提交 ff4eaa29 编写于 作者: W wuyi05

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into cmake_go_vendor

## Interaction between C++ and Python
Users employ API in Python to describe their own network, however, the network construction actually happens in C++. so Protobuf is introduced to send the message between Python and C++.
The Interaction between Python and C++ can be simplified as two steps:
1. C++ tells Python how many Ops there are, and what parameter do users need to offer to initialize a new Op. Python then builds API for each Op at compile time.
2. Users invoke APIs built by Python and provide necessary parameters. These parameters will be sent to C++ fo finish Op construction task.
### Message form C++ to Python
We define a Protobuf message class `OpProto` to hold message needed in the first step. What should an `OpProto` contain? This question is equivalent to “What message do we need to offer, to build a Python API which is legal and user oriented and can use to describe a whole Op.”
Following message are necessary:
1. Op's name, and its simple comment.
2. Input and output variable number; each variable's name, type, and comment.
3. Op's attributes; each attribute includes name, type, comment, **default value** and **value range**.
So `OpProto` can be defined as follows:
```proto
enum AttrType {
INT = 1;
FLOAT = 2;
STRING = 3;
INTS = 4;
FLOATS = 5;
STRINGS = 6;
};
message AttrValue {
AttrType type = 1;
optional int iv = 2;
optional float fv = 3;
optional string sv = 4;
repeated int ivs = 5;
repeated float fvs = 6;
repeated string svs = 7;
};
message AttrProto {
required string name = 1;
required string comment = 2;
required AttrType type = 3;
};
message VarProto {
required string name = 1;
required string comment = 2;
};
message OpProto {
repeated VarProto inputs = 1;
repeated VarProto outputs = 2;
repeated AttrProto attrs = 3;
required string type = 4;
required string comment = 5;
};
```
To generate Python code automatically:
```python
def create_python_ops_creatation_functions():
op_protos = paddle.framework.OpRegistry.get_all_op_proto()
for type_name in op_protos:
op_proto = op_protos[type_name]
def __impl__(**kwargs): # User must use key word args in Paddle API
inputs = [kwargs.get(ipt.name, "") for ipt in op_proto.inputs]
outputs = [kwargs.get(opt.name, "") for opt in op_proto.outputs]
attrs = [cast_to_op_attr(attr, kwargs.get(attr.name, None)) for attr in op_proto.attrs]
opdesc = input, outputs, type_name, attrs
return paddle.framework.OpRegistry.CreateOp(opdesc)
__impl__.__doc__ = create_doc_string(op_proto)
globals()[type_name] = __impl__
create_python_ops_creatation_functions()
```
### Message from Python to C++
To hold message needed in the above second step, we define Protobuf message class `OpDesc`. It is used to hold user-specified parameters in Op describing.
```proto
message OpDesc {
required string type = 1;
repeated string inputs = 2;
repeated string outputs = 3;
map<string, AttrValue> attrs = 4;
};
```
## OpProto Register
Every Op has its own `OpProto`. For using convenience, we need to register them and record all their messages. For each `Op` class, we define a corresponding `OpMaker` class, in whose constructor we implement the `OpProto`'s building process. `OpMaker`'s constructor will be invoked by another function `OpRegistry::RegisterOp()`.
```cpp
class OpProtoMaker {
public:
OpProtoMaker(OpProto* proto): proto_(proto) {}
protected:
OpProto* proto_;
void AddInput(const std::string& name, const std::string& desc) {...}
void AddAttr(const std::string& name, const std::string& desc, TypeId type) {...}
void AddComment(const std::string& comment) { ... }
};
class OpRegistry {
public:
using OpCreator = std::function<OperatorBase* (OpDesc& desc)>;
template <typename OpType, typename OpMaker>
static void RegisterOp(const std::string& name) {
gCreators_[name] = [](const OpDesc& desc) {
return new OpType(desc);
};
OpProto& opProto = gProtos_[name];
OpMaker()(&opProto);
}
static map<string, OpCreator> gCreators_;
static map<string, OpProto> gProtos_;
};
template <typename OpType, typename OpMaker>
class OpRegister {
public:
OpRegister(std::string type) {
OpRegistry::RegisterOp<OpType, OpMaker>(type);
}
};
#define REGISTER_OP(op_class, op_maker_class, type_name) \
class op_class##Register { \
private: \
const static OpRegister<#op_class, #op_maker_class> reg; \
}; \
const Register op_class##Register::reg(#type_name);
class CosineOp {
// ...
