提交 5be5afb3 编写于 作者: S sweetsky0901

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into my_spp_op

......@@ -2,8 +2,8 @@
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://doc.paddlepaddle.org/develop/doc/)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://doc.paddlepaddle.org/develop/doc_cn/)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
......@@ -36,7 +36,7 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl
examples:
- Optimized math operations through SSE/AVX intrinsics, BLAS libraries
(e.g. MKL, ATLAS, cuBLAS) or customized CPU/GPU kernels.
(e.g. MKL, OpenBLAS, cuBLAS) or customized CPU/GPU kernels.
- Highly optimized recurrent networks which can handle **variable-length**
sequence without padding.
- Optimized local and distributed training for models with high dimensional
......
......@@ -3,7 +3,7 @@
# It will search MKLML, atlas, OpenBlas, reference-cblas in order.
#
# If any cblas implementation found, the following variable will be set.
# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE
# CBLAS_PROVIDER # one of MKLML, OPENBLAS, REFERENCE
# CBLAS_INC_DIR # the include directory for cblas.
# CBLAS_LIBS # a list of libraries should be linked by paddle.
# # Each library should be full path to object file.
......@@ -25,42 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB)
return()
endif()
## Then find atlas.
set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas")
set(ATLAS_INCLUDE_SEARCH_PATHS
${ATLAS_ROOT}/include
/usr/include
/usr/include/atlas)
set(ATLAS_LIB_SEARCH_PATHS
${ATLAS_ROOT}/lib
/usr/lib
/usr/lib/blas/atlas
/usr/lib/atlas
/usr/lib/atlas-base # special for ubuntu 14.04.
)
find_path(ATLAS_INC_DIR NAMES cblas.h
PATHS ${ATLAS_INCLUDE_SEARCH_PATHS})
find_path(ATLAS_CLAPACK_INC_DIR NAMES clapack.h
PATHS ${ATLAS_INCLUDE_SEARCH_PATHS})
find_library(ATLAS_CBLAS_LIB NAMES cblas libcblas.so.3
PATHS ${ATLAS_LIB_SEARCH_PATHS})
find_library(ATLAS_CLAPACK_LIB NAMES lapack_atlas liblapack_atlas.so.3
PATHS ${ATLAS_LIB_SEARCH_PATHS})
if(ATLAS_CLAPACK_INC_DIR AND ATLAS_INC_DIR AND ATLAS_CBLAS_LIB AND ATLAS_CLAPACK_LIB)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER ATLAS)
set(CBLAS_INC_DIR ${ATLAS_INC_DIR} ${ATLAS_CLAPACK_INC_DIR})
set(CBLAS_LIBRARIES ${ATLAS_CLAPACK_LIB} ${ATLAS_CBLAS_LIB})
add_definitions(-DPADDLE_USE_ATLAS)
add_definitions(-DLAPACK_FOUND)
message(STATUS "Found ATLAS (include: ${ATLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})")
message(STATUS "Found lapack in ATLAS (include: ${ATLAS_CLAPACK_INC_DIR})")
return()
endif()
## Then find openblas.
set(OPENBLAS_ROOT $ENV{OPENBLAS_ROOT} CACHE PATH "Folder contains Openblas")
set(OPENBLAS_INCLUDE_SEARCH_PATHS
......
......@@ -7,3 +7,4 @@ API
模型配置 <v2/model_configs.rst>
数据访问 <v2/data.rst>
训练与应用 <v2/run_logic.rst>
v2/fluid.rst
# Design Doc: PaddlePaddle Fluid
## Why Fluid
When Baidu developed PaddlePaddle in 2013, the only well-known open source deep learning system at the time was Caffe. However, when PaddlePaddle was open-sourced in 2016, many other choices were available. There was a challenge -- what is the need for open sourcing yet another deep learning framework?
Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution, which describes the "process" of training or inference using the concept of a model. In fact in PyTorch, TensorFlow Eager Execution and Fluid, there is no concept of a model at all. The details are covered in the sections below. Fluid is currently more extreme in the above mentioned idea than PyTorch and Eager Execution, and we are trying to push Fluid towards the directions of a compiler and a new programming language for deep learning.
## The Evolution of Deep Learning Systems
Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.
| Existed since | model as sequence of layers | model as graph of operators | No model |
|--|--|--|--|
| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.
## Deep Learning Programming Paradigms
With the systems listed as the first or second generation, e.g., Caffe or TensorFlow, an AI application training program looks like the following:
```python
x = layer.data("image")
l = layer.data("label")
f = layer.fc(x, W)
s = layer.softmax(f)
c = layer.mse(l, s)
for i in xrange(1000): # train for 1000 iterations
m = read_minibatch()
forward({input=x, data=m}, minimize=c)
backward(...)
print W # print the trained model parameters.
```
The above program includes two parts:
1. The first part describes the model, and
2. The second part describes the training process (or inference process) for the model.
This paradigm has a well-known problem that limits the productivity of programmers. If the programmer made a mistake in configuring the model, the error messages wouldn't show up until the second part is executed and `forward` and `backward` propagations are performed. This makes it difficult for the programmer to debug and locate a mistake that is located blocks away from the actual error prompt.
This problem of being hard to debug and re-iterate fast on a program is the primary reason that programmers, in general, prefer PyTorch over the older systems. Using PyTorch, we would write the above program as following:
```python
W = tensor(...)
for i in xrange(1000): # train for 1000 iterations
m = read_minibatch()
x = m["image"]
l = m["label"]
f = layer.fc(x, W)
s = layer.softmax(f)
c = layer.mse(l, s)
backward()
print W # print the trained model parameters.
```
We can see that the main difference is the moving the model configuration part (the first step) into the training loop. This change would allow the mistakes in model configuration to be reported where they actually appear in the programming block. This change also represents the model better, or its forward pass, by keeping the configuration process in the training loop.
## Describe Arbitrary Models for the Future
Describing the process instead of the model also brings Fluid, the flexibility to define different non-standard models that haven't been invented yet.
As we write out the program for the process, we can write an RNN as a loop, instead of an RNN as a layer or as an operator. A PyTorch example would look like the following:
```python
for i in xrange(1000):
m = read_minibatch()
x = m["sentence"]
for t in xrange x.len():
h[t] = the_step(x[t])
```
With Fluid, the training loop and the RNN in the above program are not really Python loops, but just a "loop structure" provided by Fluid and implemented in C++ as the following:
```python
train_loop = layers.While(cond)
with train_loop.block():
m = read_minibatch()
x = m["sentence"]
rnn = layers.While(...)
with rnn.block():
h[t] = the_step(input[t])
```
An actual Fluid example is described [here](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44).
From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid's loop structure, wrapped with Python's `with` statement, could run much faster than just a Python loop.
We have more examples of the [`if-then-else`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md) structure of Fluid.
## Turing Completeness
In computability theory, a system of data-manipulation rules, such as a programming language, is said to be Turing complete if it can be used to simulate any Turing machine. For a programming language, if it provides if-then-else and loop, it is Turing complete. From the above examples, Fluid seems to be Turing complete; however, it is noteworthy to notice that there is a slight difference between the `if-then-else` of Fluid and that of a programming language. The difference being that the former runs both of its branches and splits the input mini-batch into two -- one for the True condition and another for the False condition. This hasn't been researched in depth if this is equivalent to the `if-then-else` in programming languages that makes them Turing-complete. Based on a conversation with [Yuang Yu](https://research.google.com/pubs/104812.html), it seems to be the case but this needs to be looked into in-depth.
## The Execution of a Fluid Program
There are two ways to execute a Fluid program. When a program is executed, it creates a protobuf message [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree).
There is a C++ class [`Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h), which runs a `ProgramDesc`, similar to how an interpreter runs a Python program.
Fluid is moving towards the direction of a compiler, which is explain in more detail later in this article.
## Backward Compatibility of Fluid
Given all the advantages from the removal of the concept of a *model*, hardware manufacturers might still prefer the existence of the concept of a model, so it would be easier for them to support multiple frameworks all at once and could run a trained model during inference. For example, Nervana, a startup company acquired by Intel, has been working on an XPU that reads the models in the format known as [n-graph](https://github.com/NervanaSystems/ngraph). Similarly, [Movidius](https://www.movidius.com/) is producing a mobile deep learning chip that reads and runs graphs of operators. The well-known [ONNX](https://github.com/onnx/onnx) is also a file format of graphs of operators.
For Fluid, we can write a converter that extracts the parts in the `ProgramDesc` protobuf message, converts them into a graph of operators, and exports the graph into the ONNX or n-graph format.
## Towards a Deep Learning Language and the Compiler
We can change the `if-then-else` and loop structure a little bit in the above Fluid example programs, to make it into a new programming language, different than Python.
