interpretercore_util.cc 17.9 KB
Newer Older
W
wanghuancoder 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/new_executor/interpretercore_util.h"
#include "paddle/fluid/framework/executor_gc_helper.h"

namespace paddle {
namespace framework {
namespace interpretercore {

21 22 23 24 25 26 27
AtomicVectorSizeT AsyncWorkQueue::PrepareAtomicDeps(
    const std::vector<size_t>& dependecy_count) {
  AtomicVectorSizeT working_dependecy_count(dependecy_count.size());
  for (size_t i = 0; i < dependecy_count.size(); ++i) {
    working_dependecy_count[i] =
        std::make_unique<std::atomic<size_t>>(dependecy_count[i]);
  }
T
Tomasz Socha 已提交
28
  return working_dependecy_count;
29 30 31 32 33 34 35 36 37 38
}

AtomicVectorSizeT AsyncWorkQueue::PrepareAtomicVarRef(
    const std::vector<VariableMetaInfo>& vec_meta_info) {
  AtomicVectorSizeT working_var_ref(vec_meta_info.size());

  for (size_t i = 0; i < vec_meta_info.size(); ++i) {
    working_var_ref[i] =
        std::make_unique<std::atomic<size_t>>(vec_meta_info[i].var_ref_count_);
  }
T
Tomasz Socha 已提交
39
  return working_var_ref;
40 41
}

W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
bool var_can_be_deleted(const std::string& name, const BlockDesc& block) {
  auto* var_desc = block.FindVar(name);
  if (var_desc == nullptr || var_desc->Persistable()) {
    return false;
  }

  auto type = var_desc->Proto()->type().type();

  return type == proto::VarType::LOD_TENSOR ||
         type == proto::VarType::SELECTED_ROWS ||
         type == proto::VarType::LOD_TENSOR_ARRAY;
}

std::unordered_map<const paddle::framework::OperatorBase*,
                   std::vector<std::string>>
get_unused_vars(const BlockDesc& block, const std::vector<OperatorBase*>& ops) {
  std::unordered_map<std::string, size_t> var_op_idx_map;

  for (size_t i = 0; i < ops.size(); ++i) {
    auto* op = ops[i];

    OpInOutInfo info;
    for (auto& name_pair : op->Inputs()) {
      for (auto& name : name_pair.second) {
        if (!var_can_be_deleted(name, block)) {
          continue;
        }

        // var can be gc-ed
        if (!info.IsBuilt()) {
          info.Build(op);
        }

        if (info.IsInArgBufferNeeded(name)) {
          // Update the last living op of variable to current op
          var_op_idx_map[name] = i;
        } else {
          VLOG(10) << "Skip reference count computing of variable "
                   << name_pair.first << "(" << name << ") in Operator "
                   << op->Type();
        }
      }
    }

    for (auto& name_pair : op->Outputs()) {
      for (auto& name : name_pair.second) {
        if (var_can_be_deleted(name, block)) {
          // Update the last living op of variable to current op
          var_op_idx_map[name] = i;
        }
      }
    }
  }

  std::unordered_map<const OperatorBase*, std::vector<std::string>> result;
  for (auto& name_op_idx_pair : var_op_idx_map) {
    auto& name = name_op_idx_pair.first;
    size_t op_idx = name_op_idx_pair.second;
    result[ops[op_idx]].emplace_back(name);
  }
  return result;
}

std::string get_memcpy_type(const platform::Place& src_place,
                            const platform::Place& dst_place) {
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place), false,
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (platform::is_gpu_place(dst_place)) {
    return kMemcpyH2D;
  } else if (platform::is_gpu_place(src_place)) {
    return kMemcpyD2H;
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }
}

void build_variable_scope(const framework::ProgramDesc& pdesc,
                          VariableScope* var_scope) {
  auto& global_block = pdesc.Block(0);

  for (auto& var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_scope->name2id.find(var->Name()) == var_scope->name2id.end()) {
      var_scope->name2id[var->Name()] = var_scope->var_list.size();
      auto v = new Variable();
      InitializeVariable(v, var->GetType());
      var_scope->var_list.push_back(v);

