            {
                p_cb->p_current_transaction = NULL;
            }
        }
        CRITICAL_REGION_EXIT();

        if (!start_transaction)
        {
            return;
        }
        else
        {
            ret_code_t result;

            nrf_drv_spi_config_t const * p_instance_cfg;
            if (p_cb->p_current_transaction->p_required_spi_cfg == NULL)
            {
                p_instance_cfg = &p_cb->default_configuration ;
            }
            else
            {
                p_instance_cfg = p_cb->p_current_transaction->p_required_spi_cfg;
            }

            if (memcmp(p_cb->p_current_configuration, p_instance_cfg, sizeof(*p_instance_cfg)) != 0)
            {
                ret_code_t err_code;
                nrf_drv_spi_uninit(&p_nrf_spi_mngr->spi);
                err_code = nrf_drv_spi_init(&p_nrf_spi_mngr->spi,
                                            p_instance_cfg,
                                            spi_event_handler,
                                            (void *)p_nrf_spi_mngr);
                ASSERT(err_code == NRF_SUCCESS);
                p_cb->p_current_configuration = p_instance_cfg;
            }

            // Try to start first transfer for this new transaction.
            p_cb->current_transfer_idx = 0;

            // Execute user code if available before starting transaction
            transaction_begin_signal(p_nrf_spi_mngr);
            result = start_transfer(p_nrf_spi_mngr);

            // If transaction started successfully there is nothing more to do here now.
            if (result == NRF_SUCCESS)
            {
                return;
            }

            // Transfer failed to start - notify user that this transaction
            // cannot be started and try with next one (in next iteration of
            // the loop).
            transaction_end_signal(p_nrf_spi_mngr, result);

            switch_transaction = true;
        }
    }
}


// This function shall be called to handle SPI events. It shall be mainly used by SPI IRQ for
// finished tranfer.
static void spi_event_handler(nrf_drv_spi_evt_t const * p_event,
                              void *                    p_context)
{
    ASSERT(p_event != NULL);
    ASSERT(p_context != NULL);

    ret_code_t result;
    nrf_spi_mngr_cb_t * p_cb = ((nrf_spi_mngr_t const *)p_context)->p_nrf_spi_mngr_cb;

    // This callback should be called only during transaction.
    ASSERT(p_cb->p_current_transaction != NULL);

    if (p_event->type == NRF_DRV_SPI_EVENT_DONE)
    {
        result = NRF_SUCCESS;

        // Transfer finished successfully. If there is another one to be
        // performed in the current transaction, start it now.
        // use a local variable to avoid using two volatile variables in one
        // expression
        uint8_t curr_transfer_idx = p_cb->current_transfer_idx;
        ++curr_transfer_idx;
        if (curr_transfer_idx < p_cb->p_current_transaction->number_of_transfers)
        {
            p_cb->current_transfer_idx = curr_transfer_idx;

            result = start_transfer(((nrf_spi_mngr_t const *)p_context));

            if (result == NRF_SUCCESS)
            {
                // The current transaction is running and its next transfer
                // has been successfully started. There is nothing more to do.
                return;
            }
            // if the next transfer could not be started due to some error
            // we finish the transaction with this error code as the result
        }
    }
    else
    {
        result = NRF_ERROR_INTERNAL;
    }

    // The current transaction has been completed or interrupted by some error.
    // Notify the user and start next one (if there is any).
    transaction_end_signal(((nrf_spi_mngr_t const *)p_context), result);
    // we switch transactions here ('p_nrf_spi_mngr->p_current_transaction' is set
    // to NULL only if there is nothing more to do) in order to not generate
    // spurious idle status (even for a moment)
    start_pending_transaction(((nrf_spi_mngr_t const *)p_context), true);
}


ret_code_t nrf_spi_mngr_init(nrf_spi_mngr_t const *       p_nrf_spi_mngr,
                             nrf_drv_spi_config_t const * p_default_spi_config)
{
    ASSERT(p_nrf_spi_mngr != NULL);
    ASSERT(p_nrf_spi_mngr->p_queue != NULL);
    ASSERT(p_nrf_spi_mngr->p_queue->size > 0);
    ASSERT(p_default_spi_config != NULL);

