elementwise_functor.h 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/common/complex.h"
18 19 20
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/hostdevice.h"
21

22
namespace phi {
23 24 25
namespace funcs {

// Define the binary functors used in elementwise ops.
26
// Note: InverseXxxFunctor is needed when calling ElementwiseComputeEx on CPU.
27 28 29 30

// Add
template <typename T>
struct AddFunctor {
31
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a + b; }
32 33 34
};
template <typename T>
struct InverseAddFunctor {
35
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b + a; }
36 37 38 39 40
};

// Subtract
template <typename T>
struct SubtractFunctor {
41
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a - b; }
42 43 44
};
template <typename T>
struct InverseSubtractFunctor {
45
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b - a; }
46 47 48 49 50
};

// Multiply
template <typename T>
struct MultiplyFunctor {
51
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a * b; }
52
};
53 54 55 56 57 58
template <>
struct MultiplyFunctor<bool> {
  inline HOSTDEVICE bool operator()(const bool a, const bool b) const {
    return a && b;
  }
};
59 60
template <typename T>
struct InverseMultiplyFunctor {
61
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b * a; }
62
};
63 64 65 66 67 68
template <>
struct InverseMultiplyFunctor<bool> {
  inline HOSTDEVICE bool operator()(const bool a, const bool b) const {
    return b && a;
  }
};
69 70 71 72 73 74 75 76

// Divide
#define DIV_ERROR_INFO                                             \
  "InvalidArgumentError: Integer division by zero encountered in " \
  "(floor) divide. Please check the input value."

template <typename T, typename Enable = void>
struct DivideFunctor {
77
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a / b; }
78 79 80 81 82 83
};

template <typename T>
struct DivideFunctor<
    T,
    typename std::enable_if<std::is_integral<T>::value>::type> {
84
  inline HOSTDEVICE T operator()(const T a, const T b) const {
85 86 87 88 89 90 91 92
    // For int32/int64, need to check whether the divison is zero.
    PADDLE_ENFORCE(b != 0, DIV_ERROR_INFO);
    return a / b;
  }
};

template <typename T, typename Enable = void>
struct InverseDivideFunctor {
93
  inline HOSTDEVICE T operator()(const T a, const T b) const { return b / a; }
94 95
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
template <typename T>
using ComplexType = phi::dtype::complex<T>;

template <typename InT, typename OutT>
struct DivGradXYFunctor {
  inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT a,
                                                   const InT b,
                                                   const InT c) {
    // dx = dout / y
    // dy = - dout * out / y
    phi::Array<OutT, 2> outs;
    outs[0] = a / c;
    outs[1] = -a * b / c;
    return outs;
  }
};

template <typename InT, typename OutT>
struct DivGradXYFunctor<ComplexType<InT>, ComplexType<OutT>> {
  inline HOSTDEVICE phi::Array<ComplexType<OutT>, 2> operator()(
      const ComplexType<InT> a,
      const ComplexType<InT> b,
      const ComplexType<InT> c) {
    phi::Array<ComplexType<OutT>, 2> outs;
    ComplexType<InT> c_conj(c.real, -c.imag);
    ComplexType<InT> out_div_c_conj((b / c).real, -(b / c).imag);
    outs[0] = a / c_conj;
    outs[1] = -a * out_div_c_conj;
    return outs;
  }
};

// Float div grad
template <typename T>
struct DivGradXFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a / b; }
};

// ComplexType div grad
template <typename T>
struct DivGradXFunctor<ComplexType<T>> {
  inline HOSTDEVICE ComplexType<T> operator()(const ComplexType<T> a,
                                              const ComplexType<T> b) const {
    ComplexType<T> b_conj(b.real, -b.imag);
    return a / b_conj;
  }
};

// Float mul and div
template <typename T>
struct DivGradYFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b, const T c) const {
    return -a * b / c;
  }
};

// ComplexType mul and div
template <typename T>
struct DivGradYFunctor<ComplexType<T>> {
  inline HOSTDEVICE ComplexType<T> operator()(const ComplexType<T> a,
                                              const ComplexType<T> b,
                                              const ComplexType<T> c) const {
    ComplexType<T> out_div_c_conj((b / c).real, -(b / c).imag);
    return -a * out_div_c_conj;
  }
};
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
// Fmin
template <typename T>
struct FMinFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return std::fmin(a, b);
  }
};

template <>
struct FMinFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmin(float_a, float_b);
    return static_cast<dtype::float16>(result);
  }
};

template <>
struct FMinFunctor<int> {
  inline HOSTDEVICE int operator()(const int a, const int b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmin(float_a, float_b);
    return std::lrint(result);
  }
};

template <>
struct FMinFunctor<int64_t> {
  inline HOSTDEVICE int64_t operator()(const int64_t a, const int64_t b) const {
    double double_a = static_cast<double>(a);
    double double_b = static_cast<double>(b);
    auto result = std::fmin(double_a, double_b);
    return std::llrint(result);
  }
};

