nrf_drv_saadc.c 23.3 KB
Newer Older
X
xieyangrun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/**
 * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(SAADC)
#include "nrf_drv_saadc.h"
#include "nrf_assert.h"
#include "nrf_drv_common.h"
#include "app_util_platform.h"

#define NRF_LOG_MODULE_NAME "SAADC"

#if SAADC_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       SAADC_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR  SAADC_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SAADC_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event)   (event == NRF_SAADC_EVENT_STARTED ? "NRF_SAADC_EVENT_STARTED" :                         \
                            (event == NRF_SAADC_EVENT_END ? "NRF_SAADC_EVENT_END" :                                 \
                            (event == NRF_SAADC_EVENT_DONE ? "NRF_SAADC_EVENT_DONE" :                               \
                            (event == NRF_SAADC_EVENT_RESULTDONE ? "NRF_SAADC_EVENT_RESULTDONE" :                   \
                            (event == NRF_SAADC_EVENT_CALIBRATEDONE ? "NRF_SAADC_EVENT_CALIBRATEDONE" :             \
                            (event == NRF_SAADC_EVENT_STOPPED ? "NRF_SAADC_EVENT_STOPPED" : "UNKNOWN EVENT"))))))
#define EVT_TO_STR_LIMIT(event) (event == NRF_SAADC_LIMIT_LOW ? "NRF_SAADC_LIMIT_LOW" :                                \
                                (event == NRF_SAADC_LIMIT_HIGH ? "NRF_SAADC_LIMIT_HIGH" : "UNKNOWN EVENT"))
#else //SAADC_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event)   ""
#define NRF_LOG_LEVEL       0
#endif //SAADC_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"


typedef enum
{
    NRF_SAADC_STATE_IDLE        = 0,
    NRF_SAADC_STATE_BUSY        = 1,
    NRF_SAADC_STATE_CALIBRATION = 2
} nrf_saadc_state_t;


typedef struct
{
    nrf_saadc_input_t pselp;
    nrf_saadc_input_t pseln;
} nrf_saadc_psel_buffer;

static const nrf_drv_saadc_config_t m_default_config = NRF_DRV_SAADC_DEFAULT_CONFIG;

/** @brief SAADC control block.*/
typedef struct
{
    nrf_drv_saadc_event_handler_t event_handler;                 ///< Event handler function pointer.
    volatile nrf_saadc_value_t  * p_buffer;                      ///< Sample buffer.
    volatile uint16_t             buffer_size;                   ///< Size of the sample buffer.
    volatile nrf_saadc_value_t  * p_secondary_buffer;            ///< Secondary sample buffer.
    volatile nrf_saadc_state_t    adc_state;                     ///< State of the SAADC.
    uint32_t                      limits_enabled_flags;          ///< Enabled limits flags.
    uint16_t                      secondary_buffer_size;         ///< Size of the secondary buffer.
    uint16_t                      buffer_size_left;              ///< When low power mode is active indicates how many samples left to convert on current buffer.
    nrf_saadc_psel_buffer         psel[NRF_SAADC_CHANNEL_COUNT]; ///< Pin configurations of SAADC channels.
    nrf_drv_state_t               state;                         ///< Driver initialization state.
    uint8_t                       active_channels;               ///< Number of enabled SAADC channels.
    bool                          low_power_mode;                ///< Indicates if low power mode is active.
    bool                          conversions_end;               ///< When low power mode is active indicates end of conversions on current buffer.
} nrf_drv_saadc_cb_t;

static nrf_drv_saadc_cb_t m_cb;

#define LOW_LIMIT_TO_FLAG(channel)      ((2 * channel + 1))
#define HIGH_LIMIT_TO_FLAG(channel)     ((2 * channel))
#define FLAG_IDX_TO_EVENT(idx)          ((nrf_saadc_event_t)((uint32_t)NRF_SAADC_EVENT_CH0_LIMITH + \
                                            4 * idx))
#define LIMIT_EVENT_TO_CHANNEL(event)   (uint8_t)(((uint32_t)event - \
                                            (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) / 8)
#define LIMIT_EVENT_TO_LIMIT_TYPE(event)((((uint32_t)event - (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) & 4) \
                                            ? NRF_SAADC_LIMIT_LOW : NRF_SAADC_LIMIT_HIGH)
#define HW_TIMEOUT 10000

void SAADC_IRQHandler(void)
{
    if (nrf_saadc_event_check(NRF_SAADC_EVENT_END))
    {
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_END));

        if (!m_cb.low_power_mode || m_cb.conversions_end)
        {
            nrf_drv_saadc_evt_t evt;
            evt.type               = NRF_DRV_SAADC_EVT_DONE;
            evt.data.done.p_buffer = (nrf_saadc_value_t *)m_cb.p_buffer;
            evt.data.done.size     = m_cb.buffer_size;