    ret_code_t err_code;

    err_code = nrf_drv_spi_init(&p_nrf_spi_mngr->spi,
                                p_default_spi_config,
                                spi_event_handler,
                                (void *)p_nrf_spi_mngr);

    if (err_code == NRF_SUCCESS)
    {
        nrf_spi_mngr_cb_t * p_cb = p_nrf_spi_mngr->p_nrf_spi_mngr_cb;

        p_cb->internal_transaction_in_progress = false;
        p_cb->p_current_transaction = NULL;
        p_cb->default_configuration = *p_default_spi_config;
        p_cb->p_current_configuration = &p_cb->default_configuration;
    }

    return err_code;
}


void nrf_spi_mngr_uninit(nrf_spi_mngr_t const * p_nrf_spi_mngr)
{
    ASSERT(p_nrf_spi_mngr != NULL);

    nrf_drv_spi_uninit(&p_nrf_spi_mngr->spi);

    p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction = NULL;
}


ret_code_t nrf_spi_mngr_schedule(nrf_spi_mngr_t const *             p_nrf_spi_mngr,
                                 nrf_spi_mngr_transaction_t const * p_transaction)
{
    ASSERT(p_nrf_spi_mngr != NULL);
    ASSERT(p_transaction != NULL);
    ASSERT(p_transaction->p_transfers != NULL);
    ASSERT(p_transaction->number_of_transfers != 0);

    ret_code_t result = nrf_queue_push(p_nrf_spi_mngr->p_queue, (void *)(&p_transaction));
    if (result == NRF_SUCCESS)
    {
        // New transaction has been successfully added to queue,
        // so if we are currently idle it's time to start the job.
        start_pending_transaction(p_nrf_spi_mngr, false);
    }

    return result;
}


static void spi_internal_transaction_cb(ret_code_t result, void * p_user_data)
{
    nrf_spi_mngr_cb_t * p_cb = ((nrf_spi_mngr_t const *)p_user_data)->p_nrf_spi_mngr_cb;

    p_cb->internal_transaction_result = result;
    p_cb->internal_transaction_in_progress = false;
}

ret_code_t nrf_spi_mngr_perform(nrf_spi_mngr_t const *          p_nrf_spi_mngr,
                                nrf_spi_mngr_transfer_t const * p_transfers,
                                uint8_t                         number_of_transfers,
                                void (* user_function)(void))
{
    ASSERT(p_nrf_spi_mngr != NULL);
    ASSERT(p_transfers != NULL);
    ASSERT(number_of_transfers != 0);

    ret_code_t err_code = NRF_SUCCESS;
    nrf_spi_mngr_cb_t * p_cb = p_nrf_spi_mngr->p_nrf_spi_mngr_cb;

    CRITICAL_REGION_ENTER();
    if (p_cb->internal_transaction_in_progress)
    {
        err_code = NRF_ERROR_BUSY;
    }
    else
    {
        p_cb->internal_transaction_in_progress = true;
    }
    CRITICAL_REGION_EXIT();

    if (err_code != NRF_ERROR_BUSY)
    {
        nrf_spi_mngr_transaction_t internal_transaction =
        {
            .begin_callback      = NULL,
            .end_callback        = spi_internal_transaction_cb,
            .p_user_data         = (void *)p_nrf_spi_mngr,
            .p_transfers         = p_transfers,
            .number_of_transfers = number_of_transfers,
        };

        err_code = nrf_spi_mngr_schedule(p_nrf_spi_mngr, &internal_transaction);

        if (err_code == NRF_SUCCESS)
        {
            while (p_cb->internal_transaction_in_progress)
            {
                if (user_function)
                {
                    user_function();
                }
            }
            err_code = p_cb->internal_transaction_result;
        }
    }

    return err_code;
}

#endif //NRF_MODULE_ENABLED(NRF_SPI_MNGR)