nrf_drv_spis.c 17.5 KB
Newer Older
X
xieyangrun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/**
 * Copyright (c) 2013 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(SPIS)
#define ENABLED_SPIS_COUNT (SPIS0_ENABLED+SPIS1_ENABLED+SPIS2_ENABLED)
#if ENABLED_SPIS_COUNT
#include "nrf_drv_spis.h"
#include <stdbool.h>
#include <stdio.h>
#include "nrf.h"
#include "nrf_gpio.h"
#include "app_error.h"
#include "app_util_platform.h"
#include "nrf_drv_common.h"
#include "nrf_assert.h"

#define NRF_LOG_MODULE_NAME "SPIS"

#if SPIS_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       SPIS_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR  SPIS_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SPIS_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event) \
    (event == NRF_SPIS_EVENT_ACQUIRED ? "NRF_SPIS_EVENT_ACQUIRED" : \
    (event == NRF_SPIS_EVENT_END      ? "NRF_SPIS_EVENT_END" : \
                                        "UNKNOWN ERROR"))

#else //SPIS_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event)   ""
#define NRF_LOG_LEVEL       0
#endif //SPIS_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"

#if NRF_MODULE_ENABLED(SPIS_NRF52_ANOMALY_109_WORKAROUND)
#include "nrf_drv_gpiote.h"
#define USE_DMA_ISSUE_WORKAROUND
// This handler is called by the GPIOTE driver when a falling edge is detected
// on the CSN line. There is no need to do anything here. The handling of the
// interrupt itself provides a protection for DMA transfers.
static void csn_event_handler(nrf_drv_gpiote_pin_t pin,
                              nrf_gpiote_polarity_t action)
{
}
#endif


/**@brief States of the SPI transaction state machine. */
typedef enum
{
    SPIS_STATE_INIT,                                 /**< Initialization state. In this state the module waits for a call to @ref spi_slave_buffers_set. */
    SPIS_BUFFER_RESOURCE_REQUESTED,                  /**< State where the configuration of the memory buffers, which are to be used in SPI transaction, has started. */
    SPIS_BUFFER_RESOURCE_CONFIGURED,                 /**< State where the configuration of the memory buffers, which are to be used in SPI transaction, has completed. */
    SPIS_XFER_COMPLETED                              /**< State where SPI transaction has been completed. */
} nrf_drv_spis_state_t;


#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
    #define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n
    #define IRQ_HANDLER(n)      static void IRQ_HANDLER_NAME(n)(void)

    #if NRF_MODULE_ENABLED(SPIS0)
        IRQ_HANDLER(0);
    #endif
    #if NRF_MODULE_ENABLED(SPIS1)
        IRQ_HANDLER(1);
    #endif
    #if NRF_MODULE_ENABLED(SPIS2)
        IRQ_HANDLER(2);
    #endif
    static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPIS_COUNT] = {
    #if NRF_MODULE_ENABLED(SPIS0)
        IRQ_HANDLER_NAME(0),
    #endif
    #if NRF_MODULE_ENABLED(SPIS1)
        IRQ_HANDLER_NAME(1),
    #endif
    #if NRF_MODULE_ENABLED(SPIS2)
        IRQ_HANDLER_NAME(2),
    #endif
    };
#else
    #define IRQ_HANDLER(n) void SPIS##n##_IRQ_HANDLER(void)
#endif // PERIPHERAL_RESOURCE_SHARING_ENABLED

#define SPIS_IRQHANDLER_TEMPLATE(NUM) \
    IRQ_HANDLER(NUM)                                                        \
    {                                                                       \
        spis_irq_handler(NRF_SPIS##NUM, &m_cb[SPIS##NUM##_INSTANCE_INDEX]); \
    }