Even if we do not invent a new language, as long as we get the `ProgramDesc` message filled in, we can write a transpiler, which translates each invocation to an operator, into a C++ call to a kernel function of that operator. For example, a transpiler that weaves the CUDA kernels outputs an NVIDIA-friendly C++ program, which can be built using `nvcc`. Another transpiler could generate MKL-friendly code that should be built using `icc` from Intel. More interestingly, we can translate a Fluid program into its distributed version of two `ProgramDesc` messages, one for running on the trainer process, and the other one for the parameter server. For more details of the last example, the [concurrent programming design](concurrent_programming.md) document would be a good pointer. The following figure explains the proposed two-stage process:
![](fluid-compiler.png)
# Intel® MKL Packed on PaddlePaddle: Design Doc
## Contents
- [Overview](#overview)
- [Key Points](#key-points)
- [Background](#background)
- [Solution](#solution)
- [Actions](#actions)
- [CMake](#cmake)
- [Layers](#layers)
- [Unit Tests](#unit-tests)
- [Python API](#python-api)
- [Benchmarking](#benchmarking)
## Overview
我们计划将 Intel® MKL 中引入的 GEMM Packed APIs\[[1](#references)\] 集成到 PaddlePaddle 中,充分发挥英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。
现阶段的优化主要针对 Recurrent Neural Network(以下简称RNN)相关层(包括`RecurrentLayer`, `GatedRecurrentLayer``LstmLayer`), 以及 PaddlePaddle V1 API。
## Key Points
### Background
目前PaddlePaddle采用了 Intel® MKL库的[cblas_?gemm](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm)函数,这个函数本身会在计算前将原数据转换为更适合英特尔平台的内部格式。
1. 转换耗时 \
这一数据格式的转换操作(Packing),在问题本身的计算量比较小的时候,显得相对来说较为耗时。例如在DeepSpeech2 \[[2](#references)\] 的Vanilla RNN部分中,矩阵大小是`batch_size * 2048`
2. 转换冗余 \
由于在现有的某些情况下(例如RNN),多次调用 cblas_?gemm 会使用相同的原数据,因此,每次调用时对原数据的重复Packing便成为了冗余。
为了最大程度减少多次调用 cblas_?gemm 在Packing上的耗时,Intel® MKL 引入了以下四个API:
* cblas_?gemm_alloc
* cblas_?gemm_pack
* cblas_?gemm_compute
* cblas_?gemm_free
通过使用这些API,我们可以先完成对原数据的Packing操作,再把已转换为Packed格式的数据传递给那些复用同一数据的gemm_compute函数,从而避免了Packing冗余。
### Solution
在RNN的情况下,同一次前向、后向(forward/backward)过程中所有时间步(time step)共享同一个权重(weight)。当只做推断(inference)时,各次前向之间也都使用了相同的权重,没有必要在每次前向中每个时间步的计算时对权重进行重复的Packing操作。
我们通过使用新引入的GEMM Packed APIs,在层初始化的时候,先完成对权重的Packing操作,然后在前向,后向时复用已经转换过的权重,并在每次权重更新后,对新的权重进行转换用于下次迭代。
* 优化前,对于序列长度(sequence length)为`T`的网络模型(model), `N`次迭代执行的转换次数为:
- `inference``N * T`
- `training``2 * N * T`
* 优化后,对于同样设置的网络模型,其转换次数减少至:
- `inference``1`
- `training``2 * N`
## Actions
添加的相关文件和目录结构如下:
```txt
PaddlePaddle/Paddle
├── ...
└── paddle/
├── ...
└── gserver/
├── ...
├── layers/
│ ├── ...
│ ├── MKLPackedRecurrentLayer.*
| ├── MKLPackedGatedRecurrentLayer.*
| ├── MKLPackedLstmLayer.*
| └── MKLPackedGemm.h
└── tests/
├── ...
└── test_MKLPacked.cpp
```
### CMake
在对应的`CMakeLists.txt`中根据`WITH_MKL`是否打开,来决定是否开启MKL Packed相关功能。
### Layers
所有的`MKLPacked*Layer`都继承于PaddlePaddle的基类`Layer`, 并添加头文件 `MKLPackedGemm.h`,该文件对相关GEMM Packed APIs做了封装。
### Unit Tests
我们会添加`test_MKLPacked.cpp`用于MKL Packed优化后layer的测试。
对于每一个新加的RNN layer,我们会对比如下2个方面:
1. 对比优化后layer自身,sequence mode(`rnn_use_batch=false`)与batch mode(`rnn_use_batch=true`)的结果。
2. 对比优化后layer与相对应的PaddlePaddle原有layer, 在batch mode下的结果。
### Python API
TBD
### Benchmarking
会添加相应的脚本用于测试和对比在使用MKL Packed recurrent layers 前后的网络性能。
## References
1. [Introducing the new Packed APIs for GEMM](https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm)
2. [DeepSpeech2 on PaddlePaddle](https://github.com/PaddlePaddle/DeepSpeech#deepspeech2-on-paddlepaddle)
......@@ -208,4 +208,3 @@ if use_mkldnn
但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。
4. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的cuDNN部分使用的也是`NCHW`,所以不存在这个问题)。
所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。
# Design Doc: NCCL support in Paddle Fluid
## Abstract
This Design Doc refers to the NCCL feature in paddle. We propose an approach to support NCCL library both on a single machine and multiple machines. We wrapper the NCCL primitives `Broadcast`, `Allreduce`, `Reduce` as operators to utilize Multi-GPU powers in one script.
## Motivation
[NCCL](https://developer.nvidia.com/nccl) is a NVIDIA library support Multi-GPU communicating and optimized for NVIDIA GPUs, it provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter, that can achieve high bandwidth over PCIe and NVLink high-speed interconnect. With NCCL library, we can easily accelerate the training in parallel.
- Pros
1. easily plug-in with [NCCL2](https://developer.nvidia.com/nccl) library.
1. high performance in NVIDIA GPUs.
1. MPI like primitives, which have low learning cost for users.
- Cons
1. Only design for NVIDIA GPUs, not a general multi-device solution.
1. Although NCCL1 is opensourced under BSD license, but NCCL2 is not opensourced anymore.
At the beginning of training, the framework needs to distribute the same parameters to every GPU, and merge the gradients at any time user interests.
As a result, during training, we need the operations of peer to peer copy between different GPUs, aggregating gradients/parameters from GPUs, and broadcasting parameters to GPUs. Every GPU only need to run the operator with correct place information.
Besides, it needs interfaces to synchronize model update with each different GPU Cards.
## Implementation
As mentioned above, we wrap the NCCL routines as several kinds of operators. Need to note that NCCL need to create Communicator between gpu at the beginning, so there is a NCCLInit operator created.
### Transpiler
To be compatible with [parameter server design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/ops/dist_train.md), the transpiler compiles the user defined operation graph into sub-graphs to be executed on different devices.
1. The user-defined model will be a single device program
2. Broadcast/Reduce operators between GPUs will be inserted into the program, even for the multi-node, may insert the `Send`, `Recv` operator.
*Broadcast, AllReduce in a single machine. And Broadcast, AllReduce, [Send, Recv](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/ops/dist_train.md#graph-converter) in multiple machines*
<img src="images/multigpu_before_convert.png" width="300"/>
After compiling, the graph as shows
<img src="images/multigpu_allreduce.png" width="1000"/>
Operators are added to the sub-graphs. Every GPU assigned a role of `rank0`, `rank1` etc.
- **Broadcast**. Broadcast operator distribute initialized parameter to all the GPUs from the GPU who owns it. e.g. from`rank0` GPU.
- **AllReduce**. AllReduce operator synchronizes parameters/gradients between GPUs. AllReduce implemented in the Ring-Based communicating method, avoid of the bottle neck in a single GPU.
Need to notice that AllReduce operator force GPUs synchronized at that point. The whole training process in asynchronous or synchronous mode depends on the AllReduce point in the graph.
As it shown in the picture, when each GPU compute the gradient of `W`, followed with a `AllReduce` operator, accumulate the `dW` to full batch of data, then run the optimize process individually and apply the gradient to its `W`.
- **AllReduce**
Need to note that our AllReduce operator is a ring-base AllReduce implementation. If we use the NCCL2 AllReduce primitive, every GPU optimized full batch of data, wasted (n-1) GPU compute resources. In addition, NCCL2 built-in AllReduce will only utilize the communicating resource during synchronization, then update the gradient will be a subsequent phase. In fact, we can amortize the update gradient time cost into the communicating phase. The process is
1. Every parameter has its root card. That card will responsible for aggregating the gradients from GPUs.
2. The whole model's parameter will be hashed to different root card, ensure the load balance between GPUs.
3. Logically neighberhood card will start send parameter to the next one. After one round, the parameter main card will aggregate the full gradients.
4. Then the root card will optimize the parameter.
5. This parameter card will send its optimized result to its neighberhood, then the neighberhood will send parameter to its next one.
6. Finish the sychronization round.
The total time cost will be 2 * (n-1) * per-parameter-send-time, we reach the goal of amortize the upgrade time into communicating phase.
# Design Doc: Supporting new Device/Library
## Background
Deep learning has a high demand for computing resources. New high-performance devices and computing libraries are appearing very frequently. Deep learning frameworks have to integrate these high-performance devices and computing libraries flexibly and efficiently.
On one hand, hardware and computing libraries usually do not have a one-to-one correspondence. For example,Intel CPUs support Eigen and MKL computing libraries while Nvidia GPUs support Eigen and cuDNN computing libraries. We have to implement operator specific kernels for each computing library.
On the other hand, users usually do not want to care about the low-level hardware and computing libraries when writing a neural network configuration. In Fluid, `Layer` is exposed in `Python`, and `Operator` is exposed in `C++`. Both `Layer` and `Operator` are hardware independent.
So, how to support a new Device/Library in Fluid becomes a challenge.
## Basic: Integrate A New Device/Library
For a general overview of fluid, please refer to the [overview doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/read_source.md).
There are mainly three parts that we have to consider while integrating a new device/library:
- Place and DeviceContext: indicates the device id and manages hardware resources
- Memory and Tensor: malloc/free data on certain device
- Math Functor and OpKernel: implement computing unit on certain devices/libraries
### Place and DeviceContext
#### Place
Fluid uses class [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L55) to represent different devices and computing libraries. There are inheritance relationships between different kinds of `Place`.
```
| CPUPlace --> MKLDNNPlace
Place --| CUDAPlace --> CUDNNPlace
| FPGAPlace
```
And `Place` is defined as follows:
```
typedef boost::variant<CUDAPlace, CPUPlace, FPGAPlace> Place;
```
#### DeviceContext
Fluid uses class [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L30) to manage the resources in different hardwares, such as CUDA stream in `CDUADeviceContext`. There are also inheritance relationships between different kinds of `DeviceContext`.
```
/-> CPUDeviceContext --> MKLDeviceContext
DeviceContext ----> CUDADeviceContext --> CUDNNDeviceContext
\-> FPGADeviceContext
```
An example of Nvidia GPU is as follows:
- DeviceContext
```
class DeviceContext {
virtual Place GetPlace() const = 0;
};
```
- CUDADeviceContext
```
class CUDADeviceContext : public DeviceContext {
Place GetPlace() const override { return place_; }
private:
CUDAPlace place_;
cudaStream_t stream_;
cublasHandle_t cublas_handle_;
std::unique_ptr<Eigen::GpuDevice> eigen_device_; // binds with stream_
};
```
- CUDNNDeviceContext
```
class CUDNNDeviceContext : public CUDADeviceContext {
private:
cudnnHandle_t cudnn_handle_;
};
```
### Memory and Tensor
#### memory module
Fluid provides the following [memory interfaces](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/memory/memory.h#L36):
```
template <typename Place>
void* Alloc(Place place, size_t size);
template <typename Place>
void Free(Place place, void* ptr);
template <typename Place>
size_t Used(Place place);
```
To implementing these interfaces, we have to implement MemoryAllocator for different Devices
#### Tensor
[Tensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h#L36) holds data with some shape in a specific Place.
