subgraph_detector.cc 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/inference/analysis/ir_passes/subgraph_detector.h"
#include <string>
17 18
#include <unordered_map>
#include <unordered_set>
19 20 21 22
#include <utility>
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
23

24 25
DECLARE_bool(use_ngraph);

26 27 28 29
namespace paddle {
namespace inference {
namespace analysis {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
using framework::ir::Node;

std::pair<std::vector<Node *>, std::vector<Node *>>
ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) {  // NOLINT
  std::unordered_set<Node *> nodes(graph.begin(), graph.end());
  std::unordered_set<Node *> inputs;
  std::unordered_set<Node *> outputs;
  // Input a Value, check whether its inlink is in the subgraph.
  auto inlink_in_subgraph = [&](Node *n) {
    for (auto *in : n->inputs) {
      if (nodes.count(in)) return true;
    }
    return false;
  };

  for (auto &node : graph) {
    for (auto *in : node->inputs) {
      // The Value that is written by nodes inside a sub-graph shouldn't be the
      // input of the sub-graph.
      if (!nodes.count(in) && in->IsVar() && !inlink_in_subgraph(in)) {
        inputs.insert(in);
      }
    }
    for (auto *out : node->outputs) {
      if (!nodes.count(out) && out->IsVar()) {
        outputs.insert(out);
      }
    }
  }
  return std::make_pair(std::vector<Node *>(inputs.begin(), inputs.end()),
                        std::vector<Node *>(outputs.begin(), outputs.end()));
}

// Filter the Intermediate results of the subgraph node.
void FilterRedundantOutputOfSubGraph(Graph *graph) {
  std::vector<Node *> op_nodes;
  for (auto &node : TopologicalSort(*graph)) {
    if (node.IsVar() || Agent(&node).deleted()) {
      continue;
    }
    op_nodes.push_back(&node);
  }
  size_t op_num = op_nodes.size();
  for (size_t i = 0; i < op_num; i++) {
    if (op_nodes[i]->IsOp()) continue;
    std::unordered_set<std::string> follow_up_input_names;
    for (size_t j = i + 1; j < op_num; j++) {
      for (auto *in : op_nodes[j]->inputs) {
        follow_up_input_names.insert(in->Name());
      }
    }
    std::vector<Node *> filtered_subgraph_outlinks;
    for (auto *out : op_nodes[i]->outputs) {
      if (follow_up_input_names.count(out->Name())) {
        filtered_subgraph_outlinks.push_back(out);
      } else {
        Agent(out).set_deleted(true);
      }
    }
    // The filtered_subgraph_outlinks may be empty.
    op_nodes[i]->outputs = filtered_subgraph_outlinks;
  }
}
93

94
std::vector<std::vector<Node *>> SubgraphDetector::operator()() {
95 96 97 98 99
  MarkNodesInsideSubGraph();
  return ExtractSubGraphs();
}

// Mark the output variables inside a subgraph with the func.
100 101 102
inline void MarkOutLinksInSubGraph(const Node *func) {
  for (auto *var : func->outputs) {
    Agent(var).set_marked(true);
103 104 105
  }
}

106 107
void SubgraphDetector::MarkNodesInsideSubGraph() {
  for (auto &node : framework::ir::GraphTraits::DFS(*graph_)) {
108
    if (node_inside_subgraph_teller_(&node)) {
109 110
      Agent(&node).set_marked(true);
      if (node.IsOp()) {
111 112 113 114 115 116
        // If a function is inside the sub-graph, mark all the output variables
        // to be inside too, so that two marked functions will be inside a same
        // sub-graph, lets take a example:  A_function->var->B_function, if
        // A_function is marked, var should also be marked, so that B_function
        // will be in the same sub-graph with A_function if B_function is
        // marked.
117
        MarkOutLinksInSubGraph(&node);
118 119 120 121 122 123 124 125 126 127 128 129 130
      }
    }
  }
}

// Use the Union Find(UF) algorithm to find fully connected sub-graphs, if node
// a's output is node b, that is a and b is in the same sub-graph. The UF
// algorithm will group them to the same cluster.
using node_map_t = std::unordered_map<int, Node *>;
// Find the ancestor id of a node.
int UnionFindGetAncestor(const node_map_t &node_map, size_t id) {
  int tmp = id;
  do {
131 132
    tmp = Agent(node_map.at(tmp)).union_find_parent();
  } while (Agent(node_map.at(tmp)).union_find_parent() != tmp);
133 134 135 136 137 138 139
  return tmp;
}
// Make this two node share the same ancestor.
// TODO(Superjom) bad performance, make a balanced tree latter.
void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) {
  int a_ancestor = UnionFindGetAncestor(node_map, a);
  int b_ancestor = UnionFindGetAncestor(node_map, b);
140 141 142
  Agent(node_map.at(b_ancestor)).set_union_find_parent(a_ancestor);
  Agent(node_map.at(a)).set_union_find_parent(a_ancestor);
  Agent(node_map.at(b)).set_union_find_parent(a_ancestor);
143 144
}