}
struct CosineOpProtoMaker : public OpProtoMaker {
CosineOpProtoMaker(OpProto* proto) : OpProtoMaker(proto) {
AddInput("input", "input of cosine op");
AddAttr("scale", "scale of cosine op", float).Default(1.0).LargerThan(0.0);
AddType("cos");
AddComment("This is cos op");
}
}
REGISTER_OP(CosineOp, CosineOpProtoMaker, cos);
```
In `REGISTER_OP(CosineOp, CosineOpProtoMaker, cos)`, we register not only `CosineOp` but also `CosineOpProto`. As fields of `CosineOpProto`, the default value and value range of `scale` are also registered here.
## Python API
Python APIs are divided into two types, high-level API and low-level API.
### High-Level API
High-level API is called by users directly, so it should keep its style consistent with existing V2 APIs.
Here is a sample about how a define a fc layer:
```python
hd = fc_layer(input=data, size=56, with_bias=True, activation="sigmoid");
```
`hd` is the output of `fc_layer` and it's a `variable`. It can be further sent into other layers as input.
The definition of `fc_layer()`:
```python
def fc_layer(input, size, with_bias, activation):
attr_map = {"size":size}
check_attrs(attr_map)
w = make_variable('w')
if with_bias:
b = make_variable('b')
else:
b = None
fc_output = make_variable('fc_output');
fc_op(input, w, b, fc_output, attr_map)
act_output = make_variable('sigmod_output');
if activation == "sigmod":
sigmod_op(fc_output, act_output);
elif:
# ...
return act_output;
```
### Low Leval API
In above sample, `fc_op` and `sigmod_op` are low-level API. They build `OpDesc` and invoke corresponding C++ code.
*TODO*
cc_library(paddle_go_optimizer DEPS paddle_optimizer paddle_proto glog gflags protobuf)
go_library(paddle_pserver_cclient STATIC)
add_subdirectory(test)
if(WITH_TESTING)
add_subdirectory(test)
endif()
cc_binary(main SRCS main.c DEPS paddle_pserver_cclient)
cc_test(test_cclient SRCS test_cclient.c DEPS paddle_pserver_cclient)
add_style_check_target(test_cclient test_cclient.c)
#include <stdio.h>
#include <stdlib.h>
#include "libpaddle_pserver_cclient.h"
// TODO(helin): Fix: gtest using cmake is not working, using this
// hacky way for now.
#define fail() \
fprintf(stderr, "info: %s:%d: ", __FILE__, __LINE__); \
exit(-1);
void sendGrads(paddle_pserver_client c) {
unsigned char grad_a[2000] = {2};
unsigned char grad_b[3000] = {3};
paddle_gradient grad1 = {
"param_a", PADDLE_ELEMENT_TYPE_FLOAT32, grad_a, 2000};
paddle_gradient grad2 = {
"param_b", PADDLE_ELEMENT_TYPE_FLOAT32, grad_b, 3000};
paddle_gradient* grads[2] = {&grad1, &grad2};
if (paddle_send_grads(c, grads, 2)) {
fail();
}
}
void getParams(paddle_pserver_client c) {
paddle_parameter param_a;
paddle_parameter param_b;
char name_a[] = "param_a";
char name_b[] = "param_b";
// Must pre-allocate the prameter content before calling paddle_get_params.
