- 21 9月, 2021 1 次提交
-
-
由 Adam Osewski 提交于
* Create stateful OneDNNAXPYHandler object. This makes it possible to call it multiple times without recreating the oneDNN primitives every time. * Prepare SGDOpKernel to reuse its implementation from OneDNN kernel. * OneDNN SGD kernel. * Update call to use new OneDNNAXPYHandler object api. * Setup seed in proper place. * Enable OneDNN kernel only for single case. * For dense param and sparse grad. * Small refactor. * Enable oneDNN by op attr or by cmd line flag. * Use int64_t type for number of elements. * Support dense param and grad from OneDNN kernel. * Enable SGD OneDNN kernel when use MP BF16 optimizer. * Force non-copyable/movable OneDNNAXPYHandler. * Reuse OneDNNAXPYHandler for spare tensors in SUM op. * Fix SFINAE rules. * Remove recording event inside AXPY. * Get rid of internal primitive caching. * Stop use PP cache mechanims to store mem and primitive obj. * Handler obj store and reuse needed desc & prim * Do not derive from MKLDNNHandlerT
-
- 21 6月, 2021 1 次提交
-
-
由 lidanqing 提交于
* Add oneDNN AXPY handler. * Add fallback for small tensors. * Fix ifdefs * Remove unnecessary namespace prefixes and add missing headers. * Guard handler_axpy with proper ifdefs. * Compilation of this function is possible only when Paddle is not build with CUDA nor HIP. * Move AXPY handler code to separate files. * Use oneDNN AXPY handler in SGD op. * Use axpy handler only when Paddle is built with oneDNN. * Add test for SUM BF16 with big rows. * Fix SFINAE rules for elementwise_add_to. * Add test case for SGD with big rows. * update * update Co-authored-by: NAdam Osewski <adam.osewski@intel.com>
-
- 23 4月, 2021 1 次提交
-
-
由 lilong12 提交于
* add c_concat op
-
- 13 11月, 2020 1 次提交
-
-
由 lilong12 提交于
* update, test=develop
-
- 30 9月, 2020 1 次提交
-
-
由 MRXLT 提交于
* fix distributed error info * bug fix; notest * error info refine * update error info * update error info * update error info * bug fix * bug fix * bug fix * bug fix
-
- 02 7月, 2019 1 次提交
-
-
由 Yi Liu 提交于
1. Since allreduce op has 4 reduce types, We split these four reduce types into four ops 2. We also refined the collective op code, e.g. we separated the collective op kernel into CPUKernel and CUDAKernel, and remove the device specified DeviceContext parameter in template as we already knew the target DeviceContext 3. We remove the newly added Collective op role to reduce the complexity of program and graph analysis
-
- 27 6月, 2019 1 次提交
-
-
由 HaoRen 提交于
* fix prepare context redundant code problem, optimize executor by caching create_varaiables test=develop * supports collective training in executor * make fetch_list runable with variables, add more unittest for use_program_cache test=develop * fix comment test=develop * use unique name for nccl_id * supports output to stream in program_to_code * insert sync_comm_stream before regularization; add skip_op_callstack capability in program_to_code * set op role in collective training * add collective op role * remove orig file * add build optimizer by strategy * add collective strategy * refine collective strategy * add multi-process role maker * refine strategy building factory so that we can easily plugin more strategy * scale loss grad in collective sgd transpiler * add support for distributed fc * code format * revert some features for dist fc * add support for distributed fc training * fix prepare context redundant code problem, optimize executor by caching create_varaiables test=develop * supports collective training in executor * make fetch_list runable with variables, add more unittest for use_program_cache test=develop * use unique name for nccl_id * supports output to stream in program_to_code * insert sync_comm_stream before regularization; add skip_op_callstack capability in program_to_code * set op role in collective training * add collective op role * fix comment test=develop * remove orig file * add build optimizer by strategy * add collective strategy * refine collective strategy * add multi-process role maker * refine strategy building factory so that we can easily plugin more strategy * scale loss grad in collective sgd transpiler * add support for distributed fc * code format * revert some features for dist fc * add support for distributed fc training * test=develop add collective op unittest standard * test=develop remove the test_collective directory * test=develop remove the test_collective directory * remove slicegather test * code format for reducescatter * update attr of shard_index_op * Modify macro nccl_helper * remove test without distribute * macro collective_helper * marcro update * test=develop update support python3.5 * test=develop change gpu memory use to 0.1 when test * test=develop update ut equal func * test=develop set flags to 1.5 * test=develop fix pickle dumple py35 * test=develop fix divide in slice and add sync_comm_stream update atol and rtol to 1e-05 rm shard_index op and test modify read input from file to read from memory remove origin_program in framework and add i/o in c_sync_calc_stream * test=develop update unittest sync operator I/O
-
- 17 5月, 2019 1 次提交
-
-
由 Yan Xu 提交于
* add var grad hook test=develop
-
- 25 4月, 2019 1 次提交
-
-
由 Yan Xu 提交于
implement dygraph.parallel.DataParallel to hook reduce op.
-