- 17 9月, 2021 1 次提交
-
-
由 zhangbo9674 提交于
* add pure fp16 major function in auto_cast & tracer * support master weight in dygraph for pure fp16 * check mix dtype of fp16&fp32 for check_finite_and_unscale op * change pure fp16 funtion name * refine some bug in auto_cast * refine auto_cast interface logic * add param _casted_by_pure_fp16 for class Layer * support state_dict hook for save model by user appointed dtype in pure_fp16_decorator * refine pure_fp16_decorator as decorator * add unittest * add comment * add comment * support recompute * add comment for auto_cast and decorator * support to_static_state_dict for paddle.jit.save * unlimite models num and optimizers num * add lookup_table in black_list * fix momentum and layer state_dict * fix bug in layer state_dict * fix bug in layer state_dict_helper * refine unittest * refine test_momentun_op * refine interface and some code * refine amp_decorator interface * refine pure fp16 interface * refine master weight interface
-
- 10 9月, 2021 1 次提交
-
-
由 ShenLiang 提交于
-
- 05 8月, 2021 1 次提交
-
-
由 Aurelius84 提交于
* Support Mixed Precision training in @to_static * fix block.vars logic * fix GPU training loss diff * remove unused code
-
- 05 7月, 2021 1 次提交
-
-
由 jiangcheng 提交于
* reduce sum op default fp32, add into amp black list * reduce_sum default fp32 can avoid return inf when the sum value large than 65504
-
- 29 6月, 2021 1 次提交
-
-
由 taixiurong 提交于
-
- 21 6月, 2021 1 次提交
-
-
由 cc 提交于
* Combine amp and qat * add unit test
-
- 18 11月, 2020 1 次提交
-
-
由 Leo Chen 提交于
* add matmtl_v2 to amp list * support dygraph
-
- 13 8月, 2020 1 次提交
-
-
由 Leo Chen 提交于
* add auto_cast, test=develop * add loss scaler, test=develop * add comments, test=develop * refine code, test=develop * refine code, test=develop * do not set flags automatically, test=develop * fix custom op bug, test=develop * add more test, test=develop * refine enable logic, test=develop * enable amp test with GPU, test=develop * add unittest * add test for found_inf * follow comments * follow comments * remove global variable, use singleton * add some notes * update comments * update comments * update comments * add use_dynamic_loss_scaling argument * refine found_inf * refine found_inf
-