```cpp
class Tensor {
public:
/*! Return a pointer to mutable memory block. */
template <typename T>
inline T* data();
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template <typename T>
inline T* mutable_data(platform::Place place);
/**
* @brief Return a pointer to mutable memory block.
*
* @param[in] dims The dimensions of the memory block.
* @param[in] place The place of the memory block.
*
* @note If not exist, then allocation.
*/
template <typename T>
inline T* mutable_data(DDim dims, platform::Place place);
/*! Resize the dimensions of the memory block. */
inline Tensor& Resize(const DDim& dims);
/*! Return the dimensions of the memory block. */
inline const DDim& dims() const;
private:
/*! holds the memory block if allocated. */
std::shared_ptr<Placeholder> holder_;
/*! points to dimensions of memory block. */
DDim dim_;
};
```
`Placeholder` is used to delay memory allocation; that is, we can first define a tensor, using `Resize` to configure its shape, and then call `mutuable_data` to allocate the actual memory.
```cpp
paddle::framework::Tensor t;
paddle::platform::CPUPlace place;
// set size first
t.Resize({2, 3});
// allocate memory on CPU later
t.mutable_data(place);
```
### Math Functor and OpKernel
Fluid implements computing units based on different DeviceContexts. Some computing units are shared between operators. This common part will be put in operators/math directory as basic Functors.
Let's take [MaxOutFunctor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/math/maxouting.h#L27) as an example:
The interface is defined in header file.
```
template <typename DeviceContext, typename T>
class MaxOutFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
framework::Tensor* output, int groups);
};
```
CPU implemention is in .cc file
```
template <typename T>
class MaxOutFunctor<platform::CPUDeviceContext, T> {
public:
void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& input, framework::Tensor* output,
int groups) {
...
}
};
```
CUDA implemention is in .cu file
```
template <typename T>
class MaxOutFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input, framework::Tensor* output,
int groups) {
...
}
};
```
We get computing handle from a concrete DeviceContext, and make compution on tensors.
The implemention of `OpKernel` is similar to math functors, the extra thing we need to do is to register the OpKernel in a global map.
Fluid provides different register interfaces in op_registry.h
Let's take [Crop](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/crop_op.cc#L134) operator as an example:
In .cc file:
```
REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel<float>);
REGISTER_OP_CPU_KERNEL(
crop_grad, ops::CropGradKernel<paddle::platform::CPUDeviceContext, float>);
```
In .cu file:
```
REGISTER_OP_CUDA_KERNEL(crop, ops::CropKernel<float>);
REGISTER_OP_CUDA_KERNEL(
crop_grad, ops::CropGradKernel<paddle::platform::CUDADeviceContext, float>);
```
## Advanced topics: How to switch between different Device/Library
Generally, we will impelement OpKernel for all Device/Library of an Operator. We can easily train a Convolutional Neural Network in GPU. However, some OpKernel is not sutibale on a specific Device. For example, crf operator can only run on CPU, whereas most other operators can run at GPU. To achieve high performance in such circumstance, we have to switch between different Device/Library.
We will discuss how to implement an efficient OpKernel switch policy.
- TBD
......@@ -14,7 +14,7 @@
$ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu
$ docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 <http://www.paddlepaddle.org/doc_cn/build_and_install/install/docker_install.html>`_ 。
......
......@@ -114,7 +114,7 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash
nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash
**注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:**
......@@ -122,7 +122,7 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu
docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
**关于AVX:**
......
......@@ -122,7 +122,7 @@ GPU driver installed before move on.
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash
nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash
**NOTE: If you don't have nvidia-docker installed, try the following method to mount CUDA libs and devices into the container.**
......@@ -130,7 +130,7 @@ GPU driver installed before move on.
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu
docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
**About AVX:**
......
import paddle.v2 as paddle
import numpy as np
paddle.init(use_gpu=False)
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
# loading the model which generated by training
with open('params_pass_90.tar', 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
# Input multiple sets of data,Output the infer result in a array.
i = [[[1, 2]], [[3, 4]], [[5, 6]]]
print paddle.infer(output_layer=y_predict, parameters=parameters, input=i)
# Will print:
# [[ -3.24491572]
# [ -6.94668722]
# [-10.64845848]]
......@@ -26,6 +26,11 @@ def event_handler(event):
if event.batch_id % 1 == 0:
print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id,
event.cost)
# product model every 10 pass
if isinstance(event, paddle.event.EndPass):
if event.pass_id % 10 == 0:
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
trainer.save_parameter_to_tar(f)
# define training dataset reader
......
......@@ -147,4 +147,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和
.. literalinclude:: src/train.py
:linenos:
使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出:
.. literalinclude:: src/infer.py
:linenos:
有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 <http://book.paddlepaddle.org/index.html>`_。
......@@ -6,10 +6,10 @@ Core: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework
Operator: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators
Optimizer: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/optimizer
Memory: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory
Platform: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform
# Compile Time
The following **defines** the NN. The definition goes into this [protocol buffer](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto).
......
......@@ -18,11 +18,11 @@ PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/
- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`iOS`。在设置`CMAKE_SYSTEM_NAME=iOS`后,PaddlePaddle的CMake系统会自动编译所有的第三方依赖库,并且强制设置一些PaddlePaddle参数的值(`WITH_C_API=ON``WITH_GPU=OFF``WITH_AVX=OFF``WITH_PYTHON=OFF``WITH_RDMA=OFF`)。
- `WITH_C_API`,是否编译C-API预测库,必须设置为ON。在iOS平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`,必须设置为ON。在iOS平台上不支持通过swig调用来训练或者预测。
- `WITH_SWIG_PY`,必须设置为`OFF`。在iOS平台上不支持通过swig调用来训练或者预测。
iOS平台可选配置参数:
- `IOS_PLATFORM`,可设置为`OS/SIMULATOR`,默认值为`OS`
- `IOS_PLATFORM`,可设置为`OS`(默认值)或`SIMULATOR`
- `OS`,构建目标为`arm`架构的iPhone或者iPad等物理设备。
- `SIMULATOR`,构建目标为`x86`架构的模拟器平台。
- `IOS_ARCH`,目标架构。针对不同的`IOS_PLATFORM`,可设置的目标架构如下表所示,默认编译所有架构:
......
# PaddlePaddle Compiling Guide for iOS
This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS.
## Preparation
Apple provides Xcode for cross-compiling and IDE for iOS development. Download from App store or [here](https://developer.apple.com/cn/xcode/). To verify your installation, run command as follows
```bash
$ xcodebuild -version
Xcode 9.0
Build version 9A235
```
## Cross-compiling configurations
PaddlePaddle provides cross-compiling toolchain configuration documentation [cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake), which has some default settings for frequently used compilers.
There are some mandatory environment variables need to be set before cross compiling PaddlePaddle for iOS:
- `CMAKE_SYSTEM_NAME`, CMake compiling target platform name, has to be `iOS`. PaddlePaddle CMake will compile all the third party dependencies and enforce some parameters (`WITH_C_API=ON`, `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`,`WITH_RDMA=OFF`) when this variable is set with value `iOS`.
- `WITH_C_API`, Whether to compile inference C-API library, has to be `ON`, since C-API is the only supported interface for inferencing in iOS.
- `WITH_SWIG_PY`, has to be `OFF`. It's not supported to inference or train via swig in iOS.
Optional environment variables for iOS are:
- `IOS_PLATFORM`, either `OS` (default) or `SIMULATOR`.
- `OS`, build targets ARM-based physical devices like iPhone or iPad.
- `SIMULATOR`, build targets x86 architecture simulators.
- `IOS_ARCH`, target architecture. By default, all architecture types will be compiled. If you need to specify the architecture to compile for, please find valid values for different `IOS_PLATFORM` settings from the table below:
<table class="docutils">
<colgroup>
<col width="35%" />
<col width="65%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd">
<th class="head">IOS_PLATFORM</th>
<th class="head">IOS_ARCH</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even">
<td>OS</td>
<td>armv7, armv7s, arm64 </td>
</tr>
<tr class="row-odd">
<td>SIMULATOR</td>
<td>i386, x86_64 </td>
</tr>
</tbody>
</table>
- `IOS_DEPLOYMENT_TARGET`, minimum iOS version to deployment, `7.0` by default.
- `IOS_ENABLE_BITCODE`, whether to enable [Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3), values can be `ON/OFF`, `ON` by default.
- `IOS_USE_VECLIB_FOR_BLAS`, whether to use [vecLib](https://developer.apple.com/documentation/accelerate/veclib) framework for BLAS computing. values can be `ON/OFF`, `OFF` by default.
- `IOS_DEVELOPMENT_ROOT`, the path to `Developer` directory, can be explicitly set with your `/path/to/platform/Developer`. If left blank, PaddlePaddle will automatically pick the Xcode corresponding `platform`'s `Developer` directory based on your `IOS_PLATFORM` value.
- `IOS_SDK_ROOT`, the path to `SDK` root, can be explicitly set with your `/path/to/platform/Developer/SDKs/SDK`. if left black, PaddlePaddle will pick the latest SDK in the directory of `IOS_DEVELOPMENT_ROOT`.
other settings:
- `USE_EIGEN_FOR_BLAS`, whether to use Eigen for matrix computing. effective when `IOS_USE_VECLIB_FOR_BLAS=OFF`. Values can be `ON/OFF`, `OFF` by default.
- `HOST_C/CXX_COMPILER`, host C/C++ compiler. Uses value from environment variable `CC/CXX` by default or `cc/c++` if `CC/CXX` doesn't exist.
some typical cmake configurations:
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=OS \
-DIOS_ARCH="armv7;arm64" \
-DIOS_ENABLE_BITCODE=ON \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=SIMULATOR \
-DIOS_ARCH="x86_64" \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
You can set other compiling parameters for your own need. I.E. if you are trying to minimize the library size, set `CMAKE_BUILD_TYPE` with `MinSizeRel`; or if the performance is your concern, set `CMAKE_BUILD_TYPE` with `Release`. You can even manipulate the PaddlePaddle compiling procedure by manually set `CMAKE_C/CXX_FLAGS` values.