            if (m_cb.p_secondary_buffer == NULL)
            {
                m_cb.adc_state = NRF_SAADC_STATE_IDLE;
            }
            else
            {
                m_cb.buffer_size_left   = m_cb.secondary_buffer_size;
                m_cb.p_buffer           = m_cb.p_secondary_buffer;
                m_cb.buffer_size        = m_cb.secondary_buffer_size;
                m_cb.p_secondary_buffer = NULL;
                if (!m_cb.low_power_mode)
                {
                    nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
                }
            }
            m_cb.event_handler(&evt);
            m_cb.conversions_end = false;
        }
    }
    if (m_cb.low_power_mode && nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED))
    {
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_STARTED));

        if (m_cb.buffer_size_left > m_cb.active_channels)
        {
            // More samples to convert than for single event.
            m_cb.buffer_size_left -= m_cb.active_channels;
            nrf_saadc_buffer_init((nrf_saadc_value_t *)&m_cb.p_buffer[m_cb.buffer_size -
                                                                      m_cb.buffer_size_left],
                                  m_cb.active_channels);
        }
        else if ((m_cb.buffer_size_left == m_cb.active_channels) &&

                 (m_cb.p_secondary_buffer != NULL))
        {
            // Samples to convert for one event, prepare next buffer.
            m_cb.conversions_end  = true;
            m_cb.buffer_size_left = 0;
            nrf_saadc_buffer_init((nrf_saadc_value_t *)m_cb.p_secondary_buffer,
                                  m_cb.active_channels);
        }
        else if (m_cb.buffer_size_left == m_cb.active_channels)
        {
            // Samples to convert for one event, but no second buffer.
            m_cb.conversions_end  = true;
            m_cb.buffer_size_left = 0;
        }
        nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
    }
    if (nrf_saadc_event_check(NRF_SAADC_EVENT_CALIBRATEDONE))
    {
        nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE);
        NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_CALIBRATEDONE));
        m_cb.adc_state = NRF_SAADC_STATE_IDLE;

        nrf_drv_saadc_evt_t evt;
        evt.type = NRF_DRV_SAADC_EVT_CALIBRATEDONE;
        m_cb.event_handler(&evt);
    }
    if (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED))
    {
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
        NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SAADC_EVENT_STOPPED));
        m_cb.adc_state = NRF_SAADC_STATE_IDLE;
    }
    else
    {
        uint32_t          limit_flags = m_cb.limits_enabled_flags;
        uint32_t          flag_idx;
        nrf_saadc_event_t event;

        while (limit_flags)
        {
            flag_idx     = __CLZ(limit_flags);
            limit_flags &= ~((1UL << 31) >> flag_idx);
            event        = FLAG_IDX_TO_EVENT(flag_idx);
            if (nrf_saadc_event_check(event))
            {
                nrf_saadc_event_clear(event);
                nrf_drv_saadc_evt_t evt;
                evt.type                  = NRF_DRV_SAADC_EVT_LIMIT;
                evt.data.limit.channel    = LIMIT_EVENT_TO_CHANNEL(event);
                evt.data.limit.limit_type = LIMIT_EVENT_TO_LIMIT_TYPE(event);
                NRF_LOG_DEBUG("Event limit, channel: %d, limit type: %s.\r\n", evt.data.limit.channel, (uint32_t)EVT_TO_STR(evt.data.limit.limit_type));
                m_cb.event_handler(&evt);
            }
        }
    }
}


ret_code_t nrf_drv_saadc_init(nrf_drv_saadc_config_t const * p_config,
                              nrf_drv_saadc_event_handler_t  event_handler)
{
    ret_code_t err_code;

    if (m_cb.state != NRF_DRV_STATE_UNINITIALIZED)
    {
        err_code = NRF_ERROR_INVALID_STATE;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    if (event_handler == NULL)
    {
        err_code = NRF_ERROR_INVALID_PARAM;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    if (p_config == NULL)
    {
        p_config = &m_default_config;
    }

    m_cb.event_handler = event_handler;
    nrf_saadc_resolution_set(p_config->resolution);
    nrf_saadc_oversample_set(p_config->oversample);
    m_cb.low_power_mode       = p_config->low_power_mode;
    m_cb.state                = NRF_DRV_STATE_INITIALIZED;
    m_cb.adc_state            = NRF_SAADC_STATE_IDLE;
    m_cb.active_channels      = 0;
    m_cb.limits_enabled_flags = 0;
    m_cb.conversions_end      = false;

    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    nrf_drv_common_irq_enable(SAADC_IRQn, p_config->interrupt_priority);
    nrf_saadc_int_enable(NRF_SAADC_INT_END);

    if (m_cb.low_power_mode)
    {
        nrf_saadc_int_enable(NRF_SAADC_INT_STARTED);
    }

    nrf_saadc_enable();

