提交 fd0bdb4f 编写于 作者: Y Yu Yang

Merge branch 'feature/change_op_creation' into feature/uniform_random_op

import paddle.v2.framework.core as core
from paddle.v2.framework.create_op_creation_methods import op_creations
from default_scope_funcs import new_var, find_var, get_cur_scope
__all__ = ['Network'] # Only expose Network
class NetworkFunctor(object):
"""
Network Op Creation Function. Used internally in this module.
It convert string input to Variable. If it is not created before, just
create in scope.
It is a functor object. means the instances are callable.
:param func: The op creation function which generated in Python.
:param net: The Network instance.
"""
def __init__(self, func, net):
self.func = func
self.net = net
def __call__(self, *args, **kwargs):
if len(args) != 0:
raise ValueError("Paddle must use keyword argument")
inputs = self.func.all_input_args
for ipt in inputs:
if ipt in kwargs:
var = kwargs[ipt]
if isinstance(var, basestring):
tmp = new_var(var)
self.net.var_names[tmp] = var
var = tmp
if not isinstance(var, core.Variable):
raise TypeError(
"Input of op creation must be string or variable")
kwargs[ipt] = self.net.var_names[var]
notemp_outputs = self.func.all_not_temp_output_args
for name in notemp_outputs:
if name not in kwargs:
kwargs[
name] = self.func.__name__ + "@OUT@%d" % core.unique_integer(
)
outputs = self.func.all_output_args
for opt in outputs:
if opt in kwargs:
var = kwargs[opt]
if isinstance(var, basestring):
tmp = new_var(var)
self.net.var_names[tmp] = var
var = tmp
if not isinstance(var, core.Variable):
raise TypeError(
"Output of op creation must be string or variable")
kwargs[opt] = self.net.var_names[var]
op = self.func(**kwargs)
self.net.net.add_op(op)
lst = [find_var(kwargs[opt]) for opt in notemp_outputs]
if len(lst) == 1:
return lst[0]
elif len(lst) == 0:
return None
else:
return lst
class Network(object):
"""
The network concept. It avoid user to manually create operator, create
variable, and combine them into a Net. Just use Network.xxx can create the
operator, create variables in default scope, and add them into `self.net`.
For example:
.. code-block: python
net = Network()
out = net.add_two(X="a", Y="b")
fc_out = net.fc(X="out", W="fc.w")
net.run(...)
"""
def __init__(self):
self.net = core.Net.create()
funcs = (func_name for func_name in dir(op_creations)
if not func_name.startswith("__"))
self.var_names = dict()
# TODO(yuyang18): This code can work, but do not generate a good
# docstring, try to give a better way generate function in runtime
# later.
for func_name in funcs:
func = getattr(op_creations, func_name)
impl = NetworkFunctor(func, self)
setattr(self, func_name, impl.__call__)
self.__complete_add_op__ = False
def infer_shape(self):
self.complete_add_op()
self.net.infer_shape(get_cur_scope())
def run(self, device_context):
self.complete_add_op()
self.net.run(get_cur_scope(), device_context)
def __str__(self):
return str(self.net)
def complete_add_op(self):
if not self.__complete_add_op__:
self.net.complete_add_op()
self.__complete_add_op__ = True
if __name__ == '__main__':
net = Network()
out = net.add_two(X="a", Y="b")
fc_out = net.fc(X=out, W="fc.w", b="fc.b", activation="softmax")
net.complete_add_op()
print net
......@@ -2,7 +2,6 @@ import paddle.v2.framework.core as core
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2
import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2
import paddle.v2.framework.proto.attribute_pb2 as attribute_pb2
import cStringIO
def get_all_op_protos():
......@@ -146,66 +145,6 @@ class OpDescCreationMethod(object):
return False
def get_docstring_from_op_proto(op_proto):
"""
Generate docstring from a OpProto
:param op_proto: a OpProto instance.
:type op_proto: op_proto_pb2.OpProto
:return: docstring
"""
if not isinstance(op_proto, op_proto_pb2.OpProto):
raise TypeError("Input must be OpProto")
f = cStringIO.StringIO()
f.write(op_proto.comment)
f.write("\n")
def __append_param__(name, comment, type):