/**@brief SPIS control block - driver instance local data. */
typedef struct
{
    volatile uint32_t             tx_buffer_size;  //!< SPI slave TX buffer size in bytes.
    volatile uint32_t             rx_buffer_size;  //!< SPI slave RX buffer size in bytes.
    nrf_drv_spis_event_handler_t  handler;         //!< SPI event handler.
    volatile const uint8_t *      tx_buffer;       //!< SPI slave TX buffer.
    volatile uint8_t *            rx_buffer;       //!< SPI slave RX buffer.
    nrf_drv_state_t               state;           //!< driver initialization state.
    volatile nrf_drv_spis_state_t spi_state;       //!< SPI slave state.
} spis_cb_t;

static spis_cb_t m_cb[ENABLED_SPIS_COUNT];

ret_code_t nrf_drv_spis_init(nrf_drv_spis_t const * const  p_instance,
                             nrf_drv_spis_config_t const * p_config,
                             nrf_drv_spis_event_handler_t  event_handler)
{
    ASSERT(p_config);
    spis_cb_t * p_cb = &m_cb[p_instance->instance_id];
    ret_code_t err_code;

    NRF_SPIS_Type * p_spis = p_instance->p_reg;

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        err_code = NRF_ERROR_INVALID_STATE;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    if ((uint32_t)p_config->mode > (uint32_t)NRF_DRV_SPIS_MODE_3)
    {
        err_code = NRF_ERROR_INVALID_PARAM;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    if (!event_handler)
    {
        err_code = NRF_ERROR_NULL;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
    if (nrf_drv_common_per_res_acquire(p_spis,
            m_irq_handlers[p_instance->instance_id]) != NRF_SUCCESS)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
#endif

    // Configure the SPI pins for input.
    uint32_t mosi_pin;
    uint32_t miso_pin;

    if (p_config->miso_pin != NRF_DRV_SPIS_PIN_NOT_USED)
    {
        nrf_gpio_cfg(p_config->miso_pin,
                    NRF_GPIO_PIN_DIR_INPUT,
                    NRF_GPIO_PIN_INPUT_CONNECT,
                    NRF_GPIO_PIN_NOPULL,
                    p_config->miso_drive,
                    NRF_GPIO_PIN_NOSENSE);
        miso_pin = p_config->miso_pin;
    }
    else
    {
        miso_pin = NRF_SPIS_PIN_NOT_CONNECTED;
    }

    if (p_config->mosi_pin != NRF_DRV_SPIS_PIN_NOT_USED)
    {
        nrf_gpio_cfg(p_config->mosi_pin,
                     NRF_GPIO_PIN_DIR_INPUT,
                     NRF_GPIO_PIN_INPUT_CONNECT,
                     NRF_GPIO_PIN_NOPULL,
                     NRF_GPIO_PIN_S0S1,
                     NRF_GPIO_PIN_NOSENSE);
        mosi_pin = p_config->mosi_pin;
    }
    else
    {
        mosi_pin = NRF_SPIS_PIN_NOT_CONNECTED;
    }

    nrf_gpio_cfg(p_config->csn_pin,
                 NRF_GPIO_PIN_DIR_INPUT,
                 NRF_GPIO_PIN_INPUT_CONNECT,
                 p_config->csn_pullup,
                 NRF_GPIO_PIN_S0S1,
                 NRF_GPIO_PIN_NOSENSE);

    nrf_gpio_cfg(p_config->sck_pin,
                 NRF_GPIO_PIN_DIR_INPUT,
                 NRF_GPIO_PIN_INPUT_CONNECT,
                 NRF_GPIO_PIN_NOPULL,
                 NRF_GPIO_PIN_S0S1,
                 NRF_GPIO_PIN_NOSENSE);

    nrf_spis_pins_set(p_spis, p_config->sck_pin, mosi_pin, miso_pin, p_config->csn_pin);

    nrf_spis_rx_buffer_set(p_spis, NULL, 0);
    nrf_spis_tx_buffer_set(p_spis, NULL, 0);

    // Configure SPI mode.
    nrf_spis_configure(p_spis, (nrf_spis_mode_t) p_config->mode,
                               (nrf_spis_bit_order_t) p_config->bit_order);

    // Configure DEF and ORC characters.
    nrf_spis_def_set(p_spis, p_config->def);
    nrf_spis_orc_set(p_spis, p_config->orc);

    // Clear possible pending events.
    nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_END);
    nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_ACQUIRED);