unsigned char content_a[2000] = {};
unsigned char content_b[3000] = {};
param_a.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param_a.name = name_a;
param_a.content = content_a;
param_a.content_len = 2000;
param_b.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param_b.name = name_b;
param_b.content = content_b;
param_b.content_len = 3000;
paddle_parameter* params[2] = {&param_a, &param_b};
if (paddle_get_params(c, params, 2)) {
fail();
}
}
int main() {
char addr[] = "localhost:3000";
paddle_pserver_client c = paddle_new_pserver_client(addr, 1);
retry:
if (paddle_begin_init_params(c)) {
paddle_parameter param;
char name_a[] = "param_a";
char name_b[] = "param_b";
unsigned char content_a[2000] = {1};
unsigned char content_b[3000] = {0};
param.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param.name = name_a;
param.content = content_a;
param.content_len = 2000;
int error = paddle_init_param(c, param, NULL, 0);
if (error != 0) {
goto retry;
}
param.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param.name = name_b;
param.content = content_b;
param.content_len = 3000;
error = paddle_init_param(c, param, NULL, 0);
if (error != 0) {
goto retry;
}
error = paddle_finish_init_params(c);
if (error != 0) {
goto retry;
}
}
int i;
for (i = 0; i < 100; i++) {
sendGrads(c);
getParams(c);
}
if (paddle_save_model(c, "/tmp/")) {
fail();
}
return 0;
}
......@@ -3,113 +3,101 @@
#include "libpaddle_pserver_cclient.h"
typedef float real;
void fail() {
// TODO(helin): fix: gtest using cmake is not working, using this
// hacky way for now.
printf("test failed.\n");
// TODO(helin): Fix: gtest using cmake is not working, using this
// hacky way for now.
#define fail() \
fprintf(stderr, "info: %s:%d: ", __FILE__, __LINE__); \
exit(-1);
void sendGrads(paddle_pserver_client c) {
unsigned char grad_a[2000] = {2};
unsigned char grad_b[3000] = {3};
paddle_gradient grad1 = {
"param_a", PADDLE_ELEMENT_TYPE_FLOAT32, grad_a, 2000};
paddle_gradient grad2 = {
"param_b", PADDLE_ELEMENT_TYPE_FLOAT32, grad_b, 3000};
paddle_gradient *grads[2] = {&grad1, &grad2};
if (paddle_send_grads(c, grads, 2)) {
fail();
}
}
void print_parameter(paddle_gradient* param) {
if (param == NULL) {
printf("param is NULL!!\n");
} else {
printf("==== parameter ====\n");
printf("name: %s\n", param->name);
printf("content_len: %d\n", param->content_len);
printf("content_type: %d\n", param->element_type);
int i;
for (i = 0; i < param->content_len / (int)sizeof(real); ++i) {
printf("%f ", ((float*)param->content)[i]);
}
printf("\n\n");
void getParams(paddle_pserver_client c) {
paddle_parameter param_a;
paddle_parameter param_b;
char name_a[] = "param_a";
char name_b[] = "param_b";
// Must pre-allocate the prameter content before calling paddle_get_params.
unsigned char content_a[2000] = {};
unsigned char content_b[3000] = {};
param_a.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param_a.name = name_a;
param_a.content = content_a;
param_a.content_len = 2000;
param_b.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param_b.name = name_b;
param_b.content = content_b;
param_b.content_len = 3000;
paddle_parameter *params[2] = {&param_a, &param_b};
if (paddle_get_params(c, params, 2)) {
fail();
}
}
int main() {
char addr[] = "localhost:3000";
paddle_pserver_client c = paddle_new_pserver_client(addr, 1);
char* names[] = {"param_a", "param_b"};
char *config_proto;
size_t config_proto_len = 0;
ssize_t nread;
FILE *fp = fopen("testdata/optimizer.pb.txt", "r");
if (!fp) {
fail();
}
while ((nread = getline(&config_proto, &config_proto_len, fp)) != -1) {
printf("%s", config_proto);
}
fclose(fp);
retry:
printf("init parameter to pserver:\n");
real param_content1[] = {0.1, 0.2, 0.3};
real param_content2[] = {0.4, 0.5, 0.6};
paddle_parameter** params =
(paddle_parameter**)malloc(sizeof(paddle_parameter*) * 2);
params[0] = (paddle_parameter*)malloc(sizeof(paddle_parameter));
params[0]->name = names[0];
params[0]->content = (unsigned char*)param_content1;
params[0]->content_len = 3 * sizeof(real);
params[0]->element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
params[1] = (paddle_parameter*)malloc(sizeof(paddle_parameter));
params[1]->name = names[1];
params[1]->content = (unsigned char*)param_content2;
params[1]->content_len = 3 * sizeof(real);
params[1]->element_type = PADDLE_ELEMENT_TYPE_INT32;
if (paddle_begin_init_params(c)) {
if (paddle_init_param(c, *params[0], NULL, 0) != 0) {
paddle_parameter param;
char name_a[] = "param_a";
char name_b[] = "param_b";
unsigned char content_a[2000] = {1};
unsigned char content_b[3000] = {0};
param.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param.name = name_a;
param.content = content_a;
param.content_len = 2000;
int error =
paddle_init_param(c, param, (void *)config_proto, config_proto_len);
if (error != 0) {
goto retry;
}
if (paddle_init_param(c, *params[1], NULL, 0) != 0) {
param.element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
param.name = name_b;
param.content = content_b;
param.content_len = 3000;
error = paddle_init_param(c, param, (void *)config_proto, config_proto_len);
if (error != 0) {
goto retry;
}
if (paddle_finish_init_params(c) != 0) {
error = paddle_finish_init_params(c);
if (error != 0) {
goto retry;
}
} else {
fail();
}
printf("get inited parameters from pserver:\n");
// get parameters again by reusing the allocated parameter buffers.