**TIPS for a better performance**:
- set `CMAKE_BUILD_TYPE` with `Release`
- set `IOS_USE_VECLIB_FOR_BLAS` with `ON`
## Compile and install
After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library.
```
$ make
$ make install
```
Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration.
`your/path/to/install` directory will have following directories after `compile` and `install`:
- `include`, contains all the C-API header files.
- `lib`, contains PaddlePaddle C-API static library.
- `third_party` contains all the 3rd party libraries.
Please note: if PaddlePaddle library need to support both physical devices and simulators, you will need to compile correspondingly, then merge fat library with `lipo`.
Now you will have PaddlePaddle library compiled and installed, the fat library can be used in deep learning related iOS APPs. Please refer to C-API documentation for usage guides.
......@@ -5,4 +5,5 @@ MOBILE
:maxdepth: 1
cross_compiling_for_android_en.md
cross_compiling_for_ios_en.md
cross_compiling_for_raspberry_en.md
......@@ -14,7 +14,7 @@ limitations under the License. */
#include "error.h"
const char* paddle_error_string(paddle_error err) {
extern "C" const char* paddle_error_string(paddle_error err) {
switch (err) {
case kPD_NULLPTR:
return "nullptr error";
......
......@@ -29,9 +29,17 @@ typedef enum {
kPD_UNDEFINED_ERROR = -1,
} paddle_error;
#ifdef __cplusplus
extern "C" {
#endif
/**
* Error string for Paddle API.
*/
PD_API const char* paddle_error_string(paddle_error err);
#ifdef __cplusplus
}
#endif
#endif
......@@ -430,14 +430,14 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
std::vector<std::unique_ptr<OpDescBind>> op_grads;
if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") {
int step_block_idx = (*it)->GetBlockAttr("step_block");
int step_block_idx = (*it)->GetBlockAttr("sub_block");
BlockDescBind* backward_block = CreateStepBlock(
program_desc, no_grad_vars, grad_to_var, step_block_idx);
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else if ((*it)->Type() == "conditional_block") {
BlockDescBind* backward_block =
CreateStepBlock(program_desc, no_grad_vars, grad_to_var,
(*it)->GetBlockAttr("block"));
(*it)->GetBlockAttr("sub_block"));
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
} else {
op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
......
......@@ -126,6 +126,11 @@ public:
inputData += inputChannels * inputHeight * inputWidth;
outputData += outputChannels * outputHeight * outputWidth;
}
#ifdef PADDLE_MOBILE_INFERENCE
if (Device == DEVICE_TYPE_CPU) {
delete memory_;
}
#endif
}
};
......
......@@ -84,12 +84,15 @@ void ROIPoolLayer::forward(PassType passType) {
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
real* outputData = outputValue->getData();
Matrix::resizeOrCreate(maxIdxs_,
numROIs,
channels_ * pooledHeight_ * pooledWidth_,
false,
false);
real* argmaxData = maxIdxs_->getData();
real* argmaxData = nullptr;
if (passType != PASS_TEST) {
Matrix::resizeOrCreate(maxIdxs_,
numROIs,
channels_ * pooledHeight_ * pooledWidth_,
false,
false);
argmaxData = maxIdxs_->getData();
}
for (size_t n = 0; n < numROIs; ++n) {
// the first five elememts of each RoI should be:
......@@ -128,14 +131,18 @@ void ROIPoolLayer::forward(PassType passType) {
bool isEmpty = (hend <= hstart) || (wend <= wstart);
size_t poolIndex = ph * pooledWidth_ + pw;
outputData[poolIndex] = isEmpty ? 0 : -FLT_MAX;
argmaxData[poolIndex] = -1;
if (argmaxData) {
argmaxData[poolIndex] = -1;
}
for (size_t h = hstart; h < hend; ++h) {
for (size_t w = wstart; w < wend; ++w) {
size_t index = h * width_ + w;
if (batchData[index] > outputData[poolIndex]) {
outputData[poolIndex] = batchData[index];
argmaxData[poolIndex] = index;
if (argmaxData) {
argmaxData[poolIndex] = index;
}
}
}
}
......@@ -143,7 +150,9 @@ void ROIPoolLayer::forward(PassType passType) {
}
batchData += channelOffset;
outputData += poolChannelOffset;
argmaxData += poolChannelOffset;
if (argmaxData) {
argmaxData += poolChannelOffset;
}
}
bottomROIs += roiOffset;
}
......
......@@ -171,12 +171,31 @@ void SequenceToBatch::sequence2BatchCopy(Matrix &batch,
hl_sequence2batch_copy(
batchData, seqData, idxData, seqWidth, batchCount, seq2batch);
} else {
for (int i = 0; i < batchCount; ++i) {
if (seq2batch) {
if (seq2batch) {
#ifdef PADDLE_USE_MKLML
const int blockMemSize = 8 * 1024;
const int blockSize = blockMemSize / sizeof(real);
#pragma omp parallel for collapse(2)
for (int i = 0; i < batchCount; ++i) {
for (int j = 0; j < seqWidth; j += blockSize) {
memcpy(batch.rowBuf(i) + j,
sequence.rowBuf(idxData[i]) + j,
(j + blockSize > seqWidth) ? (seqWidth - j) * sizeof(real)
: blockMemSize);
}
}
#else
for (int i = 0; i < batchCount; ++i) {
memcpy(batch.rowBuf(i),
sequence.rowBuf(idxData[i]),
seqWidth * sizeof(real));
} else {
}
#endif
} else {
#ifdef PADDLE_USE_MKLML
#pragma omp parallel for
#endif
for (int i = 0; i < batchCount; ++i) {
memcpy(sequence.rowBuf(idxData[i]),
batch.rowBuf(i),
seqWidth * sizeof(real));
......
......@@ -79,7 +79,7 @@ public:
#ifdef PADDLE_CUDA_FP16
HOSTDEVICE inline explicit float16(const half& h) {
#if CUDA_VERSION >= 9000
x = reinterpret_cast<__half_raw*>(&h)->x;
x = reinterpret_cast<__half_raw*>(const_cast<half*>(&h))->x;
#else
x = h.x;
#endif // CUDA_VERSION >= 9000
......@@ -145,7 +145,7 @@ public:
#ifdef PADDLE_CUDA_FP16
HOSTDEVICE inline float16& operator=(const half& rhs) {
#if CUDA_VERSION >= 9000
x = reinterpret_cast<__half_raw*>(&rhs)->x;
x = reinterpret_cast<__half_raw*>(const_cast<half*>(&rhs))->x;
#else
x = rhs.x;
#endif
......
......@@ -244,7 +244,7 @@ TEST(Matrix, unary) {
LOG(WARNING) << "This version of PaddlePaddle was not built with LAPACK"
<< "support so we cannot test matrix inverse. To test "
<< "matrix inverse, please install LAPACKE "
<< "and MKL/Openblas/ATLAS, and re-build PaddlePaddle.";
<< "and MKL/Openblas, and re-build PaddlePaddle.";
#endif
}
}
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include <stdlib.h> // for malloc and free
#include <sys/mman.h> // for mlock and munlock
#include <algorithm> // for std::max
#include "gflags/gflags.h"
......@@ -28,7 +29,7 @@ limitations under the License. */
// of memory available to the system for paging. So, by default, we
// should set false to use_pinned_memory.
DEFINE_bool(use_pinned_memory, true, "If set, allocate cpu pinned memory.");
DECLARE_double(fraction_of_gpu_memory_to_use);
namespace paddle {
namespace memory {
namespace detail {
......@@ -77,45 +78,20 @@ void* GPUAllocator::Alloc(size_t& index, size_t size) {
// CUDA documentation doesn't explain if cudaMalloc returns nullptr
// if size is 0. We just make sure it does.
if (size <= 0) return nullptr;
size_t available = 0;
size_t capacity = 0;
paddle::platform::GpuMemoryUsage(available, capacity);
// Reserve memory for page tables, etc.
size_t reserving = 0.05 * capacity + paddle::platform::GpuMinChunkSize();
size_t usable = available > reserving ? available - reserving : 0;
// If remaining size no less than expected size, using general
// cudaMalloc to allocate GPU memory.
void* p = 0;
if (size <= usable) {
cudaError_t result = cudaMalloc(&p, size);
if (result == cudaSuccess) {
index = 0;
gpu_alloc_size_ += size;
return p;
}
}
// If remaining size less than expected size or cudaMalloc failed,
// cudaMallocHost will be considered as a fallback allocator.
//
// NOTE: here, we use GpuMaxAllocSize() as the maximum memory size
// of host fallback allocation. Allocates too much would reduce
// the amount of memory available to the underlying system for paging.
usable = paddle::platform::GpuMaxAllocSize() - fallback_alloc_size_;
if (size > usable) return nullptr;
cudaError_t result = cudaMallocHost(&p, size);
void* p;
cudaError_t result = cudaMalloc(&p, size);
if (result == cudaSuccess) {
index = 1;
fallback_alloc_size_ += size;
index = 0;
gpu_alloc_size_ += size;
return p;
} else {
LOG(WARNING)
<< "Cannot malloc " << size / 1024.0 / 1024.0
<< " MB GPU memory. Please shrink FLAGS_fraction_of_gpu_memory_to_use "
"environment variable to a lower value. Current value is "
<< FLAGS_fraction_of_gpu_memory_to_use;
return nullptr;
}
return nullptr;
}
void GPUAllocator::Free(void* p, size_t size, size_t index) {
......