// Fmax
template <typename T>
struct FMaxFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return std::fmax(a, b);
  }
};

template <>
struct FMaxFunctor<dtype::float16> {
  inline HOSTDEVICE dtype::float16 operator()(const dtype::float16 a,
                                              const dtype::float16 b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmax(float_a, float_b);
    return static_cast<dtype::float16>(result);
  }
};

template <>
struct FMaxFunctor<int> {
  inline HOSTDEVICE int operator()(const int a, const int b) const {
    float float_a = static_cast<float>(a);
    float float_b = static_cast<float>(b);
    auto result = std::fmax(float_a, float_b);
    return std::lrint(result);
  }
};

template <>
struct FMaxFunctor<int64_t> {
  inline HOSTDEVICE int64_t operator()(const int64_t a, const int64_t b) const {
    double double_a = static_cast<double>(a);
    double double_b = static_cast<double>(b);
    auto result = std::fmax(double_a, double_b);
    return std::llrint(result);
  }
};

template <typename T>
struct FMaxGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x >= y) || isnan(y));
  }
};

template <>
struct FMaxGradDx<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>((x >= y) || dtype::isnan(y));
  }
};

template <>
struct FMaxGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x >= y));
  }
};

template <>
struct FMaxGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x >= y));
  }
};

template <typename T>
struct FMaxGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x >= y) || isnan(y)));
  }
};

template <>
struct FMaxGradDy<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>(!((x >= y) || dtype::isnan(y)));
  }
};

template <>
struct FMaxGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x >= y)));
  }
};

template <>
struct FMaxGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x >= y)));
  }
};

template <typename T>
struct FMinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>((x <= y) || isnan(y));
  }
};

template <>
struct FMinGradDx<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>((x <= y) || dtype::isnan(y));
  }
};

template <>
struct FMinGradDx<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>((x <= y));
  }
};

template <>
struct FMinGradDx<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>((x <= y));
  }
};

template <typename T>
struct FMinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * static_cast<T>(!((x <= y) || isnan(y)));
  }
};

template <>
struct FMinGradDy<dtype::float16> {
  HOSTDEVICE dtype::float16 operator()(dtype::float16 x,
                                       dtype::float16 y,
                                       dtype::float16 out,
                                       dtype::float16 dout) const {
    return dout * static_cast<dtype::float16>(!((x <= y) || dtype::isnan(y)));
  }
};

template <>
struct FMinGradDy<int> {
  HOSTDEVICE int operator()(int x, int y, int out, int dout) const {
    return dout * static_cast<int>(!((x <= y)));
  }
};

template <>
struct FMinGradDy<int64_t> {
  HOSTDEVICE int64_t operator()(int64_t x,
                                int64_t y,
                                int64_t out,
                                int64_t dout) const {
    return dout * static_cast<int64_t>(!((x <= y)));
  }
};
375

Y
YuanRisheng 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
template <typename T>
struct MultiplyGradFunctor {
  inline HOSTDEVICE T operator()(const T a, const T b) const { return a * b; }
};
template <typename T>
struct MultiplyGradFunctor<ComplexType<T>> {
  inline HOSTDEVICE ComplexType<T> operator()(const ComplexType<T> a,
                                              const ComplexType<T> b) const {
    ComplexType<T> b_conj(b.real, -b.imag);
    return a * b_conj;
  }
};

template <typename InT, typename OutT>
struct MultiplyGradXYFunctor {
  inline HOSTDEVICE phi::Array<OutT, 2> operator()(const InT a,
                                                   const InT b,
                                                   const InT c) {
    phi::Array<OutT, 2> outs;
    // dx = dout * y
    outs[0] = a * b;
    // dy = dout * x
    outs[1] = a * c;
    return outs;
  }
};

template <typename InT, typename OutT>
struct MultiplyGradXYFunctor<ComplexType<InT>, ComplexType<OutT>> {
  inline HOSTDEVICE phi::Array<ComplexType<OutT>, 2> operator()(
      const ComplexType<InT> a,
      const ComplexType<InT> b,
      const ComplexType<InT> c) {
    phi::Array<ComplexType<OutT>, 2> outs;
    // dx = dout * y
    ComplexType<InT> b_conj(b.real, -b.imag);
    outs[0] = a * b_conj;
    // dy = dout * x
    ComplexType<InT> c_conj(c.real, -c.imag);
    outs[1] = a * c_conj;
    return outs;
  }
};

420
}  // namespace funcs
421
}  // namespace phi