N
nhzlx 已提交
145 146 147 148 149 150 151 152 153 154 155
// This is a simple representation of a graph.
// The BriefNode hold the pointer of the Node.
// This is to avoid changing the original graph
// in the process of trt graph analysis.
struct BriefNode {
  explicit BriefNode(Node *n) { node = n; }
  Node *node;
  std::vector<BriefNode *> inlinks;
  std::vector<BriefNode *> outlinks;
};

156 157 158 159 160 161 162 163
// Union two adjacent BriefNode.
// Suppose we have two adjacent nodes src and dst.
// We will perform the following operations:
// 1. add all inputs(except src) of dst to src inlinks.
// 2. add all outputs of dst to src outlinks.
// 3. change all the dst's inputs and outputs
// corresponding inlinks and outlinks to src node.
// 4. delete all dst's inlinks and outlinks.
N
nhzlx 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
void UnionContractedNodes(const std::unordered_map<int, BriefNode *> &node_map,
                          int src_id, int dst_id) {
  // merge the two adjacent nodes into one node.
  BriefNode *src_node = node_map.at(src_id);
  BriefNode *dst_node = node_map.at(dst_id);

  std::unordered_set<BriefNode *> inputs(src_node->inlinks.begin(),
                                         src_node->inlinks.end());
  std::unordered_set<BriefNode *> outputs;

  for (auto *n : src_node->outlinks) {
    if (n != dst_node) outputs.insert(n);
  }

  // Add the inlinks and outlinks of dst node to src node.
  std::vector<BriefNode *> dst_in_nodes = dst_node->inlinks;
  for (BriefNode *node : dst_in_nodes) {
    if (node != src_node) {
      inputs.insert(node);
    }
  }

  std::vector<BriefNode *> dst_out_nodes = dst_node->outlinks;
  for (BriefNode *node : dst_out_nodes) {
    outputs.insert(node);
  }

191 192 193 194 195 196 197
// update the dst and src node's inlinks and outlinks.
#ifdef __clang__
  src_node->inlinks = std::vector<BriefNode *>(inputs.begin(), inputs.end());
  src_node->outlinks = std::vector<BriefNode *>(outputs.begin(), outputs.end());
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
#else
N
nhzlx 已提交
198 199 200 201 202 203
  src_node->inlinks =
      std::move(std::vector<BriefNode *>(inputs.begin(), inputs.end()));
  src_node->outlinks =
      std::move(std::vector<BriefNode *>(outputs.begin(), outputs.end()));
  dst_node->inlinks.clear();
  dst_node->outlinks.clear();
204
#endif
N
nhzlx 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

  auto inlink_or_outlink_cleaner = [&](std::vector<BriefNode *> &nodes) {
    for (auto *&n : nodes) {
      if (n == src_node || n == dst_node) {
        n = src_node;
      }
    }
  };
  // Change all the dst inputs and outputs corresponding inlink and
  // outlink to the src node.
  for (auto *node : src_node->inlinks) {
    inlink_or_outlink_cleaner(node->outlinks);
  }

  for (auto *node : src_node->outlinks) {
    inlink_or_outlink_cleaner(node->inlinks);
  }
}

N
nhzlx 已提交
224
// FlexibleDFS
N
nhzlx 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
// If reverse is true, do reverse dfs.
// If enter func is not nullptr, calls enter(node) before visiting any children
// of node.
// If leave func not nullptr, calls leave(node) after visiting all parents of
// node.
void FlexibleDFS(const std::vector<BriefNode *> &source, bool reverse,
                 const std::function<bool(const BriefNode *)> &enter,
                 const std::function<bool(const BriefNode *)> &leave) {
  typedef struct {
    const BriefNode *node;
    bool leave;
  } FNode;

  std::vector<FNode> stack;
  for (auto &node : source) {
    stack.push_back(FNode{node, false});
  }
  std::unordered_set<const BriefNode *> visited;
  while (!stack.empty()) {
    auto fnode = stack.back();
    stack.pop_back();

    if (fnode.leave) {
      if (leave && !leave(fnode.node)) return;
    }
    if (visited.count(fnode.node)) continue;
    visited.insert(fnode.node);

    if (enter && !enter(fnode.node)) return;

    if (leave) stack.push_back(FNode{fnode.node, true});
    const std::vector<BriefNode *> iter_nodes =
        reverse == true ? fnode.node->inlinks : fnode.node->outlinks;
    for (const BriefNode *node : iter_nodes) {
      if (!visited.count(node)) {
        stack.push_back(FNode{node, false});
      }
    }
  }
}