......@@ -74,4 +74,5 @@ REGISTER_OP_WITH_KERNEL(cast, ops::CastOpGradMaker, ops::CastOpInferShape,
REGISTER_OP_CPU_KERNEL(cast, ops::CastOpKernel<CPU, float>,
ops::CastOpKernel<CPU, double>,
ops::CastOpKernel<CPU, int>,
ops::CastOpKernel<CPU, int64_t>);
ops::CastOpKernel<CPU, int64_t>,
ops::CastOpKernel<CPU, bool>);
......@@ -19,4 +19,5 @@ using CastOpKernel =
paddle::operators::CastOpKernel<paddle::platform::CUDADeviceContext, T>;
REGISTER_OP_CUDA_KERNEL(cast, CastOpKernel<float>, CastOpKernel<double>,
CastOpKernel<int>, CastOpKernel<int64_t>);
CastOpKernel<int>, CastOpKernel<int64_t>,
CastOpKernel<bool>);
......@@ -32,6 +32,13 @@ class ChunkEvalOp : public framework::OperatorWithKernel {
"Output(Recall) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("F1-Score"),
"Output(F1-Score) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"),
"Output(NumInferChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"),
"Output(NumLabelChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("NumCorrectChunks"),
"Output(NumCorrectChunks) of ChunkEvalOp should not be null.");
auto inference_dim = ctx->GetInputDim("Inference");
auto label_dim = ctx->GetInputDim("Label");
......@@ -42,6 +49,9 @@ class ChunkEvalOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("Precision", {1});
ctx->SetOutputDim("Recall", {1});
ctx->SetOutputDim("F1-Score", {1});
ctx->SetOutputDim("NumInferChunks", {1});
ctx->SetOutputDim("NumLabelChunks", {1});
ctx->SetOutputDim("NumCorrectChunks", {1});
}
protected:
......@@ -70,6 +80,16 @@ class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
"sensitivity) of chunks on the given mini-batch.");
AddOutput("F1-Score",
"(float). The evaluated F1-Score on the given mini-batch.");
AddOutput("NumInferChunks",
"(int64_t). The number of chunks in Inference on the given "
"mini-batch.");
AddOutput(
"NumLabelChunks",
"(int64_t). The number of chunks in Label on the given mini-batch.");
AddOutput(
"NumCorrectChunks",
"(int64_t). The number of chunks both in Inference and Label on the "
"given mini-batch.");
AddAttr<int>("num_chunk_types",
"(int). The number of chunk type. See below for details.");
AddAttr<std::string>(
......
......@@ -111,9 +111,7 @@ class ChunkEvalKernel : public framework::OpKernel<T> {
std::vector<Segment> label_segments;
std::vector<Segment> output_segments;
std::set<int> excluded_chunk_types;
int64_t num_output_segments = 0;
int64_t num_label_segments = 0;
int64_t num_correct = 0;
if (context.Attr<std::string>("chunk_scheme") == "IOB") {
num_tag_types = 2;
tag_begin = 0;
......@@ -151,12 +149,24 @@ class ChunkEvalKernel : public framework::OpKernel<T> {
auto* precision = context.Output<Tensor>("Precision");
auto* recall = context.Output<Tensor>("Recall");
auto* f1 = context.Output<Tensor>("F1-Score");
auto* num_infer_chunks = context.Output<Tensor>("NumInferChunks");
auto* num_label_chunks = context.Output<Tensor>("NumLabelChunks");
auto* num_correct_chunks = context.Output<Tensor>("NumCorrectChunks");
const int64_t* inference_data = inference->data<int64_t>();
const int64_t* label_data = label->data<int64_t>();
T* precision_data = precision->mutable_data<T>(context.GetPlace());
T* racall_data = recall->mutable_data<T>(context.GetPlace());
T* f1_data = f1->mutable_data<T>(context.GetPlace());
int64_t* num_infer_chunks_data =
num_infer_chunks->mutable_data<int64_t>(context.GetPlace());
int64_t* num_label_chunks_data =
num_label_chunks->mutable_data<int64_t>(context.GetPlace());
int64_t* num_correct_chunks_data =
num_correct_chunks->mutable_data<int64_t>(context.GetPlace());
*num_infer_chunks_data = 0;
*num_label_chunks_data = 0;
*num_correct_chunks_data = 0;
auto lod = label->lod();
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
......@@ -166,17 +176,23 @@ class ChunkEvalKernel : public framework::OpKernel<T> {
for (int i = 0; i < num_sequences; ++i) {
int seq_length = lod[0][i + 1] - lod[0][i];
EvalOneSeq(inference_data + lod[0][i], label_data + lod[0][i], seq_length,
output_segments, label_segments, num_output_segments,
num_label_segments, num_correct, num_chunk_types,
num_tag_types, other_chunk_type, tag_begin, tag_inside,
tag_end, tag_single, excluded_chunk_types);
output_segments, label_segments, *num_infer_chunks_data,
*num_label_chunks_data, *num_correct_chunks_data,
num_chunk_types, num_tag_types, other_chunk_type, tag_begin,
tag_inside, tag_end, tag_single, excluded_chunk_types);
}
*precision_data = !num_output_segments ? 0 : static_cast<T>(num_correct) /
num_output_segments;
*racall_data = !num_label_segments ? 0 : static_cast<T>(num_correct) /
num_label_segments;
*f1_data = !num_correct ? 0 : 2 * (*precision_data) * (*racall_data) /
((*precision_data) + (*racall_data));
*precision_data = !(*num_infer_chunks_data)
? 0
: static_cast<T>(*num_correct_chunks_data) /
(*num_infer_chunks_data);
*racall_data = !(*num_label_chunks_data)
? 0
: static_cast<T>(*num_correct_chunks_data) /
(*num_label_chunks_data);
*f1_data = !(*num_correct_chunks_data)
? 0
: 2 * (*precision_data) * (*racall_data) /
((*precision_data) + (*racall_data));
}
void EvalOneSeq(const int64_t* output, const int64_t* label, int length,
......
......@@ -65,7 +65,7 @@ class ConditionalBlockOp : public ConditionalOp {
scopes->front() = &scope.NewScope();
auto &cur_scope = *scopes->front();
auto *block = Attr<framework::BlockDescBind *>("block");
auto *block = Attr<framework::BlockDescBind *>("sub_block");
framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
}
......@@ -88,7 +88,7 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"unify the conditional block, rnn and while op, the type of "
"scope is std::vector<Scope*>");
AddAttr<framework::BlockDescBind *>(
"block", "The step block of conditional block operator");
"sub_block", "The step block of conditional block operator");
AddComment(R"DOC(Conditional block operator
Run the sub-block if X is not empty. Params is the other inputs and Out is the
......@@ -117,7 +117,7 @@ class ConditionalBlockGradOp : public ConditionalOp {
auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
framework::Scope &cur_scope = *scopes[0];
auto *block = Attr<framework::BlockDescBind *>("block");
auto *block = Attr<framework::BlockDescBind *>("sub_block");
framework::Executor exec(dev_ctx);
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
......@@ -181,7 +181,7 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
grad_op->SetInput("Scope", Output("Scope"));
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params"));
grad_op->SetBlockAttr("block", *this->grad_block_[0]);
grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
return std::unique_ptr<framework::OpDescBind>(grad_op);
}
};
......
......@@ -261,8 +261,12 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
set_zero(dev_ctx, input_grad, static_cast<T>(0));
// if is_expand is false, the operation of set_zero is unnecessary,
// because math::matmul will reset input_grad.
if (is_expand) {
set_zero(dev_ctx, input_grad, static_cast<T>(0));
}
math::Col2VolFunctor<DeviceContext, T> col2vol;
math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
......
......@@ -225,7 +225,6 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
set_zero(dev_ctx, input_grad, static_cast<T>(0));
}
if (filter_grad) { // filter size (m, c, k_h, k_w)
filter_grad->mutable_data<T>(context.GetPlace());
......
......@@ -277,6 +277,14 @@ void set_constant_with_place<platform::CPUPlace>(
TensorSetConstantCPU(tensor, value));
}
template <>
void set_constant_with_place<platform::MKLDNNPlace>(
const platform::DeviceContext& context, framework::Tensor* tensor,
float value) {
framework::VisitDataType(framework::ToDataType(tensor->type()),
TensorSetConstantCPU(tensor, value));
}
struct TensorSetConstantWithPlace : public boost::static_visitor<void> {
TensorSetConstantWithPlace(const platform::DeviceContext& context,
framework::Tensor* tensor, float value)
......
......@@ -273,6 +273,13 @@ void set_constant_with_place<platform::GPUPlace>(
TensorSetConstantGPU(context, tensor, value));
}
template <>
void set_constant_with_place<platform::CudnnPlace>(
const platform::DeviceContext& context, framework::Tensor* tensor,
float value) {
set_constant_with_place<platform::GPUPlace>(context, tensor, value);
}
template struct RowwiseAdd<platform::CUDADeviceContext, float>;
template struct RowwiseAdd<platform::CUDADeviceContext, double>;
template struct ColwiseSum<platform::CUDADeviceContext, float>;
......
......@@ -25,7 +25,7 @@ constexpr char kOutputs[] = "outputs";
constexpr char kStepScopes[] = "step_scopes";
constexpr char kExStates[] = "ex_states";
constexpr char kStates[] = "states";
constexpr char kStepBlock[] = "step_block";
constexpr char kStepBlock[] = "sub_block";
constexpr char kReverse[] = "reverse";
constexpr char kIsTrain[] = "is_train";
#define GRAD_SUFFIX "@GRAD"
......
......@@ -37,18 +37,23 @@ class ReduceOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_LT(
dim, x_rank,
"The dim should be in the range [-rank(input), rank(input)).");
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
auto dims_vector = vectorize(x_dims);
if (keep_dim || x_rank == 1) {
dims_vector[dim] = 1;
bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
if (reduce_all) {
ctx->SetOutputDim("Out", {1});
} else {
dims_vector.erase(dims_vector.begin() + dim);
}
auto out_dims = framework::make_ddim(dims_vector);
ctx->SetOutputDim("Out", out_dims);
if (dim != 0) {
// Only pass LoD when not reducing on the first dim.
ctx->ShareLoD("X", /*->*/ "Out");
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
auto dims_vector = vectorize(x_dims);
if (keep_dim || x_rank == 1) {
dims_vector[dim] = 1;
} else {
dims_vector.erase(dims_vector.begin() + dim);
}
auto out_dims = framework::make_ddim(dims_vector);
ctx->SetOutputDim("Out", out_dims);
if (dim != 0) {
// Only pass LoD when not reducing on the first dim.
ctx->ShareLoD("X", /*->*/ "Out");
}
}
}
};
......@@ -95,11 +100,16 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) "
"If true, retain the reduced dimension with length 1.")
.SetDefault(false);
AddAttr<bool>("reduce_all",
"(bool, default false) "
"If true, output a scalar reduced along all dimensions.")
.SetDefault(false);
comment_ = R"DOC(
{ReduceOp} Operator.
This operator computes the {reduce} of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
)DOC";
AddComment(comment_);
......
