1. 09 3月, 2021 1 次提交
  2. 08 3月, 2021 1 次提交
  3. 05 3月, 2021 1 次提交
  4. 04 3月, 2021 6 次提交
  5. 03 3月, 2021 4 次提交
  6. 02 3月, 2021 2 次提交
    • P
      add n-d input support for trt scale converter (#31316) · 2e9e3fad
      Pei Yang 提交于
      * add n-d input support for trt scale converter
      
      * add flatten for ut
      
      * fix dims
      2e9e3fad
    • G
      lamb_op_xpu;test=kunlun (#31012) · d79fdc3d
      Gradie 提交于
      * lamb_op_xpu;test=kunlun
      
      * modify lamb_op_xpu.cc;test=kunlun
      
      * delete atol lamb_op_xpu; test=kunlun
      
      * update xpu.cmake;test=kunlun
      
      * test_error 1e-5,lamb_op_xpu;test=kunlun
      
      * error1e-5,lamb_op_xpu,test=kunlun
      
      * delete atol lamb_xpu;test=kunlun
      
      * modify atol,lamb_op_xpy;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu, XPUOptest;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu,modify xpu_cmake; test=kunlun
      
      * lamb_op_xpu;test=kunlun
      
      * lamb_op_xpu,modify xpucmake;test=kunlun
      d79fdc3d
  7. 26 2月, 2021 2 次提交
  8. 25 2月, 2021 2 次提交
  9. 24 2月, 2021 4 次提交
  10. 23 2月, 2021 2 次提交
  11. 22 2月, 2021 2 次提交
    • H
      [Dy2stat] Refactoring tensor_shape_transformer.py to Fix Change after Assign Bug (#31082) · cf43a321
      Huihuang Zheng 提交于
      **Problem**
      In our old shape transformer logic, if user write:
      ```
      s = tensor.shape
      ...
      y = paddle.some_api(s)
      ```
      Dy2stat will change it to
      ```
      ...
      y = paddle.some_api(convert_var_shape(tensor))
      ```
      However it will cause fatal bug if user changes the shape of `x` after assign. For example:
      ```
      s = tensor.shape
      ...
      tensor = paddle.some_change_shape_api(tensor)
      ...
      y = paddle.some_api(s)
      ```
      Then the Dy2stat will get wrong result because the code is translated into:
      ```
      tensor = paddle.some_change_shape_api(tensor)
      ...
      y = paddle.some_api(convert_var_shape(tensor)) # tensor shape has been changed, not origin `s` value
      ```
      
      **Solution Logic**
      
      It can not be solved in the old logic, so I refactoring tensor_shape_transformer logic. Now we will use `s` to store shape attribute and generate a var `s__STATIC_CONVERT_VAR_SHAPE_SUFFIX` to store static shape API `shape(tensor)`
      ```
      s = tensor.shape
      ...
      y = paddle.some_api(s)
      ```
      Dy2stat will change it to
      ```
      s = tensor.shape
      s__STATIC_CONVERT_VAR_SHAPE_SUFFIX = shape(tensor)
      ...
      y = paddle.some_api(choose_shape_attr_or_api(s, s__STATIC_CONVERT_VAR_SHAPE_SUFFIX ))
      ```
      In this case, the code is consistent with origin dygraph meaning and it fixed the change after assign bug.
      
      **Code Key Note**
      
      To help reviewers, the key change of this PR is changing `self.name_to_var_shape` from "mapping name to shape node" to "mapping name to its STATIC_CONVERT_VAR_SHAPE_SUFFIX name", then if a variable name has the SUFFIX, we can choose to use attribute shape or shape api. Other changes go with the key change.
      
      **Consideration**
      The issue of this PR is that we store extra static `shape` API result, will it harms the speed of Dy2stat? In some cases it will, but we argue that the benefit would be greater than the cost.
      
      1. The extra calling to static `shape` API will happen when coder assign among shape variables. Take the following dygraph code as an instance:
      ```
      s1 = tensor.shape
      s2 = s1
      s3 = s2
      ...
      ```
      Then we called extra static `shape` APIs again and again, however users seldom write code like this.
      
      2. If the shape variable is used a lot, for example:
      ```
      s = tensor.shape
      y1 = paddle.some_api1(s)
      y2 = paddle.some_api2(s)
      y3 = paddle.some_api3(s)
      ```
      Our old logic will create 3 shape APIs but now just 1. This is more common user code pattern. In fact, if reviewers take a look at the current unit test in this PR, you could see the op numbers decrease after this PR. So we argue that this PR can also improve speed in this code pattern.
      cf43a321
    • T
      fix dist fleet ctr ut (#31087) · 0e4b1542
      tangwei12 提交于
      * fix dist fleet ctr ut
      
      Change-Id: I59bf5123c7bd47bd0e8f1ca2a26295257597c0f5
      
      * fix dist fleet ctr ut
      
      Change-Id: Iafcdd172364be47fe67b753774ce09af050bcbce
      
      * Update CMakeLists.txt
      0e4b1542
  12. 20 2月, 2021 5 次提交
  13. 19 2月, 2021 4 次提交
  14. 18 2月, 2021 4 次提交
    • P
      add trt transpose and flatten converter (#31022) · 9b54fe41
      Pei Yang 提交于
      9b54fe41
    • J
      Add Conv Transpose BF16 (#30877) · caf9d398
      joanna.wozna.intel 提交于
      * Add conv transpose BF16
      
      * Share function GetWeightsTz
      
      * Adjust to review and fix op compatibility
      
      * Add bias to unique handler name
      
      * Remove errors related to paddle enforce
      
      * Add conv2d_transpose to bf16 list and kernel refator
      caf9d398
    • H
      Refine fake_interface Error Message (#30981) · cbbe1274
      Huihuang Zheng 提交于
      Refine fake_interface Error Message
      cbbe1274
    • H
      Add Support for Tuple in for Loop (#30998) · c1375783
      Huihuang Zheng 提交于
      Dy2stat didn't support tuple as iteration variable in the past. This PR added there main cases:
      
             1). Non-enumerate case: for var1, var2 in var|var.numpy() will be re-written as:
                for FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
                  var1 = FOR_ITER_TUPLE_PREFIX_x[0]
                  var2 = FOR_ITER_TUPLE_PREFIX_x[1]
              2). Enumerate out tuple case: for t in enumerate(var|var.numpy) will be rewritten as:
                for FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x in enumerate(var|var.numpy):
                  t = (FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x)
              3). Enumerate inner tuple case: for i, (var1, (var2, va3)) in enumerate(var|var.numpy()) will
              be re-written as:
                for i, FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
                  var1 = FOR_ITER_TUPLE_PREFIX_x[0]
                  var2 = FOR_ITER_TUPLE_PREFIX_x[1][0]
                  var3 = FOR_ITER_TUPLE_PREFIX_x[1][1]
      c1375783