    // Enable END_ACQUIRE shortcut.
    nrf_spis_shorts_enable(p_spis, NRF_SPIS_SHORT_END_ACQUIRE);

    m_cb[p_instance->instance_id].spi_state = SPIS_STATE_INIT;
    m_cb[p_instance->instance_id].handler = event_handler;

#if defined(USE_DMA_ISSUE_WORKAROUND)
    // Configure a GPIOTE channel to generate interrupts on each falling edge
    // on the CSN line. Handling of these interrupts will make the CPU active,
    // and thus will protect the DMA transfers started by SPIS right after it
    // is selected for communication.
    // [the GPIOTE driver may be already initialized at this point (by this
    //  driver when another SPIS instance is used, or by an application code),
    //  so just ignore the returned value]
    (void)nrf_drv_gpiote_init();
    static nrf_drv_gpiote_in_config_t const csn_gpiote_config =
        GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
    ret_code_t gpiote_err_code = nrf_drv_gpiote_in_init(p_config->csn_pin,
        &csn_gpiote_config, csn_event_handler);
    if (gpiote_err_code != NRF_SUCCESS)
    {
        err_code = NRF_ERROR_INTERNAL;
        NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                     (uint32_t)__func__,
                     (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    nrf_drv_gpiote_in_event_enable(p_config->csn_pin, true);
#endif

    // Enable IRQ.
    nrf_spis_int_enable(p_spis, NRF_SPIS_INT_ACQUIRED_MASK | NRF_SPIS_INT_END_MASK);
    nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority);

    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    // Enable SPI slave device.
    nrf_spis_enable(p_spis);

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                 (uint32_t)__func__,
                 (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


void nrf_drv_spis_uninit(nrf_drv_spis_t const * const p_instance)
{
    spis_cb_t * p_cb = &m_cb[p_instance->instance_id];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    NRF_SPIS_Type * p_spis = p_instance->p_reg;

    #define DISABLE_ALL 0xFFFFFFFF
    nrf_spis_disable(p_spis);
    nrf_drv_common_irq_disable(p_instance->irq);
    nrf_spis_int_disable(p_spis, DISABLE_ALL);
    #undef  DISABLE_ALL

#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
    nrf_drv_common_per_res_release(p_spis);
#endif

    p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
    NRF_LOG_INFO("Initialized.\r\n");
}


/**@brief Function for executing the state entry action. */
static void spis_state_entry_action_execute(NRF_SPIS_Type * p_spis,
                                            spis_cb_t * p_cb)
{
    nrf_drv_spis_event_t event;

    switch (p_cb->spi_state)
    {
        case SPIS_BUFFER_RESOURCE_REQUESTED:
            nrf_spis_task_trigger(p_spis, NRF_SPIS_TASK_ACQUIRE);
            break;

        case SPIS_BUFFER_RESOURCE_CONFIGURED:
            event.evt_type  = NRF_DRV_SPIS_BUFFERS_SET_DONE;
            event.rx_amount = 0;
            event.tx_amount = 0;

            APP_ERROR_CHECK_BOOL(p_cb->handler != NULL);
            p_cb->handler(event);
            break;

        case SPIS_XFER_COMPLETED:
            event.evt_type  = NRF_DRV_SPIS_XFER_DONE;
            event.rx_amount = nrf_spis_rx_amount_get(p_spis);
            event.tx_amount = nrf_spis_tx_amount_get(p_spis);
            NRF_LOG_INFO("Transfer rx_len:%d.\r\n", event.rx_amount);
            NRF_LOG_DEBUG("Rx data:\r\n");
            NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->rx_buffer,
                                  event.rx_amount * sizeof(p_cb->rx_buffer));
            APP_ERROR_CHECK_BOOL(p_cb->handler != NULL);
            p_cb->handler(event);
            break;

        default:
            // No implementation required.
            break;
    }
}

/**@brief Function for changing the state of the SPI state machine.
 *
 * @param[in] p_spis    SPIS instance register.
 * @param[in] p_cb      SPIS instance control block.
 * @param[in] new_state State where the state machine transits to.
 */
static void spis_state_change(NRF_SPIS_Type * p_spis,
                              spis_cb_t * p_cb,
                              nrf_drv_spis_state_t new_state)
{
    p_cb->spi_state = new_state;
    spis_state_entry_action_execute(p_spis, p_cb);
}


ret_code_t nrf_drv_spis_buffers_set(nrf_drv_spis_t const * const  p_instance,
                                    const uint8_t * p_tx_buffer,
                                    uint8_t   tx_buffer_length,
                                    uint8_t * p_rx_buffer,
                                    uint8_t   rx_buffer_length)
{
    spis_cb_t * p_cb = &m_cb[p_instance->instance_id];
    uint32_t err_code;