......@@ -26,10 +26,12 @@ using DDim = framework::DDim;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
struct SumFunctor {
template <typename DeviceContext, typename X, typename Y, typename Dim>
......@@ -95,26 +97,41 @@ template <typename DeviceContext, typename T, typename Functor>
class ReduceKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceCompute<1>(context);
break;
case 2:
ReduceCompute<2>(context);
break;
case 3:
ReduceCompute<3>(context);
break;
case 4:
ReduceCompute<4>(context);
break;
case 5:
ReduceCompute<5>(context);
break;
case 6:
ReduceCompute<6>(context);
break;
bool reduce_all = context.Attr<bool>("reduce_all");
if (reduce_all) {
// Flatten and reduce 1-D tensor
auto* input = context.Input<Tensor>("X");
auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace());
auto x = EigenVector<T>::Flatten(*input);
auto out = EigenScalar<T>::From(*output);
auto& place =
*context.template device_context<DeviceContext>().eigen_device();
auto reduce_dim = Eigen::array<int, 1>({{0}});
Functor functor;
functor(place, x, out, reduce_dim);
} else {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceCompute<1>(context);
break;
case 2:
ReduceCompute<2>(context);
break;
case 3:
ReduceCompute<3>(context);
break;
case 4:
ReduceCompute<4>(context);
break;
case 5:
ReduceCompute<5>(context);
break;
case 6:
ReduceCompute<6>(context);
break;
}
}
}
......@@ -157,26 +174,46 @@ template <typename DeviceContext, typename T, typename Functor>
class ReduceGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceGradCompute<1>(context);
break;
case 2:
ReduceGradCompute<2>(context);
break;
case 3:
ReduceGradCompute<3>(context);
break;
case 4:
ReduceGradCompute<4>(context);
break;
case 5:
ReduceGradCompute<5>(context);
break;
case 6:
ReduceGradCompute<6>(context);
break;
bool reduce_all = context.Attr<bool>("reduce_all");
if (reduce_all) {
auto* input0 = context.Input<Tensor>("X");
auto* input1 = context.Input<Tensor>("Out");
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
output->mutable_data<T>(context.GetPlace());
auto x = EigenVector<T>::Flatten(*input0);
auto x_reduce = EigenVector<T>::From(*input1);
auto x_reduce_grad = EigenVector<T>::From(*input2);
auto x_grad = EigenVector<T>::Flatten(*output);
auto& place =
*context.template device_context<DeviceContext>().eigen_device();
auto broadcast_dim =
Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
Functor functor;
functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim,
broadcast_dim[0]);
} else {
int rank = context.Input<Tensor>("X")->dims().size();
switch (rank) {
case 1:
ReduceGradCompute<1>(context);
break;
case 2:
ReduceGradCompute<2>(context);
break;
case 3:
ReduceGradCompute<3>(context);
break;
case 4:
ReduceGradCompute<4>(context);
break;
case 5:
ReduceGradCompute<5>(context);
break;
case 6:
ReduceGradCompute<6>(context);
break;
}
}
}
......
......@@ -34,21 +34,33 @@ class ReshapeOp : public framework::OperatorWithKernel {
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty.");
auto x_dims = ctx->GetInputDim("X");
// TODO(qiao) change batch_size
for (size_t i = 1; i < shape.size(); ++i) {
PADDLE_ENFORCE(shape[i] > 0,
"Each dimension of Attr(shape) "
"must be positive except the first one.");
}
if (shape[0] < 0) {
shape[0] = x_dims[0];
std::vector<size_t> neg_dims_idx;
// set some dimension to -1 if it is unknown
const int unknown_size = -1;
for (size_t i = 0; i < shape.size(); ++i) {
PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size,
"Each dimension of Attr(shape) must be positive or %d.",
unknown_size);
if (shape[i] == unknown_size) {
neg_dims_idx.push_back(i);
PADDLE_ENFORCE(neg_dims_idx.size() <= 1,
"Only one dimension of Attr(shape) can be unknown.");
}
}
// capacity check
int64_t capacity =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
int64_t in_size = framework::product(x_dims);
PADDLE_ENFORCE_EQ(capacity, in_size,
"The size of Input(X) mismatches with Attr(shape).");
if (neg_dims_idx.size() == 1) {
// dim infer
shape[neg_dims_idx[0]] = in_size / (-capacity);
// recalculate capacity
capacity = shape[neg_dims_idx[0]] * (-capacity);
}
// capacity check
PADDLE_ENFORCE(capacity == in_size,
"The size of Input(X) mismatches with Attr(shape).");
// resize output
std::vector<int64_t> shape_int64(shape.size(), 0);
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
......@@ -84,10 +96,13 @@ Given a 2-D tensor X with 2 rows and 2 columns
[[1, 2], [3, 4]]
and target shape = [1, 4], the reshape operator will transform
the tensor X into a 1-D tensor:
the tensor X into a 2-D tensor:
[1, 2, 3, 4]
[[1, 2, 3, 4]]
One dimension in the target shape can be set -1, representing that its
size is unknown. In this case, the real dimension will be infered from
the original shape of Input(X) and other dimensions in the target shape.
)DOC");
}
};
......
......@@ -25,7 +25,7 @@ namespace operators {
using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;
constexpr char kStepBlock[] = "step_block";
constexpr char kStepBlock[] = "sub_block";
constexpr char kCondition[] = "Condition";
constexpr char kStepScopes[] = "StepScopes";
constexpr char kParameters[] = "X";
......
......@@ -125,6 +125,22 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
CudnnDeviceContext::CudnnDeviceContext(CudnnPlace place)
: CUDADeviceContext(place), place_(place) {
PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream()));
}
CudnnDeviceContext::~CudnnDeviceContext() {
SetDeviceId(place_.device);
Wait();
PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
}
Place CudnnDeviceContext::GetPlace() const { return CudnnPlace(); }
cudnnHandle_t CudnnDeviceContext::cudnn_handle() const { return cudnn_handle_; }
#endif
} // namespace platform
......
......@@ -86,6 +86,22 @@ class CUDADeviceContext : public DeviceContext {
cublasHandle_t cublas_handle_;
};
class CudnnDeviceContext : public CUDADeviceContext {
public:
explicit CudnnDeviceContext(CudnnPlace place);
virtual ~CudnnDeviceContext();
/*! \brief Return place in the device context. */
Place GetPlace() const final;
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t cudnn_handle() const;
private:
cudnnHandle_t cudnn_handle_;
CudnnPlace place_;
};
#endif
} // namespace platform
......
......@@ -46,3 +46,19 @@ TEST(Device, CUDADeviceContext) {
delete device_context;
}
}
TEST(Device, CudnnDeviceContext) {
using paddle::platform::CudnnDeviceContext;
using paddle::platform::CudnnPlace;
if (paddle::platform::dynload::HasCUDNN()) {
int count = paddle::platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
CudnnDeviceContext* device_context =
new CudnnDeviceContext(CudnnPlace(i));
cudnnHandle_t cudnn_handle = device_context->cudnn_handle();
ASSERT_NE(nullptr, cudnn_handle);
ASSERT_NE(nullptr, device_context->stream());
delete device_context;
}
}
}
......@@ -25,6 +25,11 @@ void *nccl_dso_handle;
NCCL_RAND_ROUTINE_EACH(DEFINE_WRAP);
void LoadNCCLDSO() {
platform::call_once(nccl_dso_flag,
[] { GetNCCLDsoHandle(&nccl_dso_handle); });
}
} // namespace dynload
} // namespace platform
} // namespace paddle
......@@ -28,18 +28,18 @@ extern std::once_flag nccl_dso_flag;
extern void* nccl_dso_handle;
#ifdef PADDLE_USE_DSO
#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using nccl_func = decltype(__name(args...)) (*)(Args...); \
platform::call_once(nccl_dso_flag, \
paddle::platform::dynload::GetNCCLDsoHandle, \
&nccl_dso_handle); \
void* p_##__name = dlsym(nccl_dso_handle, #__name); \
return reinterpret_cast<nccl_func>(p_##__name)(args...); \
} \
}; \
extern void LoadNCCLDSO();
#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> decltype(__name(args...)) { \
using nccl_func = decltype(__name(args...)) (*)(Args...); \
paddle::platform::dynload::LoadNCCLDSO(); \
void* p_##__name = dlsym(nccl_dso_handle, #__name); \
return reinterpret_cast<nccl_func>(p_##__name)(args...); \
} \
}; \
extern DynLoad__##__name __name
#else
#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \
......
......@@ -73,19 +73,20 @@ size_t GpuMaxChunkSize() {
size_t available = 0;
GpuMemoryUsage(available, total);
// Reserving the rest memory for page tables, etc.
size_t reserving = 0.05 * total;
VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
<< total / 1024 / 1024 << "M";
size_t reserving = static_cast<size_t>(0.05 * total);
// If available less than minimum chunk size, no usable memory exists.
available =
std::max(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(),
reserving) -
reserving;
std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(),
total - reserving);
// Reserving the rest memory for page tables, etc.
size_t allocating = FLAGS_fraction_of_gpu_memory_to_use * total;
size_t allocating = static_cast<size_t>(FLAGS_fraction_of_gpu_memory_to_use *
(total - reserving));
PADDLE_ENFORCE_LT(allocating, available);
PADDLE_ENFORCE_LE(allocating, available);
return allocating;
}
......
......@@ -31,7 +31,7 @@ namespace platform {
TEST(NCCL, init) {
std::vector<ncclComm_t> comms;
comms.resize(dev_count);
PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr));
dynload::ncclCommInitAll(comms.data(), dev_count, nullptr);
for (int i = 0; i < dev_count; ++i) {
dynload::ncclCommDestroy(comms[i]);
}
......@@ -62,7 +62,7 @@ TEST(NCCL, all_reduce) {
std::vector<ncclComm_t> comms;
comms.resize(dev_count);
VLOG(1) << "Initializing ncclComm";
PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr));
dynload::ncclCommInitAll(comms.data(), dev_count, nullptr);
VLOG(1) << "ncclComm initialized";
VLOG(1) << "Creating thread data";
std::vector<std::unique_ptr<PerThreadData<double>>> data;
......