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));

    return err_code;
}


void nrf_drv_saadc_uninit(void)
{
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);

    nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
    nrf_drv_common_irq_disable(SAADC_IRQn);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);

    // Wait for ADC being stopped.
    uint32_t timeout = HW_TIMEOUT;

    while (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED) == 0 && timeout > 0)
    {
        --timeout;
    }
    ASSERT(timeout > 0);

    nrf_saadc_disable();
    m_cb.adc_state = NRF_SAADC_STATE_IDLE;

    for (uint32_t channel = 0; channel < NRF_SAADC_CHANNEL_COUNT; ++channel)
    {
        if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED)
        {
            (void)nrf_drv_saadc_channel_uninit(channel);
        }
    }

    m_cb.state = NRF_DRV_STATE_UNINITIALIZED;
}


ret_code_t nrf_drv_saadc_channel_init(uint8_t                                  channel,
                                      nrf_saadc_channel_config_t const * const p_config)
{
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
    // Oversampling can be used only with one channel.
    ASSERT((nrf_saadc_oversample_get() == NRF_SAADC_OVERSAMPLE_DISABLED) ||
           (m_cb.active_channels == 0));
    ASSERT((p_config->pin_p <= NRF_SAADC_INPUT_VDD) &&
           (p_config->pin_p > NRF_SAADC_INPUT_DISABLED));
    ASSERT(p_config->pin_n <= NRF_SAADC_INPUT_VDD);

    ret_code_t err_code;

    // A channel can only be initialized if the driver is in the idle state.
    if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

#ifdef NRF52_PAN_74
    if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) || (p_config->acq_time == NRF_SAADC_ACQTIME_5US))
    {
        nrf_saadc_disable();
    }
#endif //NRF52_PAN_74

    if (!m_cb.psel[channel].pselp)
    {
        ++m_cb.active_channels;
    }
    m_cb.psel[channel].pselp = p_config->pin_p;
    m_cb.psel[channel].pseln = p_config->pin_n;
    nrf_saadc_channel_init(channel, p_config);
    nrf_saadc_channel_input_set(channel, p_config->pin_p, p_config->pin_n);

#ifdef NRF52_PAN_74
    if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) || (p_config->acq_time == NRF_SAADC_ACQTIME_5US))
    {
        nrf_saadc_enable();
    }
#endif //NRF52_PAN_74

    NRF_LOG_INFO("Channel initialized: %d.\r\n", channel);
    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


ret_code_t nrf_drv_saadc_channel_uninit(uint8_t channel)
{
    ASSERT(channel < NRF_SAADC_CHANNEL_COUNT)
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);

    ret_code_t err_code;

    // A channel can only be uninitialized if the driver is in the idle state.
    if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    if (m_cb.psel[channel].pselp)
    {
        --m_cb.active_channels;
    }
    m_cb.psel[channel].pselp = NRF_SAADC_INPUT_DISABLED;
    m_cb.psel[channel].pseln = NRF_SAADC_INPUT_DISABLED;
    nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
    nrf_drv_saadc_limits_set(channel, NRF_DRV_SAADC_LIMITL_DISABLED, NRF_DRV_SAADC_LIMITH_DISABLED);
    NRF_LOG_INFO("Channel denitialized: %d.\r\n", channel);

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                    (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


uint32_t nrf_drv_saadc_sample_task_get(void)
{
    return nrf_saadc_task_address_get(
        m_cb.low_power_mode ? NRF_SAADC_TASK_START : NRF_SAADC_TASK_SAMPLE);
}


ret_code_t nrf_drv_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value)
{
    ret_code_t err_code;

    if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    m_cb.adc_state = NRF_SAADC_STATE_BUSY;
    nrf_saadc_int_disable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END);
    nrf_saadc_buffer_init(p_value, 1);
    if (m_cb.active_channels > 1)
    {
        for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
        {
            nrf_saadc_channel_input_set(i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
        }
    }
    nrf_saadc_channel_input_set(channel,
                                m_cb.psel[channel].pselp, m_cb.psel[channel].pseln);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);

    uint32_t timeout = HW_TIMEOUT;

    while (0 == nrf_saadc_event_check(NRF_SAADC_EVENT_END) && timeout > 0)
    {
        timeout--;
    }
    nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
    nrf_saadc_event_clear(NRF_SAADC_EVENT_END);

