Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ff28b1ff
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ff28b1ff
编写于
11月 09, 2018
作者:
X
Xin Pan
提交者:
GitHub
11月 09, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14071 from barrierye/add_similarity_focus_op
Add similarity focus op
上级
688ed601
ef8218be
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
586 addition
and
0 deletion
+586
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/similarity_focus_op.cc
paddle/fluid/operators/similarity_focus_op.cc
+87
-0
paddle/fluid/operators/similarity_focus_op.h
paddle/fluid/operators/similarity_focus_op.h
+168
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+113
-0
python/paddle/fluid/tests/unittests/test_similarity_focus_op.py
.../paddle/fluid/tests/unittests/test_similarity_focus_op.py
+217
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ff28b1ff
...
...
@@ -179,6 +179,7 @@ paddle.fluid.layers.space_to_depth ArgSpec(args=['x', 'blocksize', 'name'], vara
paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.similarity_focus ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.grid_sampler ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None))
...
...
paddle/fluid/operators/similarity_focus_op.cc
0 → 100644
浏览文件 @
ff28b1ff
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/similarity_focus_op.h"
namespace
paddle
{
namespace
operators
{
class
SimilarityFocusOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a 4-D tensor with shape,"
" [BatchSize, X, Y, Z]"
);
AddOutput
(
"Out"
,
"(Tensor, default Tensor<float>), the similarity focus mask"
" with the same shape of input X."
);
AddAttr
<
int
>
(
"axis"
,
"(int32), indicating the dimension to be select. It can"
" only be 1, 2, or 3."
);
AddAttr
<
std
::
vector
<
int
>>
(
"indexes"
,
"(std::vector<int32>), indicating the indexes"
" of the selected dimension."
);
AddComment
(
R"DOC(
SimilarityFocus Operator.
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
2. For each index, find the largest numbers in the tensor T, so that the same
row and same column has at most one number(what it means is that if the
largest number has been found in the i-th row and the j-th column, then
the numbers in the i-th row or j-th column will be skipped. And then the
next largest number will be selected from the remaining numbers. Obviously
there will be min(B, C) numbers), and mark the corresponding position of the
3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X.
Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_
)DOC"
);
}
};
class
SimilarityFocusOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
"Input(X)'s rank should be 4."
);
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
platform
::
CPUPlace
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
similarity_focus
,
ops
::
SimilarityFocusOp
,
ops
::
SimilarityFocusOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
similarity_focus
,
ops
::
SimilarityFocusKernel
<
float
>
,
ops
::
SimilarityFocusKernel
<
double
>
);
paddle/fluid/operators/similarity_focus_op.h
0 → 100644
浏览文件 @
ff28b1ff
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <cstring>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
SimilarityFocusKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
Tensor
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
x_data
=
x
->
data
<
T
>
();
int
axis
=
context
.
Attr
<
int
>
(
"axis"
);
std
::
vector
<
int
>
indexes
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"indexes"
);
int64_t
batch_size
=
x
->
dims
()[
0
];
int64_t
dim
[
4
];
for
(
int
i
=
1
;
i
<=
3
;
++
i
)
{
dim
[
i
]
=
x
->
dims
()[
i
];
}
if
(
indexes
.
size
()
<
1
)
{
PADDLE_THROW
(
"Indexes' size can not be 0."
);
}
for
(
auto
index
:
indexes
)
{
if
(
dim
[
axis
]
<
index
)
{
PADDLE_THROW
(
"Index exceeds tensor shape limit."