if (paddle_get_params(c, params, 2) != 0) {
fail();
}
print_parameter(params[0]);
print_parameter(params[1]);
printf("send gradient to pserver:\n");
real gradient_content1[] = {0.01, 0.02, 0.03};
real gradinet_content2[] = {0.04, 0.05, 0.06};
paddle_gradient** grads =
(paddle_gradient**)malloc(sizeof(paddle_gradient*) * 2);
grads[0] = (paddle_gradient*)malloc(sizeof(paddle_gradient));
grads[0]->name = names[0];
grads[0]->content = (unsigned char*)gradient_content1;
grads[0]->content_len = 3 * sizeof(real);
grads[0]->element_type = PADDLE_ELEMENT_TYPE_FLOAT32;
grads[1] = (paddle_gradient*)malloc(sizeof(paddle_gradient));
grads[1]->name = names[1];
grads[1]->content = (unsigned char*)gradinet_content2;
grads[1]->content_len = 3 * sizeof(real);
grads[1]->element_type = PADDLE_ELEMENT_TYPE_INT32;
printf("print gradient sent to pserver:\n");
print_parameter(grads[0]);
print_parameter(grads[1]);
if (paddle_send_grads(c, grads, 2) != 0) {
fail();
}
printf("get updated parameters from pserver:\n");
// get parameters again by reusing the allocated parameter buffers.
if (paddle_get_params(c, params, 2) != 0) {
fail();
int i;
for (i = 0; i < 100; i++) {
sendGrads(c);
getParams(c);
}
print_parameter(params[0]);
print_parameter(params[1]);
if (paddle_save_model(c, "/tmp/") != 0) {
if (paddle_save_model(c, "/tmp/")) {
fail();
}
......
......@@ -22,6 +22,8 @@ def main():
# create optimizer
optimizer = paddle.optimizer.Momentum(momentum=0)
#TODO(zhihong) : replace optimizer with new OptimizerConfig
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer,
......
package pserver_test
import (
"io/ioutil"
"net"
"net/http"
"net/rpc"
......@@ -74,18 +75,22 @@ func TestClientFull(t *testing.T) {
}
const numParameter = 100
config, err := ioutil.ReadFile("./cclient/test/testdata/optimizer.pb.txt")
if err != nil {
t.Fatalf("read optimizer proto failed")
}
for i := 0; i < numParameter; i++ {
var p pserver.Parameter
p.Name = "p_" + strconv.Itoa(i)
p.ElementType = pserver.Float32
p.Content = make([]byte, (i+1)*100)
err := c.InitParam(pserver.ParameterWithConfig{Param: p})
err := c.InitParam(pserver.ParameterWithConfig{Param: p, Config: config})
if err != nil {
t.Fatal(err)
}
}
err := c.FinishInitParams()
err = c.FinishInitParams()
if err != nil {
t.Fatal(err)
}
......