# Maybe replace the following line with template engine is better.
f.write(":param ")
f.write(name)
f.write(": ")
f.write(comment)
f.write("\n")
f.write(":type ")
f.write(name)
f.write(": ")
f.write(type)
f.write("\n")
for ipt in op_proto.inputs:
__append_param__(ipt.name, ipt.comment, "list | basestr"
if ipt.multiple else "basestr")
temp_var_prefix = \
"This is a temporary variable. It does not have to set by user. "
for opt in op_proto.outputs:
__append_param__(opt.name, opt.comment if not opt.temporary else
temp_var_prefix + opt.comment, "list | basestr"
if opt.multiple else "basestr")
for attr in op_proto.attrs:
attr_type = None
if attr.type == attribute_pb2.INT:
attr_type = "int"
elif attr.type == attribute_pb2.FLOAT:
attr_type = "float"
elif attr.type == attribute_pb2.STRING:
attr_type = "basestr"
elif attr.type == attribute_pb2.INTS:
attr_type = "list of int"
elif attr.type == attribute_pb2.FLOATS:
attr_type = "list of float"
elif attr.type == attribute_pb2.STRINGS:
attr_type = "list of basestr"
if attr_type is None:
raise RuntimeError("Not supported attribute type " + attr.type)
__append_param__(attr.name, attr.comment, attr_type)
return f.getvalue()
def create_op_creation_method(op_proto):
"""
Generate op creation method for an OpProto
......@@ -216,38 +155,57 @@ def create_op_creation_method(op_proto):
opdesc = method(*args, **kwargs)
return core.Operator.create(opdesc.SerializeToString())
__impl__.__doc__ = get_docstring_from_op_proto(op_proto)
__impl__.all_input_args = [var.name for var in op_proto.inputs]
__impl__.all_output_args = [var.name for var in op_proto.outputs]
__impl__.all_attr_args = [attr.name for attr in op_proto.attrs]
__impl__.all_not_temp_output_args = [
var.name for var in op_proto.outputs if not var.temporary
]
return {
'method': __impl__,
'name': op_proto.type,
'all_inputs': [var.name for var in op_proto.inputs],
'all_outputs': [var.name for var in op_proto.outputs],
'all_attrs': [attr.name for attr in op_proto.attrs],
'all_no_temp_outputs':
[var.name for var in op_proto.outputs if not var.temporary]
}
return __impl__
class OperatorFactory(object):
def __init__(self):
self.op_methods = dict()
for op_proto in get_all_op_protos():
method = create_op_creation_method(op_proto)
self.op_methods[method['name']] = method
class OpCreationsHolder(object):
"""
A object will holds all op creation methods.
Use `op_creations.xxx_op` to access them.
"""
pass
def __call__(self, *args, **kwargs):
if 'type' in kwargs:
if len(args) != 0:
raise ValueError("All Paddle argument should be key-word "
"argument except type")
t = kwargs.pop('type')
else:
if len(args) != 1:
raise ValueError("All Paddle argument should be key-word "
"argument except type")
t = args[0]
return self.get_op_creation_info(t)['method'](**kwargs)
op_creations = OpCreationsHolder()
def types(self):
return self.op_methods.keys()
def get_op_creation_info(self, t):
if t not in self.op_methods:
raise ValueError("operator %s is not registered", t)
return self.op_methods.get(t)
def __bootstrap__():
"""
Bootstrap function for this module. It will dynamic create all op creation
methods in runtime.
"""
for op_proto in get_all_op_protos():
func = create_op_creation_method(op_proto)
func.__name__ = str(op_proto.type)
setattr(op_creations, func.__name__, func)
def get_op_input_names(self, type):
return self.get_op_creation_info(type)['all_inputs']
def get_op_output_names(self, type):
return self.get_op_creation_info(type)['all_outputs']
def get_op_attr_names(self, type):
return self.get_op_creation_info(type)['all_attrs']
def get_op_no_temp_output_names(self, type):
return self.get_op_creation_info(type)['all_no_temp_outputs']
__bootstrap__()
Operator = OperatorFactory() # Default global factory
add_python_test(test_framework
test_protobuf.py
test_scope.py
test_operator.py
test_default_scope_funcs.py
test_op_creation_methods.py
test_net.py
test_tensor.py
test_fc_op.py
......@@ -13,6 +13,5 @@ add_python_test(test_framework
test_sigmoid_op.py
test_softmax_op.py
test_rowwise_add_op.py
test_network.py
gradient_checker.py
test_uniform_random_op.py)
import paddle.v2.framework.core as core
from paddle.v2.framework.create_op_creation_methods import op_creations
from paddle.v2.framework.op import Operator
import numpy
import unittest
......@@ -80,7 +80,7 @@ if __name__ == '__main__':
class GetNumericGradientTest(unittest.TestCase):
def test_add_op(self):
add_op = op_creations.add_two(X="X", Y="Y", Out="Z")
add_op = Operator('add_two', X="X", Y="Y", Out="Z")
x = numpy.random.random((10, 1)).astype("float32")
y = numpy.random.random((10, 1)).astype("float32")
......
