- 29 9月, 2016 1 次提交
-
-
由 Yu Yang 提交于
-
- 28 9月, 2016 9 次提交
- 27 9月, 2016 3 次提交
-
-
由 luotao1 提交于
-
由 emailweixu 提交于
* Correctly handling multiple inputs and integer inputs for recurrent_group * Fix ScatterAgentLayer for generation * Revert sequence_(nest)_rnn.conf
-
由 luotao1 提交于
* Add `device` parameter to ExtraAttr in trainer_config_helpers. * add unittest for it.
-
- 26 9月, 2016 2 次提交
- 24 9月, 2016 2 次提交
-
-
由 Haichao-Zhang 提交于
* add type compatible check for ParamAttr
-
由 Zrachel 提交于
Local training with "sparse_update = True" parameter triggers kSgdSparseCpuTraining mode, fix bugs under it.
-
- 23 9月, 2016 6 次提交
-
-
由 liaogang 提交于
-
由 liaogang 提交于
-
由 hedaoyuan 提交于
fix cudnn conv bug which occurs in image classfication demo in GTX GPU
-
由 qingqing01 提交于
-
由 dangqingqing 提交于
-
由 Yu Yang 提交于
* Also refine unittest to multiple iteration to prevent luckily random number.
-
- 22 9月, 2016 2 次提交
- 21 9月, 2016 2 次提交
- 20 9月, 2016 13 次提交
-
-
由 liaogang 提交于
-
由 liaogang 提交于
-
由 liaogang 提交于
* it makes unit test failed.
-
由 liaogang 提交于
* using map to replace unordered_map on Mac
-
由 liaogang 提交于
-
由 liaogang 提交于
-
由 Yu Yang 提交于
* remove unnecessary field set in ParameterConfig, Evaluators, etc
-
由 LCY-Seso 提交于
update beam_search and seqToseq config, and add ExpActivation api
-
由 liaogang 提交于
-
由 Luo Tao 提交于
-
由 emailweixu 提交于
-
由 Haichao-Zhang 提交于
* split dotmul_projection and dotmul_operator * bug fix in outputsize checking for mixed layer
-
由 Yu Yang 提交于
* min_pool_size would be infinite by default. * add unittest for min_pool_size * Fix bug in can_over_batch_size * add unittest for can_over_batch_size * Add DEFINE_PROVIDER_EX * Add default value of should_shuffle * When training, the default value of should_shuffle is True. * When testing, the default value of should_shuffle is False. * User a set a provider should_shuffle or not by pass it to `@provider` * should_shuffle can handle a list of value, not just boolean * Add input order mapping by using name * Add unittest * Add check to check input format. * Default is close for speed reason. * User could stop train when check error, or continue train without this train sample. * use deque instead of vector in generators pool, make erase generator faster. * Add chinese/english documentation * Make should shuffle = false in unittest * Add python files to depends.
-