#include <stdlib.h>
#include "optimizer.h"
typedef int (*update_func)(void*, void*, paddle_element_type, const void*, int);
typedef void (*release_func)(void*);
typedef struct paddle_optimizer {
update_func update;
release_func release;
void* optimizer;
} paddle_optimizer;
void paddle_release_optimizer(paddle_optimizer* o) {
o->release(o->optimizer);
free(o);
}
int paddle_update_parameter(paddle_optimizer* o,
void* buffer,
paddle_element_type element_type,
const void* gradient,
int num_bytes) {
return o->update(o->optimizer, buffer, element_type, gradient, num_bytes);
}
typedef struct { double learning_rate; } SGD_optimizer;
int update_SGD(void* optimizer,
void* buffer,
paddle_element_type element_type,
const void* gradient,
int num_bytes) {
SGD_optimizer* o = (SGD_optimizer*)optimizer;
float* parameter = (float*)buffer;
float* grad = (float*)gradient;
int i;
for (i = 0; i < num_bytes / sizeof(float); ++i) {
parameter[i] -= o->learning_rate * grad[i];
}
return 0;
}
void release_SGD(void* optimizer) {
SGD_optimizer* o = (SGD_optimizer*)optimizer;
// nothing allocated on heap
}
paddle_optimizer* paddle_create_SGD_optimizer(double learning_rate) {
SGD_optimizer* impl = (SGD_optimizer*)malloc(sizeof(SGD_optimizer));
impl->learning_rate = learning_rate;
paddle_optimizer* opt = (paddle_optimizer*)malloc(sizeof(paddle_optimizer));
opt->update = update_SGD;
opt->release = release_SGD;
opt->optimizer = impl;
return opt;
}
package pserver
/*
#include "optimizer.h"
*/
// #cgo CFLAGS: -I ../../
// //FIXME: ldflags contain "build" path
// #cgo LDFLAGS: ../../build/go/pserver/cclient/libpaddle_go_optimizer.a -lstdc++
// #include "paddle/optimizer/optimizer.h"
// #include <stdlib.h>
// #include <string.h>
import "C"
import (
"fmt"
"unsafe"
)
type optimizerType int
const (
sgd optimizerType = iota
log "github.com/sirupsen/logrus"
)
var nullPtr = unsafe.Pointer(uintptr(0))
type optimizer struct {
opt *C.struct_paddle_optimizer
opt *C.struct_paddle_optimizer
elementType ElementType
}
func newOptimizer(t optimizerType, learning_rate float64) *optimizer {
func cArrayToSlice(p unsafe.Pointer, len int) []byte {
if p == nullPtr {
return nil
}
// create a Go clice backed by a C array, reference:
// https://github.com/golang/go/wiki/cgo#turning-c-arrays-into-go-slices
//
// Go garbage collector will not interact with this data, need
// to be freed properly.
return (*[1 << 30]byte)(p)[:len:len]
}
func newOptimizer(paramWithConfigs ParameterWithConfig) *optimizer {
o := &optimizer{}
o.opt = C.paddle_create_SGD_optimizer(C.double(learning_rate))
o.elementType = paramWithConfigs.Param.ElementType
p := paramWithConfigs.Param
c := paramWithConfigs.Config
log.WithFields(log.Fields{
"ElementType": p.ElementType,
"ParamSize": len(p.Content),
"ConfigSize": len(c),
}).Info("New Optimizer Created with config:")
var cbuffer unsafe.Pointer
cbuffer = C.malloc(C.size_t(len(p.Content)))
C.memcpy(cbuffer, unsafe.Pointer(&p.Content[0]), C.size_t(len(p.Content)))
o.opt = C.paddle_create_optimizer((*C.uchar)(&c[0]), C.int(len(c)),
C.paddle_element_type(p.ElementType), cbuffer, C.int(len(p.Content)/C.sizeof_float),
(*C.char)(nullPtr), 0)
return o
}
func (o *optimizer) UpdateParameter(p Parameter, g Gradient) error {
if len(p.Content) != len(g.Content) {
return fmt.Errorf("Name: %s, parameter and gradient length not match, parameter: %d, gradient: %d", p.Name, len(p.Content), len(g.Content))
}
func (o *optimizer) GetWeights() []byte {
var buffer unsafe.Pointer
buffer_len := C.paddle_optimizer_get_weights(o.opt, &buffer)
return cArrayToSlice(buffer, int(buffer_len)*C.sizeof_float)
}
if p.ElementType != g.ElementType {
return fmt.Errorf("Name: %s, parameter and gradient element type not match, parameter: %v, gradient: %v", p.Name, p.ElementType, g.ElementType)
func (o *optimizer) UpdateParameter(g Gradient) error {
if o.elementType != g.ElementType {
return fmt.Errorf("Name: %s, parameter and gradient element type not match, parameter: %v, gradient: %v", g.Name, o.elementType, g.ElementType)
}
r := C.paddle_update_parameter(o.opt, unsafe.Pointer(&p.Content[0]), C.paddle_element_type(p.ElementType), unsafe.Pointer(&g.Content[0]), C.int(len(g.Content)))
r := C.paddle_update_parameter(o.opt, C.paddle_element_type(g.ElementType), unsafe.Pointer(&g.Content[0]), C.int(len(g.Content))/C.sizeof_float)
if r != 0 {
return fmt.Errorf("optimizer update returned error code: %d", r)
}
......