266
std::vector<std::vector<Node *>> SubgraphDetector::ExtractSubGraphs() {
N
nhzlx 已提交
267
  // Run the Extract algorithm to find all subgraphs.
268
  std::vector<Node *> marked_nodes;
N
nhzlx 已提交
269 270 271 272
  //  We use brief_node_map to represent the original graph in order to avoid
  //  changing the original graph.
  std::unordered_map<int, BriefNode *> brief_node_map;

273 274 275 276 277 278
  std::unordered_set<int32_t> valid_node_ids;
  for (auto *node : graph_->Nodes()) {
    valid_node_ids.insert(node->id());
  }

  for (auto &node : framework::ir::GraphTraits::TS(*graph_)) {
N
nhzlx 已提交
279
    brief_node_map[node.id()] = new BriefNode(&node);
280
    if (Agent(&node).marked()) {
281 282 283
      marked_nodes.push_back(&node);
    }
  }
N
nhzlx 已提交
284

285 286 287 288
  // extract sub-graphs in the marked node set, use Union Find algorithm.
  node_map_t node_map;  // id to ptr
  for (auto *n : marked_nodes) {
    // n's parent == n.id means it is the ancestor
289
    Agent(n).set_union_find_parent(n->id());
290 291
    node_map[n->id()] = n;
  }
N
nhzlx 已提交
292 293 294

  // create breif node map
  for (auto &itr : brief_node_map) {
295 296 297 298 299 300
    for (Node *node : itr.second->node->inputs) {
      if (!valid_node_ids.count(node->id())) {
        LOG(INFO) << "invalid node id " << node->id();
        continue;
      }
      itr.second->inlinks.push_back(brief_node_map.at(node->id()));
N
nhzlx 已提交
301 302
    }

303 304 305 306 307 308
    for (Node *node : itr.second->node->outputs) {
      if (!valid_node_ids.count(node->id())) {
        LOG(INFO) << "invalid node id " << node->id();
        continue;
      }
      itr.second->outlinks.push_back(brief_node_map.at(node->id()));
N
nhzlx 已提交
309 310 311 312 313 314
    }
  }

  for (auto &itr : brief_node_map) {
    BriefNode *brief_node = itr.second;

315 316
    if (!Agent(brief_node->node).marked()) {
      VLOG(4) << brief_node->node->id() << " node not a trt candidate.";
N
nhzlx 已提交
317 318 319 320 321 322
      continue;
    }

    //  Our algorithm must guarantee that:
    //  1. The graph is always directed acyclic graph(DAG).
    //  2. If there is a path in the subgraph from X to Y (X and Y are both
323 324
    //  nodes in the subgraph), then all paths from X to Y are in the
    //  subgraph.
N
nhzlx 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337
    //
    //  In order to achieve the above guarantee.
    //  For adjacent nodes src -> dst.
    //  1. Get all dst input nodes except src.
    //  2. Reverse DFS from those input nodes
    //  3. If there is a path from input nodes to src,
    //  then the src and dst nodes can not be fused into one node,
    //  otherwise it can be done.

    while (true) {
      std::unordered_set<BriefNode *> contract_nodes;
      for (auto *out : brief_node->outlinks) {
        // must be an trt candidate
338
        if (!Agent(out->node).marked()) continue;
N
nhzlx 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        // get all dst input nodes except src.
        std::vector<BriefNode *> source_nodes;
        for (auto *n : out->inlinks) {
          if (n != brief_node) {
            source_nodes.push_back(n);
          }
        }

        // Reverse DFS from the source_nodes.
        bool have_excess_path = false;
        FlexibleDFS(source_nodes, true, nullptr,
                    [&have_excess_path, brief_node](const BriefNode *n) {
                      if (n == brief_node) {
                        have_excess_path = true;
                        return false;
                      }
                      return true;
                    });
        if (have_excess_path) continue;
        contract_nodes.insert(out);
      }
      if (contract_nodes.empty()) break;

      for (auto dst_node : contract_nodes) {
        UnionFindCombine(node_map, brief_node->node->id(),
                         dst_node->node->id());
        UnionContractedNodes(brief_node_map, brief_node->node->id(),
                             dst_node->node->id());
367 368 369 370 371 372
      }
    }
  }