      VariableMetaInfo info;
      info.var_ref_count_ = 0;
      info.vardesc_ = var;
      var_scope->vec_meta_info_.push_back(info);
141 142 143 144 145 146 147
    } else {
      auto var_id = var_scope->name2id[var->Name()];
      if (nullptr == var_scope->vec_meta_info_[var_id].vardesc_) {
        VLOG(3) << "update var:" << var->Name() << " desc from nullptr into "
                << var;
        var_scope->vec_meta_info_[var_id].vardesc_ = var;
      }
W
wanghuancoder 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    }
  }
}

void build_op_func_list(const platform::Place& place,
                        const framework::ProgramDesc& pdesc,
                        std::vector<OperatorBase*>* op_list,
                        std::vector<OpFuncNode>* vec_func_list,
                        VariableScope* var_scope) {
  auto& global_block = pdesc.Block(0);
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();

  std::vector<OperatorBase*> ops;
  for (auto& op : global_block.AllOps()) {
    VLOG(3) << "Build OpFuncNode from : " << op->Type();

    auto& info = OpInfoMap::Instance().Get(op->Type());

    const VariableNameMap& inputs_names = op->Inputs();
    const VariableNameMap& outputs_names = op->Outputs();
    AttributeMap op_attr_map = op->GetAttrMap();

    if (info.Checker() != nullptr) {
      info.Checker()->Check(&op_attr_map);
    }
    // step 1. Prepare VariableValueMap of input/output
    auto op_base =
        info.Creator()(op->Type(), inputs_names, outputs_names, op_attr_map);
    ops.push_back(op_base);
  }

  auto unused_var_map = get_unused_vars(global_block, ops);

  size_t ops_index = 0;
  for (auto& op : global_block.AllOps()) {
    VLOG(3) << op->Type();
    // << op->Type() << endl;

    auto op_base = ops[ops_index++];

    auto inputs_names = op->Inputs();
    auto outputs_names = op->Outputs();

    VariableValueMap ins_map;
    std::map<std::string, std::vector<int>> ins_name2id;
    for (auto& var_name_item : inputs_names) {
      std::vector<Variable*> input_vars;
      std::vector<int> vec_ids;
      input_vars.reserve(var_name_item.second.size());
      for (auto& var_name : var_name_item.second) {
        auto it = var_scope->name2id.find(var_name);
        assert(it != var_scope->name2id.end());
        input_vars.push_back(var_scope->var_list[it->second]);
        vec_ids.push_back(it->second);
      }
      ins_map[var_name_item.first] = input_vars;
      ins_name2id[var_name_item.first] = vec_ids;
    }

    VariableValueMap outs_map;
    std::map<std::string, std::vector<int>> outs_name2id;
    for (auto& var_name_item : outputs_names) {
      std::vector<Variable*> output_vars;
      std::vector<int> vec_ids;
      output_vars.reserve(var_name_item.second.size());
      for (auto& var_name : var_name_item.second) {
        auto it = var_scope->name2id.find(var_name);
        assert(it != var_scope->name2id.end());
        output_vars.push_back(var_scope->var_list[it->second]);
        vec_ids.push_back(it->second);
      }
      outs_map[var_name_item.first] = output_vars;
      outs_name2id[var_name_item.first] = vec_ids;
    }

    OpFuncNode op_func_node;
    op_func_node.input_index = ins_name2id;
    op_func_node.output_index = outs_name2id;
    // step 2: construct RuntimeContext and analysis KernelType
    RuntimeContext runtime_context({}, {});
    runtime_context.inputs.swap(ins_map);
    runtime_context.outputs.swap(outs_map);
230
    InterpretercoreInferShapeContext infer_shape_ctx(*op_base, runtime_context);
W
wanghuancoder 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    static_cast<const framework::OperatorWithKernel*>(op_base)->InferShape(
        &infer_shape_ctx);
    auto kernels_iter = all_op_kernels.find(op->Type());
    PADDLE_ENFORCE_NE(
        kernels_iter, all_op_kernels.end(),
        platform::errors::Unavailable(
            "There are no kernels which are registered in the %s operator.",
            op->Type()));

    OpKernelMap& kernels = kernels_iter->second;

    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);
    Scope scope;
    auto expected_kernel_key =
        dynamic_cast<const framework::OperatorWithKernel*>(op_base)
            ->GetExpectedKernelType(
                ExecutionContext(*op_base, scope, *dev_ctx, runtime_context));