    VERIFY_PARAM_NOT_NULL(p_rx_buffer);
    VERIFY_PARAM_NOT_NULL(p_tx_buffer);

    // EasyDMA requires that transfer buffers are placed in Data RAM region;
    // signal error if they are not.
    if ((p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_tx_buffer)) ||
        (p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_rx_buffer)))
    {
        err_code = NRF_ERROR_INVALID_ADDR;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    switch (p_cb->spi_state)
    {
        case SPIS_STATE_INIT:
        case SPIS_XFER_COMPLETED:
        case SPIS_BUFFER_RESOURCE_CONFIGURED:
            p_cb->tx_buffer      = p_tx_buffer;
            p_cb->rx_buffer      = p_rx_buffer;
            p_cb->tx_buffer_size = tx_buffer_length;
            p_cb->rx_buffer_size = rx_buffer_length;
            err_code             = NRF_SUCCESS;

            spis_state_change(p_instance->p_reg, p_cb, SPIS_BUFFER_RESOURCE_REQUESTED);
            break;

        case SPIS_BUFFER_RESOURCE_REQUESTED:
            err_code = NRF_ERROR_INVALID_STATE;
            break;

        default:
            // @note: execution of this code path would imply internal error in the design.
            err_code = NRF_ERROR_INTERNAL;
            break;
    }

    NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                 (uint32_t)__func__,
                 (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}

static void spis_irq_handler(NRF_SPIS_Type * p_spis, spis_cb_t * p_cb)
{
    // @note: as multiple events can be pending for processing, the correct event processing order
    // is as follows:
    // - SPI semaphore acquired event.
    // - SPI transaction complete event.

    // Check for SPI semaphore acquired event.
    if (nrf_spis_event_check(p_spis, NRF_SPIS_EVENT_ACQUIRED))
    {
        nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_ACQUIRED);
        NRF_LOG_DEBUG("SPIS: Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SPIS_EVENT_ACQUIRED));

        switch (p_cb->spi_state)
        {
            case SPIS_BUFFER_RESOURCE_REQUESTED:
                nrf_spis_tx_buffer_set(p_spis, (uint8_t *)p_cb->tx_buffer, p_cb->tx_buffer_size);
                nrf_spis_rx_buffer_set(p_spis, (uint8_t *)p_cb->rx_buffer, p_cb->rx_buffer_size);

                nrf_spis_task_trigger(p_spis, NRF_SPIS_TASK_RELEASE);

                spis_state_change(p_spis, p_cb, SPIS_BUFFER_RESOURCE_CONFIGURED);
                break;

            default:
                // No implementation required.
                break;
        }
    }

    // Check for SPI transaction complete event.
    if (nrf_spis_event_check(p_spis, NRF_SPIS_EVENT_END))
    {
        nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_END);
        NRF_LOG_DEBUG("SPIS: Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SPIS_EVENT_END));

        switch (p_cb->spi_state)
        {
            case SPIS_BUFFER_RESOURCE_CONFIGURED:
                spis_state_change(p_spis, p_cb, SPIS_XFER_COMPLETED);
                break;

            default:
                // No implementation required.
                break;
        }
    }
}

#if NRF_MODULE_ENABLED(SPIS0)
    SPIS_IRQHANDLER_TEMPLATE(0)
#endif

#if NRF_MODULE_ENABLED(SPIS1)
    SPIS_IRQHANDLER_TEMPLATE(1)
#endif

#if NRF_MODULE_ENABLED(SPIS2)
    SPIS_IRQHANDLER_TEMPLATE(2)
#endif

#endif // SPI_COUNT > 0
#endif // NRF_MODULE_ENABLED(SPIS)