  std::unordered_map<int /*ancestor*/, std::vector<Node *>> clusters;
  for (auto *n : marked_nodes) {
373 374
    if (n->IsOp()) {
      clusters[UnionFindGetAncestor(node_map, Agent(n).union_find_parent())]
375 376 377 378 379 380 381 382 383 384 385 386
          .push_back(n);
    }
  }
  std::vector<std::vector<Node *>> result;
  std::for_each(clusters.begin(), clusters.end(),
                [&](const decltype(clusters)::value_type &it) {
                  result.push_back(it.second);
                });

  return result;
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
void SubGraphFuser::operator()() { ReplaceNodesWithSubGraphs(); }

void RemoveIntermediateOutputInSubgraph(const std::vector<Node *> &subgraph,
                                        Graph *graph,
                                        std::vector<Node *> *outputs) {
  std::unordered_set<Node *> subgraph_set(subgraph.begin(), subgraph.end());
  std::unordered_set<Node *> valid_output;

  for (auto *output : *outputs) {
    int num_used = 0;
    for (auto *node : output->outputs) {
      if (!subgraph_set.count(node)) ++num_used;
      if (num_used > 0) valid_output.insert(output);
    }
  }

403 404 405 406 407
  // In use for ngraph subgraph pass for parallel executor,
  // this will remove all nodes, bypass this and let ngraph
  // subgraph pass to process outputs
  if (FLAGS_use_ngraph && valid_output.size() == 0) return;

408 409 410 411 412 413 414 415 416 417 418 419
  outputs->assign(valid_output.begin(), valid_output.end());
}

void DetachDeletedNodes(framework::ir::Graph *graph) {
  std::unordered_set<const Node *> nodes;
  for (auto *node : graph->Nodes()) {
    if (Agent(node).deleted()) {
      node->inputs.clear();
      node->outputs.clear();
    }
  }
}
420

421 422
void SubGraphFuser::ReplaceNodesWithSubGraphs() {
  auto subgraphs = SubgraphDetector(graph_, node_inside_subgraph_teller_)();
423
  for (auto &subgraph : subgraphs) {
T
Tao Luo 已提交
424
    if (subgraph.size() <= (size_t)min_subgraph_size_) continue;
425
    std::unordered_set<Node *> subgraph_uniq(subgraph.begin(), subgraph.end());
426 427 428
    // replace this sub-graph with the first node. Two steps: 1. Create a Block
    // Node that contains this subgraph 2. Mark the nodes inside the sub-graph
    // as deleted. 3. Replace the deleted node with the new Block Node.
429
    framework::OpDesc empty_desc;
M
mozga-intel 已提交
430
    empty_desc.SetType(name_);
431 432
    auto *block_node = graph_->CreateOpNode(&empty_desc);
    Agent(block_node).set_subgraph({});
433
    auto io = ExtractInputAndOutputOfSubGraph(subgraph);
434 435 436 437
    block_node->inputs = std::move(io.first);
    block_node->outputs = std::move(io.second);

    RemoveIntermediateOutputInSubgraph(subgraph, graph_, &block_node->outputs);
N
nhzlx 已提交
438

439 440 441
    for (auto *node : subgraph) {
      // TODO(Superjomn) need a unified mechanism to treat deleted node in each
      // pass.
442 443
      Agent(node).set_deleted(true);
      Agent(block_node).subgraph()->push_back(node);
444 445
    }

446 447 448 449 450 451 452 453 454 455 456
    // Change all the sub-graph's inputs and outputs corresponding inlink and
    // outlink to this sub-graph node.
    auto inlink_or_outlink_cleaner = [&](std::vector<Node *> &nodes) {
      for (auto *&n : nodes) {
        if (subgraph_uniq.count(n)) {
          n = block_node;
        }
      }
      std::unordered_set<Node *> uniq(nodes.begin(), nodes.end());
      nodes.assign(uniq.begin(), uniq.end());
    };
457 458
    for (auto *i : block_node->inputs) {
      inlink_or_outlink_cleaner(i->outputs);
459
    }
460 461
    for (auto *&o : block_node->outputs) {
      inlink_or_outlink_cleaner(o->inputs);
462 463
    }
  }
464
  // DetachDeletedNodes(graph_);
N
nhzlx 已提交
465
  FilterRedundantOutputOfSubGraph(graph_);
466 467
}

468 469 470 471
inline bool CheckNodeIndegreeEquals(const Node &node, size_t n) {
  return node.inputs.size() == n;
}

472 473 474
}  // namespace analysis
}  // namespace inference
}  // namespace paddle