);
}
}
int64_t
array_size
=
1
;
for
(
int
i
=
1
;
i
<=
3
;
++
i
)
{
if
(
i
!=
axis
)
{
array_size
*=
dim
[
i
];
}
}
std
::
vector
<
std
::
pair
<
T
,
int64_t
>>
array
(
array_size
);
bool
(
*
cmp
)(
std
::
pair
<
T
,
int64_t
>
,
std
::
pair
<
T
,
int64_t
>
)
=
[](
std
::
pair
<
T
,
int64_t
>
x
,
std
::
pair
<
T
,
int64_t
>
y
)
{
return
x
.
first
>
y
.
first
;
};
int64_t
(
*
compute_index
)(
int64_t
*
,
int
,
int
,
int
,
int
)
=
[](
int64_t
*
dim
,
int
d1
,
int
d2
,
int
d3
,
int
d4
)
{
return
d1
*
dim
[
1
]
*
dim
[
2
]
*
dim
[
3
]
+
d2
*
dim
[
2
]
*
dim
[
3
]
+
d3
*
dim
[
3
]
+
d4
;
};
memset
(
out_data
,
0
,
sizeof
(
T
)
*
batch_size
*
dim
[
1
]
*
dim
[
2
]
*
dim
[
3
]);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
auto
index
:
indexes
)
{
if
(
axis
==
1
)
{
for
(
int
j
=
0
;
j
<
dim
[
2
];
++
j
)
{
for
(
int
k
=
0
;
k
<
dim
[
3
];
++
k
)
{
array
[
j
*
dim
[
3
]
+
k
]
=
std
::
make_pair
(
x_data
[
compute_index
(
dim
,
i
,
index
,
j
,
k
)],
j
*
dim
[
3
]
+
k
);
}
}
std
::
sort
(
array
.
begin
(),
array
.
end
(),
cmp
);
int
tag_num
=
0
;
std
::
vector
<
bool
>
tag2
(
dim
[
2
]),
tag3
(
dim
[
3
]);
for
(
auto
x
:
array
)
{
int
idx2
=
x
.
second
/
dim
[
3
];
int
idx3
=
x
.
second
%
dim
[
3
];
if
(
tag2
[
idx2
]
||
tag3
[
idx3
])
{
continue
;
}
tag_num
++
;
tag2
[
idx2
]
=
true
;
tag3
[
idx3
]
=
true
;
for
(
int
j
=
0
;
j
<
dim
[
1
];
++
j
)
{
out_data
[
compute_index
(
dim
,
i
,
j
,
idx2
,
idx3
)]
=
1
;
}
if
(
tag_num
==
std
::
min
(
dim
[
2
],
dim
[
3
]))
{
break
;
}
}
}
else
if
(
axis
==
2
)
{
for
(
int
j
=
0
;
j
<
dim
[
1
];
++
j
)
{
for
(
int
k
=
0
;
k
<
dim
[
3
];
++
k
)
{
array
[
j
*
dim
[
3
]
+
k
]
=
std
::
make_pair
(
x_data
[
compute_index
(
dim
,
i
,
j
,
index
,
k
)],
j
*
dim
[
3
]
+
k
);
}
}
std
::
sort
(
array
.
begin
(),
array
.
end
(),
cmp
);
int
tag_num
=
0
;
std
::
vector
<
bool
>
tag1
(
dim
[
1
]),
tag3
(
dim
[
3
]);
for
(
auto
x
:
array
)
{
int
idx1
=
x
.
second
/
dim
[
3
];
int
idx3
=
x
.
second
%
dim
[
3
];
if
(
tag1
[
idx1
]
||
tag3
[
idx3
])
{
continue
;
}
tag_num
++
;
tag1
[
idx1
]
=
true
;
tag3
[
idx3
]
=
true
;
for
(
int
j
=
0
;
j
<
dim
[
2
];
++
j
)
{
out_data
[
compute_index
(
dim
,
i
,
idx1
,
j
,
idx3
)]
=
1
;
}
if
(
tag_num
==
std
::
min
(
dim
[
1
],
dim
[
3
]))
{
break
;
}
}
}
else
if
(
axis
==
3
)
{
for
(
int
j
=
0
;
j
<
dim
[
1
];
++
j
)
{
for
(
int
k
=
0
;
k
<
dim
[
2
];
++
k
)
{
array
[
j
*
dim
[
2
]
+
k
]
=
std
::
make_pair
(
x_data
[
compute_index
(
dim
,
i
,
j
,
k
,
index
)],
j
*
dim
[
2
]
+
k
);
}
}
std
::
sort
(
array
.