    // consider device_guard context
    bool need_change_place =
        (op_base->HasAttr("op_device") &&
         (op_base->Attr<std::string>("op_device").length() > 0));
    if (need_change_place) {
      auto& op_device = op_base->Attr<std::string>("op_device");
      if (op_device == "cpu" || platform::is_cpu_place(place)) {
        VLOG(3) << "Switch into CPUPlace by device_guard.";
        expected_kernel_key.place_ = platform::CPUPlace();
      } else if (op_device.find("gpu") != std::string::npos &&
                 platform::is_gpu_place(place)) {
        VLOG(3) << "Switch into " << place << " by device_guard.";
        expected_kernel_key.place_ = place;
      } else {
        PADDLE_THROW(
            platform::errors::Fatal("Unsupported current place %s", op_device));
      }
    }
    VLOG(3) << "expected_kernel_key : " << expected_kernel_key;

    // step 3. Insert memcpy_op if needed
    VariableValueMap& ins_map_temp = runtime_context.inputs;
    for (auto& var_name_item : ins_map_temp) {
      for (size_t i = 0; i < var_name_item.second.size(); ++i) {
        auto var = var_name_item.second[i];
        auto tensor_in = static_cast<const Tensor*>(&(var->Get<LoDTensor>()));
        if (!tensor_in->IsInitialized()) {
          continue;
        }
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
                ->GetKernelTypeForVar(var_name_item.first, *tensor_in,
                                      expected_kernel_key);
        if (!platform::is_same_place(kernel_type_for_var.place_,
                                     expected_kernel_key.place_)) {
          if (op_base->Type() == "fetch_v2") {
            op_base->SetAttr("deepcopy", false);
          }
          // need trans place
          // 1. add var in scope
          // 2. add copy op
          std::string new_var_name =
              "temp_1" + std::to_string(var_scope->var_list.size() + 1);
          auto v = new Variable();
          v->GetMutable<LoDTensor>();
          var_scope->name2id[new_var_name] = var_scope->var_list.size();
          var_scope->var_list.push_back(v);

          VariableMetaInfo info;
          info.var_ref_count_ = 0;
          info.vardesc_ = nullptr;
          var_scope->vec_meta_info_.push_back(info);

          VariableNameMap copy_in_map;
          auto x_iter = inputs_names.find(var_name_item.first);
          copy_in_map["X"] = {x_iter->second[i]};
          VariableNameMap copy_out_map;
          copy_out_map["Out"] = {new_var_name};
          AttributeMap attr_map;
          attr_map["dst_place_type"] =
              is_cpu_place(expected_kernel_key.place_)
                  ? 0
                  : is_gpu_place(expected_kernel_key.place_) ? 1 : -1;

          std::map<std::string, std::vector<int>> copy_ins_name2id;
          copy_ins_name2id["X"] = ins_name2id[var_name_item.first];
          std::map<std::string, std::vector<int>> copy_out_name2id;
          copy_out_name2id["Out"] = {var_scope->name2id[new_var_name]};

          op_func_node.input_index[var_name_item.first][i] =
              var_scope->name2id[new_var_name];

          VariableValueMap copy_ins_value_map;
          copy_ins_value_map["X"] = {var};
          VariableValueMap copy_outs_value_map;
          copy_outs_value_map["Out"] = {v};

          // memcpy_d2h, memcpy_h2d
          auto memcpy_op_type = get_memcpy_type(kernel_type_for_var.place_,
                                                expected_kernel_key.place_);
          VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                                     memcpy_op_type, x_iter->second[i],
                                     kernel_type_for_var.place_, new_var_name,
                                     expected_kernel_key.place_);
          auto& copy_info = OpInfoMap::Instance().Get(memcpy_op_type);
          auto copy_op = copy_info.Creator()(memcpy_op_type, copy_in_map,
                                             copy_out_map, attr_map);
          OpFuncNode copy_op_func_node;
          copy_op_func_node.input_index = copy_ins_name2id;
          copy_op_func_node.output_index = copy_out_name2id;

          RuntimeContext copy_runtime_context({}, {});
          copy_runtime_context.inputs.swap(copy_ins_value_map);
          copy_runtime_context.outputs.swap(copy_outs_value_map);
344 345
          InterpretercoreInferShapeContext copy_infer_shape_ctx(
              *copy_op, copy_runtime_context);
W
wanghuancoder 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
          static_cast<const framework::OperatorWithKernel*>(copy_op)
              ->InferShape(&copy_infer_shape_ctx);

          auto kernels_iter = all_op_kernels.find(memcpy_op_type);
          PADDLE_ENFORCE_NE(kernels_iter, all_op_kernels.end(),
                            platform::errors::Unavailable(
                                "There are no kernels which are registered in "
                                "the memcpy operator."));

