README.md

    Hi, I'm Glenn Jocher, author of YOLOv5 🚀.

    I'd like to invite you to attend the world's first-ever YOLO conference: #YOLOVISION22!

    This virtual event takes place on September 27th, 2022 with talks from the world's leading vision AI experts from Google, OpenMMLab's MMDetection, Baidu's PaddlePaddle, Meituan's YOLOv6, Weight & Biases, Roboflow, Neural Magic, OctoML and of course Ultralytics YOLOv5 and many others.

    Save your spot at https://ultralytics.com/yolo-vision!




     

    English | 简体中文

    YOLOv5 CI YOLOv5 Citation Docker Pulls
    Run on Gradient Open In Colab Open In Kaggle

    YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

    Documentation

    See the YOLOv5 Docs for full documentation on training, testing and deployment.

    Quick Start Examples

    Install

    Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7.

    git clone https://github.com/ultralytics/yolov5  # clone
    cd yolov5
    pip install -r requirements.txt  # install
    Inference

    YOLOv5 PyTorch Hub inference. Models download automatically from the latest YOLOv5 release.

    import torch
    
    # Model
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5n - yolov5x6, custom
    
    # Images
    img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list
    
    # Inference
    results = model(img)
    
    # Results
    results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
    Inference with detect.py

    detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

    python detect.py --source 0  # webcam
                              img.jpg  # image
                              vid.mp4  # video
                              screen  # screenshot
                              path/  # directory
                              'path/*.jpg'  # glob
                              'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                              'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
    Training

    The commands below reproduce YOLOv5 COCO results. Models and datasets download automatically from the latest YOLOv5 release. Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU (Multi-GPU times faster). Use the largest --batch-size possible, or pass --batch-size -1 for YOLOv5 AutoBatch. Batch sizes shown for V100-16GB.

    python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
                                           yolov5s                                64
                                           yolov5m                                40
                                           yolov5l                                24
                                           yolov5x                                16
    Tutorials

    Integrations

    Comet NEW Deci NEW ClearML NEW Roboflow Weights & Biases
    Visualize model metrics and predictions and upload models and datasets in realtime with Comet Automatically compile and quantize YOLOv5 for better inference performance in one click at Deci Automatically track, visualize and even remotely train YOLOv5 using ClearML (open-source!) Label and export your custom datasets directly to YOLOv5 for training with Roboflow Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases

    Why YOLOv5

    YOLOv5 has been designed to be super easy to get started and simple to learn. We prioritize real-world results.

    YOLOv5-P5 640 Figure (click to expand)

    Figure Notes (click to expand)
    • COCO AP val denotes mAP@0.5:0.95 metric measured on the 5000-image COCO val2017 dataset over various inference sizes from 256 to 1536.
    • GPU Speed measures average inference time per image on COCO val2017 dataset using a AWS p3.2xlarge V100 instance at batch-size 32.
    • EfficientDet data from google/automl at batch size 8.
    • Reproduce by python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

    Pretrained Checkpoints

    Model size
    (pixels)
    mAPval
    0.5:0.95
    mAPval
    0.5
    Speed
    CPU b1
    (ms)
    Speed
    V100 b1
    (ms)
    Speed
    V100 b32
    (ms)
    params
    (M)
    FLOPs
    @640 (B)
    YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5
    YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
    YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0
    YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1
    YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
    YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6
    YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8
    YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0
    YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4
    YOLOv5x6
    + TTA
    1280
    1536
    55.0
    55.8
    72.7
    72.7
    3136
    -
    26.2
    -
    19.4
    -
    140.7
    -
    209.8
    -
    Table Notes (click to expand)
    • All checkpoints are trained to 300 epochs with default settings. Nano and Small models use hyp.scratch-low.yaml hyps, all others use hyp.scratch-high.yaml.
    • mAPval values are for single-model single-scale on COCO val2017 dataset.
      Reproduce by python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
    • Speed averaged over COCO val images using a AWS p3.2xlarge instance. NMS times (~1 ms/img) not included.
      Reproduce by python val.py --data coco.yaml --img 640 --task speed --batch 1
    • TTA Test Time Augmentation includes reflection and scale augmentations.
      Reproduce by python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

    Classification NEW

    YOLOv5 release v6.2 brings support for classification model training, validation, prediction and export! We've made training classifier models super simple. Click below to get started.

    Classification Checkpoints (click to expand)

    We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google Colab Pro for easy reproducibility.

    Model size
    (pixels)
    acc
    top1
    acc
    top5
    Training
    90 epochs
    4xA100 (hours)
    Speed
    ONNX CPU
    (ms)
    Speed
    TensorRT V100
    (ms)
    params
    (M)
    FLOPs
    @224 (B)
    YOLOv5n-cls 224 64.6 85.4 7:59 3.3 0.5 2.5 0.5
    YOLOv5s-cls 224 71.5 90.2 8:09 6.6 0.6 5.4 1.4
    YOLOv5m-cls 224 75.9 92.9 10:06 15.5 0.9 12.9 3.9
    YOLOv5l-cls 224 78.0 94.0 11:56 26.9 1.4 26.5 8.5
    YOLOv5x-cls 224 79.0 94.4 15:04 54.3 1.8 48.1 15.9
    ResNet18 224 70.3 89.5 6:47 11.2 0.5 11.7 3.7
    ResNet34 224 73.9 91.8 8:33 20.6 0.9 21.8 7.4
    ResNet50 224 76.8 93.4 11:10 23.4 1.0 25.6 8.5
    ResNet101 224 78.5 94.3 17:10 42.1 1.9 44.5 15.9
    EfficientNet_b0 224 75.1 92.4 13:03 12.5 1.3 5.3 1.0
    EfficientNet_b1 224 76.4 93.2 17:04 14.9 1.6 7.8 1.5
    EfficientNet_b2 224 76.6 93.4 17:10 15.9 1.6 9.1 1.7
    EfficientNet_b3 224 77.7 94.0 19:19 18.9 1.9 12.2 2.4
    Table Notes (click to expand)
    • All checkpoints are trained to 90 epochs with SGD optimizer with lr0=0.001 and weight_decay=5e-5 at image size 224 and all default settings.
      Runs logged to https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2
    • Accuracy values are for single-model single-scale on ImageNet-1k dataset.
      Reproduce by python classify/val.py --data ../datasets/imagenet --img 224
    • Speed averaged over 100 inference images using a Google Colab Pro V100 High-RAM instance.
      Reproduce by python classify/val.py --data ../datasets/imagenet --img 224 --batch 1
    • Export to ONNX at FP32 and TensorRT at FP16 done with export.py.
      Reproduce by python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224
    Classification Usage Examples (click to expand)

    Train

    YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the --data argument. To start training on MNIST for example use --data mnist.

    # Single-GPU
    python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128
    
    # Multi-GPU DDP
    python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3

    Val

    Validate YOLOv5m-cls accuracy on ImageNet-1k dataset:

    bash data/scripts/get_imagenet.sh --val  # download ImageNet val split (6.3G, 50000 images)
    python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224  # validate

    Predict

    Use pretrained YOLOv5s-cls.pt to predict bus.jpg:

    python classify/predict.py --weights yolov5s-cls.pt --data data/images/bus.jpg
    model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s-cls.pt')  # load from PyTorch Hub

    Export

    Export a group of trained YOLOv5s-cls, ResNet and EfficientNet models to ONNX and TensorRT:

    python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224

    Environments

    Get started in seconds with our verified environments. Click each icon below for details.

    Contribute

    We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!

    Contact

    For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please visit https://ultralytics.com/contact.


    项目简介