begin
(),
array
.
end
(),
cmp
);
int
tag_num
=
0
;
std
::
vector
<
bool
>
tag1
(
dim
[
1
]),
tag2
(
dim
[
2
]);
for
(
auto
x
:
array
)
{
int
idx1
=
x
.
second
/
dim
[
2
];
int
idx2
=
x
.
second
%
dim
[
2
];
if
(
tag1
[
idx1
]
||
tag2
[
idx2
])
{
continue
;
}
tag_num
++
;
tag1
[
idx1
]
=
true
;
tag2
[
idx2
]
=
true
;
for
(
int
j
=
0
;
j
<
dim
[
3
];
++
j
)
{
out_data
[
compute_index
(
dim
,
i
,
idx1
,
idx2
,
j
)]
=
1
;
}
if
(
tag_num
==
std
::
min
(
dim
[
1
],
dim
[
2
]))
{
break
;
}
}
}
else
{
PADDLE_THROW
(
"Axis must be 1 or 2 or 3"
);
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
ff28b1ff
...
...
@@ -160,6 +160,7 @@ __all__ = [
'affine_grid'
,
'sequence_reverse'
,
'affine_channel'
,
'similarity_focus'
,
'hash'
,
'grid_sampler'
,
'log_loss'
,
...
...
@@ -7933,6 +7934,118 @@ def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
return
out
def
similarity_focus
(
input
,
axis
,
indexes
,
name
=
None
):
"""
SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
2. For each index, find the largest numbers in the tensor T, so that the same
row and same column has at most one number(what it means is that if the
largest number has been found in the i-th row and the j-th column, then
the numbers in the i-th row or j-th column will be skipped. And then the
next largest number will be selected from the remaining numbers. Obviously
there will be min(B, C) numbers), and mark the corresponding position of the
3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X.
Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_
.. code-block:: text
* Example :
Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
the number of channels and the shape of feature map is (A, B):
x.shape = (2, 3, 2, 2)
x.data = [[[[0.8, 0.1],
[0.4, 0.5]],
[[0.9, 0.7],
[0.9, 0.9]],
[[0.8, 0.9],
[0.1, 0.2]]],
[[[0.2, 0.5],
[0.3, 0.4]],
[[0.9, 0.7],
[0.8, 0.4]],
[[0.0, 0.2],
[0.4, 0.7]]]]
Given axis: 1 (the axis of the channel)
Given indexes: [0]
then we get a 4-D tensor out with the same shape of input x:
out.shape = (2, 3, 2, 2)
out.data = [[[[1.0, 0.0],
[0.0, 1.0]],
[[1.0, 0.0],
[0.0, 1.0]],
[[1.0, 0.0],
[0.0, 1.0]]],
[[[0.0, 1.0],
[1.0, 0.0]],
[[0.0, 1.0],
[1.0, 0.0]],
[[0.0, 1.0],
[1.0, 0.0]]]]
Args:
input(Variable): The input tensor variable(default float). It should
be a 4-D tensor with shape [BatchSize, A, B, C].
axis(int): Indicating the dimension to be selected. It can only be
1, 2 or 3.
indexes(list): Indicating the indexes of the selected dimension.
Returns:
Variable: A tensor variable with the same shape and same type
as the input.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[2, 3, 2, 2], dtype='float32')
x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
"""
helper
=
LayerHelper
(
'similarity_focus'
,
**
locals
())
# check attrs
if
isinstance
(
axis
,
int
)
is
False
:
raise
TypeError
(
"axis must be int type."
)
if
isinstance
(
indexes
,
list
)
is
False
:
raise
TypeError
(
"indexes must be list type."
)
if
axis
!=
1
and
axis
!=
2
and
axis
!=
3
:
raise
ValueError
(
"axis must be 1, 2 or 3."
)
if
len
(
indexes
)
==
0
:
raise
ValueError
(
"indexes can not be empty."