......@@ -23,6 +23,7 @@ class PlacePrinter : public boost::static_visitor<> {
public:
explicit PlacePrinter(std::ostream &os) : os_(os) {}
void operator()(const CPUPlace &) { os_ << "CPUPlace"; }
void operator()(const MKLDNNPlace &) { os_ << "MKLDNNPlace"; }
void operator()(const GPUPlace &p) { os_ << "GPUPlace(" << p.device << ")"; }
private:
......@@ -38,12 +39,17 @@ const Place &get_place() { return the_default_place; }
const GPUPlace default_gpu() { return GPUPlace(0); }
const CPUPlace default_cpu() { return CPUPlace(); }
const MKLDNNPlace default_mkldnn() { return MKLDNNPlace(); }
bool is_gpu_place(const Place &p) {
return boost::apply_visitor(IsGPUPlace(), p);
}
bool is_cpu_place(const Place &p) {
return !boost::apply_visitor(IsGPUPlace(), p);
return !is_gpu_place(p) && !is_mkldnn_place(p);
}
bool is_mkldnn_place(const Place &p) {
return boost::apply_visitor(IsMKLDNNPlace(), p);
}
bool places_are_same_class(const Place &p1, const Place &p2) {
......
......@@ -31,6 +31,14 @@ struct CPUPlace {
inline bool operator!=(const CPUPlace &) const { return false; }
};
struct MKLDNNPlace {
MKLDNNPlace() {}
// needed for variant equality comparison
inline bool operator==(const MKLDNNPlace &) const { return true; }
inline bool operator!=(const MKLDNNPlace &) const { return false; }
};
struct GPUPlace {
GPUPlace() : GPUPlace(0) {}
explicit GPUPlace(int d) : device(d) {}
......@@ -43,16 +51,28 @@ struct GPUPlace {
int device;
};
struct CudnnPlace : public GPUPlace {
CudnnPlace() : GPUPlace() {}
explicit CudnnPlace(int d) : GPUPlace(d) {}
};
struct IsGPUPlace : public boost::static_visitor<bool> {
bool operator()(const CPUPlace &) const { return false; }
bool operator()(const MKLDNNPlace &) const { return false; }
bool operator()(const GPUPlace &gpu) const { return true; }
};
struct IsMKLDNNPlace : public boost::static_visitor<bool> {
bool operator()(const MKLDNNPlace &) const { return true; }
bool operator()(const CPUPlace &) const { return false; }
bool operator()(const GPUPlace &) const { return false; }
};
// Define the max number of Place in bit length. i.e., the max number of places
// should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT)
#define NUM_PLACE_TYPE_LIMIT_IN_BIT 4
typedef boost::variant<GPUPlace, CPUPlace> Place;
typedef boost::variant<CudnnPlace, GPUPlace, CPUPlace, MKLDNNPlace> Place;
// static check number of place types is less equal than
// 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT)
......@@ -65,9 +85,11 @@ const Place &get_place();
const GPUPlace default_gpu();
const CPUPlace default_cpu();
const MKLDNNPlace default_mkldnn();
bool is_gpu_place(const Place &);
bool is_cpu_place(const Place &);
bool is_mkldnn_place(const Place &);
bool places_are_same_class(const Place &, const Place &);
std::ostream &operator<<(std::ostream &, const Place &);
......
......@@ -21,9 +21,15 @@ TEST(Place, Default) {
EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::get_place()));
EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::default_gpu()));
EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::default_cpu()));
EXPECT_TRUE(
paddle::platform::is_mkldnn_place(paddle::platform::default_mkldnn()));
paddle::platform::set_place(paddle::platform::CPUPlace());
EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::get_place()));
paddle::platform::set_place(paddle::platform::MKLDNNPlace());
EXPECT_FALSE(paddle::platform::is_cpu_place(paddle::platform::get_place()));
EXPECT_TRUE(paddle::platform::is_mkldnn_place(paddle::platform::get_place()));
}
TEST(Place, Print) {
......
......@@ -14,6 +14,19 @@
#pragma once
#ifdef __CUDACC__
#ifdef __CUDACC_VER_MAJOR__
// CUDA 9 define `__CUDACC_VER__` as a warning message, manually define
// __CUDACC_VER__ instead.
#undef __CUDACC_VER__
#define __CUDACC_VER__ \
(__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 + \
__CUDACC_VER_BUILD__)
#endif
#endif
#include <boost/config.hpp>
#ifdef PADDLE_WITH_CUDA
......
......@@ -282,6 +282,23 @@ All parameter, weight, gradient are variables in Paddle.
}
return ret_values;
});
m.def("get_grad_op_descs",
[](const OpDescBind &op_desc,
const std::unordered_set<std::string> &no_grad_set,
std::unordered_map<std::string, std::string> &grad_to_var,
const std::vector<BlockDescBind *> &grad_sub_block) {
std::vector<std::unique_ptr<OpDescBind>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
grad_sub_block);
std::vector<OpDescBind *> grad_op_desc_ptrs(grad_op_descs.size());
std::transform(
grad_op_descs.begin(), grad_op_descs.end(),
grad_op_desc_ptrs.begin(),
[](std::unique_ptr<OpDescBind> &p) { return p.release(); });
return grad_op_desc_ptrs;
});
m.def("prune", [](const ProgramDescBind &origin,
const std::vector<std::array<size_t, 2>> &targets) {
ProgramDescBind prog_with_targets(origin);
......
# Build this image: docker build -t mpi .
#
FROM paddledev/paddle:0.10.0rc3
FROM paddlepaddle/paddle:0.10.0rc3
ENV DEBIAN_FRONTEND noninteractive
......
......@@ -20,7 +20,7 @@ binaries.
## Run The Build
### Build Evironments
### Build Environments
The pre-built build environment images are:
......
......@@ -5,4 +5,4 @@ docker run --rm \
-e "WITH_AVX=ON" \
-e "WITH_DOC=ON" \
-e "WOBOQ=ON" \
${1:-"paddledev/paddle:dev"}
${1:-"paddlepaddle/paddle:latest-dev"}
......@@ -2,6 +2,7 @@
build
dist
paddle.egg-info
paddlepaddle_gpu.egg-info
.idea
paddle/proto/*.py
paddle/proto/*.pyc
......@@ -4,7 +4,7 @@ import layers
from framework import Program, unique_name, Variable
from layer_helper import LayerHelper
__all__ = ['Accuracy']
__all__ = ['Accuracy', 'ChunkEvaluator']
def _clone_var_(block, var):
......@@ -132,3 +132,74 @@ class Accuracy(Evaluator):
correct = layers.cast(correct, dtype='float32', **kwargs)
out = layers.elementwise_div(x=correct, y=total, **kwargs)
return np.array(executor.run(eval_program, fetch_list=[out])[0])
class ChunkEvaluator(Evaluator):
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter
numbers.
"""
def __init__(self,
input,
label,
chunk_scheme,
num_chunk_types,
excluded_chunk_types=None,
**kwargs):
super(ChunkEvaluator, self).__init__("chunk_eval", **kwargs)
main_program = self.helper.main_program
if main_program.current_block().idx != 0:
raise ValueError("You can only invoke Evaluator in root block")
self.num_infer_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_infer_chunks')
self.num_label_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_label_chunks')
self.num_correct_chunks = self.create_state(
dtype='int64', shape=[1], suffix='num_correct_chunks')
kwargs = {'main_program': main_program}
precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
input=input,
label=label,
chunk_scheme=chunk_scheme,
num_chunk_types=num_chunk_types,
excluded_chunk_types=excluded_chunk_types,
**kwargs)
layers.sums(
input=[self.num_infer_chunks, num_infer_chunks],
out=self.num_infer_chunks,
**kwargs)
layers.sums(
input=[self.num_label_chunks, num_label_chunks],
out=self.num_label_chunks,
**kwargs)
layers.sums(
input=[self.num_correct_chunks, num_correct_chunks],
out=self.num_correct_chunks,
**kwargs)
self.metrics.extend([precision, recall, f1_score])
def eval(self, executor, eval_program=None):
if eval_program is None:
eval_program = Program()
block = eval_program.current_block()
kwargs = {'main_program': eval_program}
num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
eval_program,
fetch_list=[_clone_var_(block, state) for state in self.states])
num_infer_chunks = num_infer_chunks[0]
num_label_chunks = num_label_chunks[0]
num_correct_chunks = num_correct_chunks[0]
precision = float(
num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
recall = float(
num_correct_chunks) / num_label_chunks if num_label_chunks else 0
f1_score = float(2 * precision * recall) / (
precision + recall) if num_correct_chunks else 0
return np.array(
[precision], dtype='float32'), np.array(
[recall], dtype='float32'), np.array(
[f1_score], dtype='float32')
import ops
from ops import *
import nn
from nn import *
import io
from io import *
import tensor
from tensor import *
import control_flow
from control_flow import *
__all__ = []
__all__ += nn.__all__
__all__ += io.__all__
__all__ += tensor.__all__
__all__ += control_flow.__all__
__all__ += ops.__all__
from .. import core
from ..layer_helper import LayerHelper
__all__ = ['data']
def data(name,
shape,
append_batch_size=True,
dtype='float32',
lod_level=0,
type=core.VarDesc.VarType.LOD_TENSOR,
main_program=None,
startup_program=None,
stop_gradient=True):
"""
Data Layer.
Args:
name: The name/alias of the function
shape: Tuple declaring the shape.
append_batch_size: Whether or not to append the data as a batch.
dtype: The type of data : float32, float_16, int etc
type: The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
main_program: Name of the main program that calls this
startup_program: Name of the startup program
stop_gradient: A boolean that mentions whether gradient should flow.
This function takes in input and based on whether data has
to be returned back as a minibatch, it creates the global variable using
the helper functions. The global variables can be accessed by all the
following operations and layers in the graph.
All the input variables of this function are passed in as local variables
to the LayerHelper constructor.