          OpKernelMap& kernels = kernels_iter->second;
          auto* dev_ctx = pool.Get(place);
          Scope scope;
          auto copy_exec_ctx =
              ExecutionContext(*copy_op, scope, *dev_ctx, copy_runtime_context);
          auto expected_kernel_key =
              dynamic_cast<const framework::OperatorWithKernel*>(copy_op)
                  ->GetExpectedKernelType(copy_exec_ctx);
          auto kernel_iter = kernels.find(expected_kernel_key);
          copy_op_func_node.kernel_func_ =
              OpKernelComputeFunc(kernel_iter->second);
          copy_op_func_node.kernel_func_(copy_exec_ctx);
          VLOG(3) << "Run " << memcpy_op_type << " done.";
368 369 370
          // NOTE(Aurelius84): memcpy_op is expensive operation, so we tag them
          // as kQueueSync and execute them in thread pool.
          copy_op_func_node.type_ = OpFuncType::kQueueSync;
W
wanghuancoder 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
          copy_op_func_node.dev_ctx_ = dev_ctx;
          op_list->push_back(copy_op);
          vec_func_list->push_back(copy_op_func_node);

          var_name_item.second[i] = v;
        }
      }
    }
    // step 4. Run op kernel
    op_list->push_back(op_base);
    VLOG(3) << op_base->Type()
            << " : expected_kernel_key : " << expected_kernel_key;

    if (platform::is_gpu_place(expected_kernel_key.place_)) {
      op_func_node.type_ = OpFuncType::kQueueAsync;
    } else if (platform::is_cpu_place(expected_kernel_key.place_)) {
      op_func_node.type_ = OpFuncType::kQueueSync;
    } else {
      PADDLE_THROW(platform::errors::Fatal("Unsupported current place %s",
                                           expected_kernel_key.place_));
    }

    if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
      dev_ctx = pool.Get(expected_kernel_key.place_);
    }
    op_func_node.dev_ctx_ = dev_ctx;

    auto exec_ctx =
        ExecutionContext(*op_base, scope, *dev_ctx, runtime_context);

    auto kernel_iter = kernels.find(expected_kernel_key);
    PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                      platform::errors::NotFound(
                          "Operator (%s) does not have kernel for %s.",
                          op->Type(), KernelTypeToString(expected_kernel_key)));

    op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
    op_func_node.kernel_func_(exec_ctx);
    vec_func_list->push_back(op_func_node);

    // gc---------------------------------------------------------------------------
    auto iter = unused_var_map.find(op_base);
    if (iter == unused_var_map.end()) {
      continue;
    }

    auto& delete_vars = iter->second;
    std::deque<std::shared_ptr<memory::Allocation>>* garbages =
        new std::deque<std::shared_ptr<memory::Allocation>>();

    for (auto& var_name : delete_vars) {
      auto it = var_scope->name2id.find(var_name);
      assert(it != var_scope->name2id.end());
      auto* var = var_scope->var_list[it->second];
      if (var == nullptr) {
        continue;
      }

      VLOG(2) << "Erase variable " << var_name;
      if (var->IsType<LoDTensor>()) {
        garbages->emplace_back(
            var->GetMutable<LoDTensor>()->MoveMemoryHolder());
      } else if (var->IsType<SelectedRows>()) {
        garbages->emplace_back(var->GetMutable<SelectedRows>()
                                   ->mutable_value()
                                   ->MoveMemoryHolder());
      } else if (var->IsType<LoDTensorArray>()) {
        auto* lod_tensor_arr = var->GetMutable<LoDTensorArray>();
        for (auto& t : *lod_tensor_arr) {
          garbages->emplace_back(t.MoveMemoryHolder());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Type %s of variable %s is not supported eager deletion.",
            framework::ToTypeName(var->Type()), var_name));
      }
    }

    delete garbages;  // free mem

    VLOG(3) << "run " << op_base->Type() << " done.";
  }
}

std::vector<size_t> merge_vector(const std::vector<size_t>& first,
                                 const std::vector<size_t>& second) {
  std::vector<size_t> out(first.size() + second.size());
  std::merge(first.begin(), first.end(), second.begin(), second.end(),
             out.begin());

  std::vector<size_t>::iterator it;
  it = std::unique(out.begin(), out.end());

  out.resize(std::distance(out.begin(), it));

  return out;
}

}  // namespace interpretercore
}  // namespace framework
}  // namespace paddle