#ifndef PADDLE_PSERVER_OPTIMIZER_H
#define PADDLE_PSERVER_OPTIMIZER_H
typedef enum {
PADDLE_ELEMENT_TYPE_INT32 = 0,
PADDLE_ELEMENT_TYPE_UINT32 = 1,
PADDLE_ELEMENT_TYPE_INT64 = 2,
PADDLE_ELEMENT_TYPE_UINT64 = 3,
PADDLE_ELEMENT_TYPE_FLOAT32 = 4,
PADDLE_ELEMENT_TYPE_FLOAT64 = 5,
} paddle_element_type;
struct paddle_optimizer;
struct paddle_optimizer* paddle_create_SGD_optimizer(double learning_rate);
void paddle_release_optimizer(struct paddle_optimizer* o);
int paddle_update_parameter(struct paddle_optimizer* o,
void* buffer,
paddle_element_type element_type,
const void* gradient,
int num_bytes);
#endif /* PADDLE_PSERVER_OPTIMIZER_H */
package pserver
import "testing"
import (
"io/ioutil"
"testing"
)
func TestSGDCreateRelease(t *testing.T) {
o := newOptimizer(sgd, 1)
func TestOptimizerCreateRelease(t *testing.T) {
p := Parameter{
Name: "a",
ElementType: Int32,
}
p.Content = []byte{1, 3}
config, err := ioutil.ReadFile("./cclient/test/testdata/optimizer.pb.txt")
if err != nil {
t.Fatalf("read optimizer proto failed")
}
param := ParameterWithConfig{
Param: p,
Config: config,
}
o := newOptimizer(param)
o.Cleanup()
}
......@@ -48,9 +48,8 @@ type Service struct {
initialized chan struct{}
idx int
mu sync.Mutex
opt *optimizer
paramMap map[string]Parameter
mu sync.Mutex
optMap map[string]*optimizer
}
// NewService creates a new service, will bypass etcd registration if no
......@@ -58,9 +57,8 @@ type Service struct {
func NewService(idx int) (*Service, error) {
s := &Service{
idx: idx,
opt: newOptimizer(sgd, 0.005),
}
s.paramMap = make(map[string]Parameter)
s.optMap = make(map[string]*optimizer)
s.initialized = make(chan struct{})
return s, nil
}
......@@ -81,7 +79,7 @@ func (s *Service) InitParam(paramWithConfigs ParameterWithConfig, dummy *int) er
// TODO(helin): check if paramWithConfigs.Param.Content is
// properly memory aligned, if not, make copy to a memory
// aligned region.
s.paramMap[paramWithConfigs.Param.Name] = paramWithConfigs.Param
s.optMap[paramWithConfigs.Param.Name] = newOptimizer(paramWithConfigs)
return nil
}
......@@ -110,12 +108,12 @@ func (s *Service) SendGrad(g Gradient, dummy *int) error {
s.mu.Lock()
defer s.mu.Unlock()
p, ok := s.paramMap[g.Name]
o, ok := s.optMap[g.Name]
if !ok {
return fmt.Errorf("parameter: %s does not exist", g.Name)
}
return s.opt.UpdateParameter(p, g)
return o.UpdateParameter(g)
}
// GetParam gets parameters from the parameter server.
......@@ -124,7 +122,7 @@ func (s *Service) GetParam(name string, parameter *Parameter) error {
s.mu.Lock()
defer s.mu.Unlock()
p, ok := s.paramMap[name]
opt, ok := s.optMap[name]
if !ok {
return fmt.Errorf("parameter: %s does not exist", name)
}
......@@ -136,7 +134,9 @@ func (s *Service) GetParam(name string, parameter *Parameter) error {
// nature. This race condition is allowed deliberately
// to save the program from making a copy of the
// paramter content.