)
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
input
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
'similarity_focus'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
"axis"
:
axis
,
"indexes"
:
indexes
})
return
out
def
hash
(
input
,
hash_size
,
num_hash
=
1
,
name
=
None
):
"""
Hash the input to an integer whose value is less than the given hash size.
...
...
python/paddle/fluid/tests/unittests/test_similarity_focus_op.py
0 → 100755
浏览文件 @
ff28b1ff
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
class
TestSimilarityFocusOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"similarity_focus"
batch_size
=
2
x_dim
,
y_dim
,
z_dim
=
3
,
2
,
2
self
.
inputs
=
{
'X'
:
np
.
array
([[[[
0.8
,
0.1
],
[
0.4
,
0.5
]],
[[
0.9
,
0.7
],
[
0.9
,
0.9
]],
[[
0.8
,
0.9
],
[
0.1
,
0.2
]]],
[[[
0.2
,
0.5
],
[
0.3
,
0.4
]],
[[
0.9
,
0.7
],
[
0.8
,
0.4
]],
[[
0.0
,
0.2
],
[
0.4
,
0.7
]]]]),
}
self
.
attrs
=
{
'axis'
:
1
,
'indexes'
:
[
0
],
}
output
=
None
for
batch
in
range
(
batch_size
):
res
=
np
.
zeros
((
1
,
y_dim
,
z_dim
)).
astype
(
"float32"
).
reshape
(
-
1
)
for
index
in
self
.
attrs
[
'indexes'
]:
channel
=
self
.
inputs
[
'X'
][
batch
,
index
,
:,
:].
reshape
(
-
1
).
copy
(
)
tag1
=
[
0
for
i
in
range
(
y_dim
)]
tag2
=
[
0
for
i
in
range
(
z_dim
)]
cnt
=
0
for
i
in
range
(
channel
.
size
):
index
=
channel
.
argmax
()
idx1
=
index
//
z_dim
idx2
=
index
%
z_dim
if
tag1
[
idx1
]
+
tag2
[
idx2
]
==
0
:
tag1
[
idx1
]
=
1
tag2
[
idx2
]
=
1
res
[
index
]
=
1
cnt
+=
1
if
cnt
==
min
(
y_dim
,
z_dim
):
break
channel
[
index
]
=
-
1
res
=
res
.
reshape
(
1
,
y_dim
,
z_dim
).
repeat
([
x_dim
],
axis
=
0
)
res
=
res
.
reshape
(
1
,
x_dim
,
y_dim
,
z_dim
)
if
output
is
not
None
:
output
=
np
.
concatenate
((
output
,
res
),
axis
=
0
)
else
:
output
=
res
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSimilarityFocusOp_axis1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"similarity_focus"
batch_size
=
3
x_dim
,
y_dim
,
z_dim
=
4
,
5
,
6
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
(
batch_size
,
x_dim
,
y_dim
,
z_dim
)).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
1
,
'indexes'
:
[
0
,
3
],
}
output
=
None
for
batch
in
range
(
batch_size
):
res
=
np
.
zeros
((
1
,
y_dim
,
z_dim
)).
astype
(
"float32"
).
reshape
(
-
1
)
for
index
in
self
.
attrs
[
'indexes'
]:
channel
=
self
.
inputs
[
'X'
][
batch
,
index
,
:,
:].
reshape
(
-
1
).
copy
(
)
tag1
=
[
0
for
i
in
range
(
y_dim
)]
tag2
=
[
0
for
i
in
range
(
z_dim
)]
cnt
=
0
for
i
in
range
(
channel
.
size
):
index
=
channel
.
argmax
()
idx1
=
index
//
z_dim
idx2
=
index
%
z_dim
if
tag1
[
idx1
]
+
tag2
[
idx2
]
==
0
:
tag1
[
idx1
]
=
1
tag2
[
idx2
]
=
1
res
[
index
]
=
1
cnt
+=
1
if
cnt
==
min
(
y_dim
,
z_dim
):
break
channel
[
index
]
=
-
1
res
=
res
.
