- 17 11月, 2016 1 次提交
-
-
由 qingqing01 提交于
-
- 15 11月, 2016 2 次提交
- 14 11月, 2016 1 次提交
-
-
由 Luo Tao 提交于
-
- 13 11月, 2016 1 次提交
-
-
由 Yu Yang 提交于
* Check all files by pre commit hooks
-
- 12 11月, 2016 1 次提交
-
-
由 qijun 提交于
-
- 11 11月, 2016 1 次提交
-
-
由 xuwei06 提交于
Making '*' support the multiplication between a scalar and LayerOutput Also changing '+' to support adding between a vector and a scalar. Change-Id: I7daf35590dc2b2f855a29d9ef43ac57979442e0f
-
- 09 11月, 2016 1 次提交
-
-
由 wangkuiyi 提交于
Update cluster_train.md for easier understanding
-
- 08 11月, 2016 3 次提交
- 07 11月, 2016 1 次提交
-
-
由 liaogang 提交于
-
- 05 11月, 2016 1 次提交
-
-
由 emailweixu 提交于
* Add elementwise math operations This allows use to use expressions like: y=log(1+exp(x)) Also added unittests for ActivationFunction * Enforce keyword arguments for non-positional arguments * Add LogActivation to doc
-
- 04 11月, 2016 1 次提交
-
-
由 wangkuiyi 提交于
-
- 02 11月, 2016 1 次提交
-
-
由 qingqing01 提交于
* Add benchmark for PaddlePaddle, tensorflow and caffe * ConvProjection to reduce memory for goolenet * Add unit test for ConvProjection. 1. unit test in test_LayerGrad. 2. compare the ConvPorjection and CudnnConvLayer, also compare the concat_layer+img_conv_layer and concat_layer_conv_projection. * Reduce cudnn_conv memory and add benchmark document. 1. Use TmpMatrix as the workspace in cudnn_conv to reduce gpu memory. It reduce lots of memory. 2. Add benchmark document. 3. fix smallnet_mnist_cifar.py in paddle. * Add job=time and refine cudnn_conv to reduce gpu memroy and speed up * Refine cudnn_conv and shared biases operation in concat_layer and mixed_layer. * follow comments * follow comments * Use unique_ptr to prevent memory leaks in CudnnConvLayer.
-
- 31 10月, 2016 2 次提交
-
-
由 gangliao 提交于
* DYLD_LIBRARY_PATH is disable after Mac OS X 10.11 * fix clang + gpu compile error on Mac OS * fix some words and errors in build docs
-
由 zhouxiao-coder 提交于
-
- 30 10月, 2016 1 次提交
-
-
由 liaogang 提交于
-
- 28 10月, 2016 1 次提交
-
-
由 Yu Yang 提交于
* Change contribute to paddle to fit new branching model
-
- 26 10月, 2016 1 次提交
-
-
由 emailweixu 提交于
-
- 24 10月, 2016 2 次提交
- 19 10月, 2016 1 次提交
-
-
由 Yu Yang 提交于
* Follow #223 * Fix #222
-
- 14 10月, 2016 1 次提交
-
-
由 luotao1 提交于
* hierarchical rnn document, add new config example * update inputs_type of label * add check for unsupported config * refine hierarchical document * refine doc title * update docs, fix paddle to PaddlePaddle * follow comments
-
- 13 10月, 2016 1 次提交
-
-
由 luotao1 提交于
* add interface and unittest for nce layer * follow comments
-
- 30 9月, 2016 4 次提交
-
-
由 Yu Yang 提交于
* Rerange Build docs & emphasize them in README.md * Rerange Build docs & emphasize them in README.md
-
由 gangliao 提交于
* Add automatic check AVX in CMake * Add indent in FindAVX.cmake * Revise table format and some words in build docs * Update build docs * Update build docs
-
由 gangliao 提交于
* Add automatic check AVX in CMake * Add indent in FindAVX.cmake * Revise table format and some words in build docs * Update build docs
-
由 gangliao 提交于
* Add automatic check AVX in CMake * Revise table format and some words in build docs
-
- 29 9月, 2016 4 次提交
- 28 9月, 2016 2 次提交
- 22 9月, 2016 1 次提交
-
-
由 luotao1 提交于
* fix bug in dotmul_operator's api and anotation * update rnn document * remove redundant info of projection and operator in layers.py
-
- 20 9月, 2016 4 次提交
-
-
由 liaogang 提交于
-
由 Luo Tao 提交于
-
由 emailweixu 提交于
-
由 Yu Yang 提交于
* min_pool_size would be infinite by default. * add unittest for min_pool_size * Fix bug in can_over_batch_size * add unittest for can_over_batch_size * Add DEFINE_PROVIDER_EX * Add default value of should_shuffle * When training, the default value of should_shuffle is True. * When testing, the default value of should_shuffle is False. * User a set a provider should_shuffle or not by pass it to `@provider` * should_shuffle can handle a list of value, not just boolean * Add input order mapping by using name * Add unittest * Add check to check input format. * Default is close for speed reason. * User could stop train when check error, or continue train without this train sample. * use deque instead of vector in generators pool, make erase generator faster. * Add chinese/english documentation * Make should shuffle = false in unittest * Add python files to depends.
-