    NRF_LOG_INFO("Conversion value: %d, channel.\r\n", *p_value, channel);

    if (m_cb.active_channels > 1)
    {
        for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
        {
            nrf_saadc_channel_input_set(i, m_cb.psel[i].pselp, m_cb.psel[i].pseln);
        }
    }

    if (m_cb.low_power_mode)
    {
        nrf_saadc_int_enable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END);
    }
    else
    {
        nrf_saadc_int_enable(NRF_SAADC_INT_END);
    }

    m_cb.adc_state = NRF_SAADC_STATE_IDLE;

    err_code = NRF_SUCCESS;
    NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


ret_code_t nrf_drv_saadc_buffer_convert(nrf_saadc_value_t * p_buffer, uint16_t size)
{
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT((size % m_cb.active_channels) == 0);
    ret_code_t err_code;


    nrf_saadc_int_disable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
    if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION)
    {
        nrf_saadc_int_enable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    if (m_cb.adc_state == NRF_SAADC_STATE_BUSY)
    {
        if ( m_cb.p_secondary_buffer)
        {
            nrf_saadc_int_enable(NRF_SAADC_INT_END);
            err_code = NRF_ERROR_BUSY;
            NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
            return err_code;
        }
        else
        {
            m_cb.p_secondary_buffer    = p_buffer;
            m_cb.secondary_buffer_size = size;
            if (!m_cb.low_power_mode)
            {
                while (nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED) == 0);
                nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
                nrf_saadc_buffer_init(p_buffer, size);
            }
            nrf_saadc_int_enable(NRF_SAADC_INT_END);
            err_code = NRF_SUCCESS;
            NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
            return err_code;
        }
    }
    nrf_saadc_int_enable(NRF_SAADC_INT_END);
    m_cb.adc_state = NRF_SAADC_STATE_BUSY;

    m_cb.p_buffer           = p_buffer;
    m_cb.buffer_size        = size;
    m_cb.p_secondary_buffer = NULL;

    NRF_LOG_INFO("Function: %d, buffer length: %d, active channels: %d.\r\n",
                    (uint32_t)__func__, size, m_cb.active_channels);

    if (m_cb.low_power_mode)
    {
        m_cb.buffer_size_left = size;
        nrf_saadc_buffer_init(p_buffer, m_cb.active_channels);
    }
    else
    {
        nrf_saadc_buffer_init(p_buffer, size);
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    }

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


ret_code_t nrf_drv_saadc_sample()
{
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);

    ret_code_t err_code = NRF_SUCCESS;
    if (m_cb.adc_state != NRF_SAADC_STATE_BUSY)
    {
        err_code = NRF_ERROR_INVALID_STATE;
    }
    else if (m_cb.low_power_mode)
    {
        nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
    }
    else
    {
        nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
    }

    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


ret_code_t nrf_drv_saadc_calibrate_offset()
{
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);

    ret_code_t err_code;

    if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    m_cb.adc_state = NRF_SAADC_STATE_CALIBRATION;

    nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE);
    nrf_saadc_int_enable(NRF_SAADC_INT_CALIBRATEDONE);
    nrf_saadc_task_trigger(NRF_SAADC_TASK_CALIBRATEOFFSET);
    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


bool nrf_drv_saadc_is_busy(void)
{
    return (m_cb.adc_state != NRF_SAADC_STATE_IDLE);
}


void nrf_drv_saadc_abort(void)
{
    if (nrf_drv_saadc_is_busy())
    {
        nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
        nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);

        if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION)
        {
            m_cb.adc_state = NRF_SAADC_STATE_IDLE;
        }
        else
        {
            // Wait for ADC being stopped.
            uint32_t timeout = HW_TIMEOUT;

            while ((m_cb.adc_state != NRF_SAADC_STATE_IDLE) && (timeout > 0))
            {
                --timeout;
            }
            ASSERT(timeout > 0);
        }

        m_cb.p_buffer           = 0;
        m_cb.p_secondary_buffer = 0;
        NRF_LOG_INFO("Conversion aborted.\r\n");
    }
}


void nrf_drv_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high)
{
    ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT(m_cb.event_handler); // only non blocking mode supported
    ASSERT(limit_low >= NRF_DRV_SAADC_LIMITL_DISABLED);
    ASSERT(limit_high <= NRF_DRV_SAADC_LIMITH_DISABLED);
    ASSERT(limit_low < limit_high);
    nrf_saadc_channel_limits_set(channel, limit_low, limit_high);

    uint32_t int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_LOW);
    if (limit_low == NRF_DRV_SAADC_LIMITL_DISABLED)
    {
        m_cb.limits_enabled_flags &= ~(0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
        nrf_saadc_int_disable(int_mask);
    }
    else
    {
        m_cb.limits_enabled_flags |= (0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
        nrf_saadc_int_enable(int_mask);
    }

    int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_HIGH);
    if (limit_high == NRF_DRV_SAADC_LIMITH_DISABLED)
    {
        m_cb.limits_enabled_flags &= ~(0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
        nrf_saadc_int_disable(int_mask);
    }
    else
    {
        m_cb.limits_enabled_flags |= (0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
        nrf_saadc_int_enable(int_mask);
    }
}
#endif //NRF_MODULE_ENABLED(SAADC)