import paddle.v2.framework.core as core
import unittest
import numpy
import paddle.v2.framework.create_op_creation_methods as creation
from paddle.v2.framework.op import Operator
class OpTestMeta(type):
......@@ -21,18 +21,14 @@ class OpTestMeta(type):
obj = super(OpTestMeta, cls).__new__(cls, name, bases, attrs)
def test_all(self):
func = getattr(creation.op_creations, self.type, None)
self.assertIsNotNone(func)
scope = core.Scope()
kwargs = dict()
places = []
places.append(core.CPUPlace())
places = [core.CPUPlace()]
if core.is_compile_gpu():
places.append(core.GPUPlace(0))
for place in places:
for in_name in func.all_input_args:
for in_name in Operator.get_op_input_names(self.type):
if hasattr(self, in_name):
kwargs[in_name] = in_name
var = scope.new_var(in_name).get_tensor()
......@@ -42,23 +38,23 @@ class OpTestMeta(type):
else:
kwargs[in_name] = "@EMPTY@"
for out_name in func.all_output_args:
for out_name in Operator.get_op_output_names(self.type):
if hasattr(self, out_name):
kwargs[out_name] = out_name
scope.new_var(out_name).get_tensor()
for attr_name in func.all_attr_args:
for attr_name in Operator.get_op_attr_names(self.type):
if hasattr(self, attr_name):
kwargs[attr_name] = getattr(self, attr_name)
op = func(**kwargs)
op = Operator(self.type, **kwargs)
op.infer_shape(scope)
ctx = core.DeviceContext.create(place)
op.run(scope, ctx)
for out_name in func.all_output_args:
for out_name in Operator.get_op_output_names(self.type):
actual = numpy.array(scope.find_var(out_name).get_tensor())
expect = getattr(self, out_name)
numpy.isclose(actual, expect)
......
......@@ -2,7 +2,7 @@ import unittest
import numpy
import paddle.v2.framework.core as core
import paddle.v2.framework.create_op_creation_methods as creation
from paddle.v2.framework.op import Operator
from op_test_util import OpTestMeta
......@@ -19,7 +19,7 @@ class TestAddOp(unittest.TestCase):
class TestAddGradOp(unittest.TestCase):
def test_add_grad(self):
op = creation.op_creations.add_two(X="X", Y="Y", Out="Out")
op = Operator('add_two', X="X", Y="Y", Out="Out")
backward_op = core.Operator.backward(op, set())
self.assertEqual(backward_op.type(), "add_two_grad")
expected = '''Op(add_two_grad), inputs:(X, Y, Out, Out@GRAD), outputs:(X@GRAD, Y@GRAD).'''
......
import paddle.v2.framework.core as core
import unittest
import numpy
import paddle.v2.framework.create_op_creation_methods as creation
from paddle.v2.framework.op import Operator
class TestFc(unittest.TestCase):
......@@ -24,7 +24,7 @@ class TestFc(unittest.TestCase):
# Set a real numpy array here.
# x_tensor.set(numpy.array([]))
op = creation.op_creations.fc(X="X", Y="Y", W="W")
op = Operator("fc", X="X", Y="Y", W="W")
for out in op.outputs():
if scope.find_var(out) is None:
......
import paddle.v2.framework.core as core
from paddle.v2.framework.create_op_creation_methods import op_creations
from paddle.v2.framework.op import Operator
import unittest
class TestNet(unittest.TestCase):
def test_net_all(self):
net = core.Net.create()
op1 = op_creations.add_two(X="X", Y="Y", Out="Out")
op1 = Operator("add_two", X="X", Y="Y", Out="Out")
net.add_op(op1)
net2 = core.Net.create()
net2.add_op(op_creations.fc(X="X", W="w", Y="fc.out"))
net2.add_op(Operator("fc", X="X", W="w", Y="fc.out"))
net2.complete_add_op(True)
net.add_op(net2)
net.complete_add_op(True)
......
from paddle.v2.framework.network import Network
import paddle.v2.framework.core as core
import unittest
class TestNet(unittest.TestCase):
def test_net_all(self):
net = Network()
out = net.add_two(X="X", Y="Y")
fc_out = net.fc(X=out, W="w")
net.complete_add_op()
self.assertTrue(isinstance(fc_out, core.Variable))
self.assertEqual(
'''Op(plain_net), inputs:(@EMPTY@, X, Y, w), outputs:(@TEMP@fc@0, add_two@OUT@0, fc@OUT@1).
Op(add_two), inputs:(X, Y), outputs:(add_two@OUT@0).
Op(fc), inputs:(add_two@OUT@0, w, @EMPTY@), outputs:(fc@OUT@1, @TEMP@fc@0).
Op(mul), inputs:(add_two@OUT@0, w), outputs:(@TEMP@fc@0).