*parameter = p
parameter.Name = name
parameter.ElementType = opt.elementType
parameter.Content = opt.GetWeights()
return nil
}
......
package pserver_test
import (
"io/ioutil"
"reflect"
"sync"
"testing"
......@@ -9,7 +10,7 @@ import (
"github.com/PaddlePaddle/Paddle/go/pserver"
)
func TestFull(t *testing.T) {
func TestServiceFull(t *testing.T) {
s, err := pserver.NewService(0)
if err != nil {
t.Error(err)
......@@ -18,7 +19,12 @@ func TestFull(t *testing.T) {
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
config, err := ioutil.ReadFile("./cclient/test/testdata/optimizer.pb.txt")
if err != nil {
t.Fatalf("read optimizer proto failed")
}
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: config}, nil)
if err != nil {
t.FailNow()
}
......@@ -27,7 +33,7 @@ func TestFull(t *testing.T) {
p1.Name = "param_b"
p1.Content = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
p1.ElementType = pserver.Float32
err = s.InitParam(pserver.ParameterWithConfig{Param: p1, Config: nil}, nil)
err = s.InitParam(pserver.ParameterWithConfig{Param: p1, Config: config}, nil)
if err != nil {
t.FailNow()
}
......@@ -48,6 +54,7 @@ func TestFull(t *testing.T) {
}
g1, g2 := pserver.Gradient(p1), pserver.Gradient(p)
err = s.SendGrad(g1, nil)
if err != nil {
t.FailNow()
......@@ -142,7 +149,12 @@ func TestBlockUntilInitialized(t *testing.T) {
p.Name = "param_a"
p.Content = []byte{1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0}
p.ElementType = pserver.Int32
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: nil}, nil)
config, err := ioutil.ReadFile("./cclient/test/testdata/optimizer.pb.txt")
if err != nil {
t.Fatalf("read optimizer proto failed")
}
err = s.InitParam(pserver.ParameterWithConfig{Param: p, Config: config}, nil)
if err != nil {
t.FailNow()
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle {
namespace framework {
class Tensor {
using paddle::platform::Place;
using paddle::platform::get_place;
public:
template <typename T>
const T* data() const {
PADDLE_ASSERT(holder_ != nullptr,
"Tensor::data must be called after Tensor::mutable_data");
return static_cast<const T*>(holder->Ptr());
}
template <typename T, // must be POD types
typename = std::enable_if<std::is_pod<T>::value>::type>
T* mutable_data(DDim dims, Place place) {
if (holder_ == nullptr || holder_->Place() != place ||
holder_->Size() < dims.product() * sizeof(T)) {
holder_.reset(new PlaceholderImpl(place, dims.product() * sizeof(T)));
}
return static_cast<T*>(holder_->Ptr());
}
template <typename T, // must be POD types
typename = std::enable_if<std::is_pod<T>::value>::type>
T* mutable_data(DDim dims) {
return mutable_data<T>(dims, paddle::platform::get_place());
}
private:
// Placeholder hides type T, so it doesn't appear as a template
// parameter of Variable.
struct Placeholder {
virtual ~Placeholder() {}
virtual void* Ptr() const = 0;
virtual Place Place() const = 0;
virtual size_t Size() const = 0;
};
template <typename T>
struct PlaceholderImpl : public Placeholder {
PlaceholderImpl(Place pl, size_t size)
: ptr_(paddle::memory::Alloc(pl, size), paddle::memory::Deleter(pl)),
place_(pl),
size_(size) {}
virtual void* Ptr() const { return static_cast<void*>(ptr_.get()); }
virtual size_t Size() const { return size_; }
virtual Place Place() const { return place_; }
std::unique_ptr<T, memory::Deleter> ptr_;
Place place_; // record the place of ptr_.
size_t size_; // size of the memory block.
};
std::unique_ptr<Placeholder> holder_; // holds the memory block if allocated.
};
} // namespace framework
} // namespace paddle
......@@ -12,6 +12,7 @@ set(OPITMIZER_SRCS
add_library(paddle_optimizer STATIC ${OPITMIZER_SRCS})
add_dependencies(paddle_optimizer paddle_proto ${external_project_dependencies})
if(WITH_TESTING)
add_simple_unittest(serialization_test)
add_simple_unittest(parameter_optimizer_test)
......