"""
helper = LayerHelper('data', **locals())
shape = list(shape)
for i in xrange(len(shape)):
if shape[i] is None:
shape[i] = -1
append_batch_size = False
elif shape[i] < 0:
append_batch_size = False
if append_batch_size:
shape = [-1] + shape # append batch size as -1
return helper.create_global_variable(
name=name,
shape=shape,
dtype=dtype,
type=type,
stop_gradient=stop_gradient,
lod_level=lod_level)
此差异已折叠。
from ..registry import register_layer
__all__ = [
'mean', 'mul', 'dropout', 'reshape', 'sigmoid', 'scale', 'transpose',
'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div',
'elementwise_sub', 'elementwise_mul', 'clip', 'abs'
]
for _OP in set(__all__):
globals()[_OP] = register_layer(_OP)
from ..layer_helper import LayerHelper
__all__ = [
'create_tensor', 'cast', 'concat', 'sums', 'assign',
'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
helper = LayerHelper("create_tensor", **locals())
return helper.create_variable(name=helper.name, dtype=dtype)
def cast(x, dtype, main_program=None):
"""
This function takes in the input with input_dtype
and casts it to the output_dtype as the output.
"""
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='cast',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'in_dtype': x.dtype,
'out_dtype': out.dtype})
return out
def concat(input, axis, main_program=None, startup_program=None):
"""
This function concats the input along the axis mentioned
and returns that as the output.
"""
helper = LayerHelper('concat', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='concat',
inputs={'X': input},
outputs={'Out': [out]},
attrs={'axis': axis})
return out
def sums(input, out=None, main_program=None, startup_program=None):
"""
This function takes in the input and performs the sum operation on it
and returns that as the output.
"""
helper = LayerHelper('sum', **locals())
if out is None:
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
return out
def assign(input, output, main_program=None, startup_program=None):
helper = LayerHelper('assign', **locals())
helper.append_op(
type='scale',
inputs={'X': [input]},
outputs={'Out': [output]},
attrs={'scale': 1.0})
return output
def fill_constant(shape,
dtype,
value,
out=None,
main_program=None,
startup_program=None):
"""
This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.
"""
helper = LayerHelper("fill_constant", **locals())
if out is None:
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant',
inputs={},
outputs={'Out': [out]},
attrs={'shape': shape,
'dtype': out.dtype,
'value': float(value)})
out.stop_gradient = True
return out
def fill_constant_batch_size_like(input,
shape,
dtype,
value,
input_dim_idx=0,
output_dim_idx=0,
main_program=None,
startup_program=None):
helper = LayerHelper("fill_constant_batch_size_like", **locals())
out = helper.create_tmp_variable(dtype=dtype)
helper.append_op(
type='fill_constant_batch_size_like',
inputs={'Input': input},
outputs={'Out': [out]},
attrs={
'shape': shape,
'dtype': out.dtype,
'value': float(value),
'input_dim_idx': input_dim_idx,
'output_dim_idx': output_dim_idx
})
out.stop_gradient = True
return out
def ones(shape, dtype, main_program=None):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 1.0.
"""
return fill_constant(value=1.0, **locals())
def zeros(shape, dtype, main_program=None):
"""
This function performs the same function as fill_constant() declared above
with the constant value being 0.0.
"""
return fill_constant(value=0.0, **locals())
......@@ -36,6 +36,8 @@ class ParamAttr(object):
def to_attr(arg):
if arg is None:
return ParamAttr()
elif isinstance(arg, list) or isinstance(arg, tuple):
return [ParamAttr.to_attr(a) for a in arg]
elif isinstance(arg, ParamAttr):
return arg
elif isinstance(arg, str) or isinstance(arg, unicode):
......
from __future__ import print_function
import numpy as np
import sys
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import sys
def resnet_cifar10(input, depth=32):
......
......@@ -150,7 +150,7 @@ def main():
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
precision, recall, f1_score = fluid.layers.chunk_eval(
chunk_evaluator = fluid.evaluator.ChunkEvaluator(
input=crf_decode,
label=target,
chunk_scheme="IOB",
......@@ -176,20 +176,21 @@ def main():
batch_id = 0
for pass_id in xrange(PASS_NUM):
chunk_evaluator.reset(exe)
for data in train_data():
outs = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost, precision, recall, f1_score])
avg_cost_val = np.array(outs[0])
precision_val = np.array(outs[1])
recall_val = np.array(outs[2])
f1_score_val = np.array(outs[3])
cost, precision, recall, f1_score = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + chunk_evaluator.metrics)
pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(
exe)
if batch_id % 10 == 0:
print("avg_cost=" + str(avg_cost_val))
print("precision_val=" + str(precision_val))
print("recall_val:" + str(recall_val))
print("f1_score_val:" + str(f1_score_val))
print("avg_cost:" + str(cost) + " precision:" + str(
precision) + " recall:" + str(recall) + " f1_score:" + str(
f1_score) + " pass_precision:" + str(
pass_precision) + " pass_recall:" + str(pass_recall)
+ " pass_f1_score:" + str(pass_f1_score))
# exit early for CI
exit(0)
......
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
from paddle.v2.fluid.layer_helper import LayerHelper
def lstm(x,
c_pre_init,
hidden_dim,
forget_bias=None,
main_program=None,
startup_program=None):
"""
This function helps create an operator for the LSTM (Long Short Term
Memory) cell that can be used inside an RNN.
"""
helper = LayerHelper('lstm_unit', **locals())
rnn = fluid.layers.StaticRNN()
with rnn.step():
c_pre = rnn.memory(init=c_pre_init)
x_t = rnn.step_input(x)
before_fc = fluid.layers.concat(
input=[x_t, c_pre],
axis=1,
main_program=main_program,
startup_program=startup_program)
after_fc = fluid.layers.fc(input=before_fc,
size=hidden_dim * 4,
main_program=main_program,
startup_program=startup_program)
dtype = x.dtype
c = helper.create_tmp_variable(dtype)
h = helper.create_tmp_variable(dtype)
helper.append_op(
type='lstm_unit',
inputs={"X": after_fc,
"C_prev": c_pre},
outputs={"C": c,
"H": h},
attrs={"forget_bias": forget_bias})
rnn.update_memory(c_pre, c)
rnn.output(h)
return rnn()
def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
......@@ -23,8 +68,7 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
c_pre_init = fluid.layers.fill_constant(
dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0)
c_pre_init.stop_gradient = False
layer_1_out = fluid.layers.lstm(
emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2])
prediction = fluid.layers.fc(input=layer_1_out,
......
......@@ -147,7 +147,13 @@ class TestChunkEvalOp(OpTest):
'Recall': np.asarray(
[recall], dtype='float32'),
'F1-Score': np.asarray(
[f1], dtype='float32')
[f1], dtype='float32'),
'NumInferChunks': np.asarray(
[self.num_infer_chunks], dtype='int64'),
'NumLabelChunks': np.asarray(
[self.num_label_chunks], dtype='int64'),
'NumCorrectChunks': np.asarray(
[self.num_correct_chunks], dtype='int64')
}
def setUp(self):
......
......@@ -29,7 +29,10 @@ class TestBook(unittest.TestCase):
label = layers.data(name='label', shape=[1], dtype='int32')
hidden1 = layers.fc(input=images, size=128, act='relu')
hidden2 = layers.fc(input=hidden1, size=64, act='relu')
predict = layers.fc(input=hidden2, size=10, act='softmax')
predict = layers.fc(input=[hidden2, hidden1],
size=10,
act='softmax',
param_attr=["sftmax.w1", "sftmax.w2"])
cost = layers.cross_entropy(input=predict, label=label)
avg_cost = layers.mean(x=cost)
self.assertIsNotNone(avg_cost)
......
......@@ -85,5 +85,19 @@ class Test1DReduce(OpTest):
self.check_grad(['X'], 'Out')
class TestReduceAll(OpTest):
def setUp(self):
self.op_type = "reduce_sum"
self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")}
self.attrs = {'reduce_all': True}
self.outputs = {'Out': self.inputs['X'].sum()}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
unittest.main()
......@@ -17,5 +17,19 @@ class TestReshapeOp(OpTest):
self.check_grad(["X"], "Out")
class TestReshapeOpDimInfer(OpTest):
def setUp(self):
self.op_type = "reshape"
self.inputs = {'X': np.random.random((10, 20)).astype("float32")}
self.attrs = {'shape': [4, -1, 5]}
self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == '__main__':
unittest.main()
......@@ -383,19 +383,22 @@ class Parameters(object):
params.deserialize(param_name, f)
return params
def init_from_tar(self, f):
def init_from_tar(self, f, exclude_params=[]):
"""
Different from `from_tar`, this interface can be used to
init partial network parameters from another saved model.
:param f: the initialized model file.
:type f: tar file
:param exclude_params: the names of parameters that should
not be initialized from the model file.
:type exclude_params: list of strings
:return: Nothing.
"""
tar_param = Parameters.from_tar(f)
for pname in tar_param.names():
if pname in self.names():
if pname in self.names() and pname not in exclude_params:
self.set(pname, tar_param.get(pname))
......
......@@ -390,8 +390,6 @@ def pipe_reader(left_cmd,
if not callable(parser):
raise TypeError("parser must be a callable object")
process = subprocess.Popen(
left_cmd.split(" "), bufsize=bufsize, stdout=subprocess.PIPE)
# TODO(typhoonzero): add a thread to read stderr
# Always init a decompress object is better than
......@@ -400,6 +398,8 @@ def pipe_reader(left_cmd,
32 + zlib.MAX_WBITS) # offset 32 to skip the header
def reader():
process = subprocess.Popen(
left_cmd.split(" "), bufsize=bufsize, stdout=subprocess.PIPE)
remained = ""
while True:
buff = process.stdout.read(bufsize)
......
......@@ -145,5 +145,35 @@ class TestXmap(unittest.TestCase):
self.assertEqual(e, mapper(idx))
class TestPipeReader(unittest.TestCase):
def test_pipe_reader(self):
def simple_parser(lines):
return lines
import tempfile
records = [str(i) for i in xrange(5)]
temp = tempfile.NamedTemporaryFile()
try:
with open(temp.name, 'w') as f:
for r in records:
f.write('%s\n' % r)
cmd = "cat %s" % temp.name
reader = paddle.v2.reader.pipe_reader(
cmd, simple_parser, bufsize=128)
for i in xrange(4):
result = []
for r in reader():
result.append(r)
for idx, e in enumerate(records):
print e, result[idx]
self.assertEqual(e, result[idx])
finally:
# delete the temporary file
temp.close()
if __name__ == '__main__':
unittest.main()
......@@ -68,6 +68,7 @@ packages=['paddle',
'paddle.v2.plot',
'paddle.v2.fluid',
'paddle.v2.fluid.proto',
'paddle.v2.fluid.layers',
'py_paddle']
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册