reshape
(
1
,
y_dim
,
z_dim
)
res
=
res
.
repeat
([
x_dim
],
axis
=
0
)
res
=
res
.
reshape
(
1
,
x_dim
,
y_dim
,
z_dim
)
if
output
is
not
None
:
output
=
np
.
concatenate
((
output
,
res
),
axis
=
0
)
else
:
output
=
res
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSimilarityFocusOp_axis2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"similarity_focus"
batch_size
=
6
x_dim
,
y_dim
,
z_dim
=
7
,
8
,
9
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
(
batch_size
,
x_dim
,
y_dim
,
z_dim
)).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
2
,
'indexes'
:
[
0
,
3
,
5
],
}
output
=
None
for
batch
in
range
(
batch_size
):
res
=
np
.
zeros
((
x_dim
,
1
,
z_dim
)).
astype
(
"float32"
).
reshape
(
-
1
)
for
index
in
self
.
attrs
[
'indexes'
]:
channel
=
self
.
inputs
[
'X'
][
batch
,
:,
index
,
:].
reshape
(
-
1
).
copy
(
)
tag1
=
[
0
for
i
in
range
(
x_dim
)]
tag2
=
[
0
for
i
in
range
(
z_dim
)]
cnt
=
0
for
i
in
range
(
channel
.
size
):
index
=
channel
.
argmax
()
idx1
=
index
//
z_dim
idx2
=
index
%
z_dim
if
tag1
[
idx1
]
+
tag2
[
idx2
]
==
0
:
tag1
[
idx1
]
=
1
tag2
[
idx2
]
=
1
res
[
index
]
=
1
cnt
+=
1
if
cnt
==
min
(
x_dim
,
z_dim
):
break
channel
[
index
]
=
-
1
res
=
res
.
reshape
(
x_dim
,
1
,
z_dim
)
res
=
res
.
repeat
([
y_dim
],
axis
=
1
)
res
=
res
.
reshape
(
1
,
x_dim
,
y_dim
,
z_dim
)
if
output
is
not
None
:
output
=
np
.
concatenate
((
output
,
res
),
axis
=
0
)
else
:
output
=
res
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestSimilarityFocusOp_axis3
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"similarity_focus"
batch_size
=
64
x_dim
,
y_dim
,
z_dim
=
48
,
48
,
13
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
(
batch_size
,
x_dim
,
y_dim
,
z_dim
)).
astype
(
"float32"
),
}
self
.
attrs
=
{
'axis'
:
3
,
'indexes'
:
[
0
,
2
,
7
,
9
],
}
output
=
None
for
batch
in
range
(
batch_size
):
res
=
np
.
zeros
((
x_dim
,
y_dim
,
1
)).
astype
(
"float32"
).
reshape
(
-
1
)
for
index
in
self
.
attrs
[
'indexes'
]:
channel
=
self
.
inputs
[
'X'
][
batch
,
:,
:,
index
].
reshape
(
-
1
).
copy
(
)
tag1
=
[
0
for
i
in
range
(
x_dim
)]
tag2
=
[
0
for
i
in
range
(
y_dim
)]
cnt
=
0
for
i
in
range
(
channel
.
size
):
index
=
channel
.
argmax
()
idx1
=
index
//
y_dim
idx2
=
index
%
y_dim
if
tag1
[
idx1
]
+
tag2
[
idx2
]
==
0
:
tag1
[
idx1
]
=
1
tag2
[
idx2
]
=
1
res
[
index
]
=
1
cnt
+=
1
if
cnt
==
min
(
x_dim
,
y_dim
):
break
channel
[
index
]
=
-
1
res
=
res
.
reshape
(
x_dim
,
y_dim
,
1
)
res
=
res
.
repeat
([
z_dim
],
axis
=
2
)
res
=
res
.
reshape
(
1
,
x_dim
,
y_dim
,
z_dim
)
if
output
is
not
None
:
output
=
np
.
concatenate
((
output
,
res
),
axis
=
0
)
else
:
output
=
res
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录