......@@ -2082,10 +2082,10 @@ class MaxOutLayer(LayerBase):
class RowConvLayer(LayerBase):
def __init__(self, name, inputs, context_length, **xargs):
super(RowConvLayer, self).__init__(
name, 'maxout', 0, inputs=inputs, **xargs)
name, 'row_conv', 0, inputs=inputs, **xargs)
config_assert(
len(self.inputs) == 1,
'TransLayer must have one and only one input')
'row convolution layer must have one and only one input.')
input_layer = self.get_input_layer(0)
row_conv_conf = self.config.inputs[0].row_conv_conf
row_conv_conf.context_length = context_length
......
......@@ -7,7 +7,7 @@ layers {
}
layers {
name: "__row_conv_layer_0__"
type: "maxout"
type: "row_conv"
size: 2560
active_type: "relu"
inputs {
......
......@@ -30,6 +30,7 @@ http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
"""
import cPickle
import itertools
import functools
from common import download
import tarfile
import scipy.io as scio
......@@ -54,21 +55,26 @@ TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
def default_mapper(sample):
def default_mapper(is_train, sample):
'''
map image bytes data to type needed by model input layer
'''
img, label = sample
img = load_image_bytes(img)
img = simple_transform(img, 256, 224, True)
img = simple_transform(
img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
return img.flatten().astype('float32'), label
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)
def reader_creator(data_file,
label_file,
setid_file,
dataset_name,
mapper=default_mapper,
mapper,
buffered_size=1024,
use_xmap=True):
'''
......@@ -118,7 +124,7 @@ def reader_creator(data_file,
return map_readers(mapper, reader)
def train(mapper=default_mapper, buffered_size=1024, use_xmap=True):
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True):
'''
Create flowers training set reader.
It returns a reader, each sample in the reader is
......@@ -141,7 +147,7 @@ def train(mapper=default_mapper, buffered_size=1024, use_xmap=True):
buffered_size, use_xmap)
def test(mapper=default_mapper, buffered_size=1024, use_xmap=True):
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True):
'''
Create flowers test set reader.
It returns a reader, each sample in the reader is
......@@ -164,7 +170,7 @@ def test(mapper=default_mapper, buffered_size=1024, use_xmap=True):
buffered_size, use_xmap)
def valid(mapper=default_mapper, buffered_size=1024, use_xmap=True):
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
'''
Create flowers validation set reader.
It returns a reader, each sample in the reader is
......
......@@ -262,7 +262,12 @@ def left_right_flip(im):
return im[:, ::-1, :]
def simple_transform(im, resize_size, crop_size, is_train, is_color=True):
def simple_transform(im,
resize_size,
crop_size,
is_train,
is_color=True,
mean=None):
"""
Simply data argumentation for training. These operations include
resizing, croping and flipping.
......@@ -288,7 +293,19 @@ def simple_transform(im, resize_size, crop_size, is_train, is_color=True):
im = left_right_flip(im)
else:
im = center_crop(im, crop_size)
im = to_chw(im)
if len(im.shape) == 3:
im = to_chw(im)
im = im.astype('float32')
if mean is not None:
mean = np.array(mean, dtype=np.float32)
# mean value, may be one value per channel
if mean.ndim == 1:
mean = mean[:, np.newaxis, np.newaxis]
else:
# elementwise mean
assert len(mean.shape) == len(im)
im -= mean
return im
......@@ -297,7 +314,8 @@ def load_and_transform(filename,
resize_size,
crop_size,
is_train,
is_color=True):
is_color=True,
mean=None):
"""
Load image from the input file `filename` and transform image for
data argumentation. Please refer to the `simple_transform` interface
......@@ -318,5 +336,5 @@ def load_and_transform(filename,
:type is_train: bool
"""
im = load_image(filename)
im = simple_transform(im, resize_size, crop_size, is_train, is_color)
im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean)
return im
......@@ -5,6 +5,8 @@ import paddle.trainer_config_helpers.optimizers as v1_optimizers
"""
Optimizers(update equation) for SGD method.
TODO(zhihong) : create new optimizer with proto config, add new optimizer here
TODO(yuyang18): Complete comments.
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册