Op(sigmoid), inputs:(@TEMP@fc@0), outputs:(fc@OUT@1).
''', str(net))
net2 = Network()
tmp = net2.add_two(X="X", Y="Y")
self.assertTrue(isinstance(tmp, core.Variable))
net2.complete_add_op()
self.assertEqual(
'''Op(plain_net), inputs:(X, Y), outputs:(add_two@OUT@2).
Op(add_two), inputs:(X, Y), outputs:(add_two@OUT@2).
''', str(net2))
if __name__ == '__main__':
unittest.main()
import unittest
import paddle.v2.framework.create_op_creation_methods as creation
import paddle.v2.framework.op as op
import paddle.v2.framework.core as core
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2
import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2
......@@ -8,7 +8,7 @@ import paddle.v2.framework.proto.attribute_pb2 as attribute_pb2
class TestGetAllProtos(unittest.TestCase):
def test_all(self):
all_protos = creation.get_all_op_protos()
all_protos = op.get_all_op_protos()
self.assertNotEqual(0, len(all_protos))
for each in all_protos:
......@@ -17,25 +17,25 @@ class TestGetAllProtos(unittest.TestCase):
class TestOpDescCreationMethod(unittest.TestCase):
def test_plain_input_output(self):
op = op_proto_pb2.OpProto()
op.type = "test"
ipt = op.inputs.add()
op_proto = op_proto_pb2.OpProto()
op_proto.type = "test"
ipt = op_proto.inputs.add()
ipt.name = "X"
ipt.comment = "not matter"
ipt = op.inputs.add()
ipt = op_proto.inputs.add()
ipt.name = "Y"
ipt.comment = "not matter"
opt = op.outputs.add()
opt = op_proto.outputs.add()
opt.name = "Z"
opt.comment = "not matter"
op.comment = "not matter"
op_proto.comment = "not matter"
self.assertTrue(op.IsInitialized())
self.assertTrue(op_proto.IsInitialized())
method = creation.OpDescCreationMethod(op)
method = op.OpDescCreationMethod(op_proto)
output = method(X="a", Y="b", Z="c")
expected = op_desc_pb2.OpDesc()
......@@ -45,29 +45,29 @@ class TestOpDescCreationMethod(unittest.TestCase):
self.assertEqual(expected, output)
def test_multiple_input_plain_output(self):
op = op_proto_pb2.OpProto()
op.type = "fc"
ipt = op.inputs.add()
op_proto = op_proto_pb2.OpProto()
op_proto.type = "fc"
ipt = op_proto.inputs.add()
ipt.name = "X"
ipt.comment = ""
ipt.multiple = True
ipt = op.inputs.add()
ipt = op_proto.inputs.add()
ipt.name = "W"
ipt.comment = ""
ipt.multiple = True
ipt = op.inputs.add()
ipt = op_proto.inputs.add()
ipt.name = "b"
ipt.comment = ""
out = op.outputs.add()
out = op_proto.outputs.add()
out.name = "Y"
out.comment = ""
op.comment = ""
self.assertTrue(op.IsInitialized())
method = creation.OpDescCreationMethod(op)
op_proto.comment = ""
self.assertTrue(op_proto.IsInitialized())
method = op.OpDescCreationMethod(op_proto)
generated1 = method(X="x", W="w", b="b", Y="y")
expected1 = op_desc_pb2.OpDesc()
......@@ -93,14 +93,14 @@ class TestOpDescCreationMethod(unittest.TestCase):
self.assertEqual(expected2, generated2)
def test_attrs(self):
op = op_proto_pb2.OpProto()
op.type = "test"
ipt = op.inputs.add()
op_proto = op_proto_pb2.OpProto()
op_proto.type = "test"
ipt = op_proto.inputs.add()
ipt.name = 'X'
ipt.comment = ""
def __add_attr__(name, type):
attr = op.attrs.add()
attr = op_proto.attrs.add()
attr.name = name
attr.comment = ""
attr.type = type
......@@ -112,10 +112,10 @@ class TestOpDescCreationMethod(unittest.TestCase):
__add_attr__("floats_attr", attribute_pb2.FLOATS)
__add_attr__("strings_attr", attribute_pb2.STRINGS)
op.comment = ""
self.assertTrue(op.IsInitialized())
op_proto.comment = ""
self.assertTrue(op_proto.IsInitialized())
method = creation.OpDescCreationMethod(op)
method = op.OpDescCreationMethod(op_proto)
generated = method(
X="a",
......@@ -162,23 +162,23 @@ class TestOpDescCreationMethod(unittest.TestCase):
self.assertEqual(expected, generated)
def test_input_temporary_output(self):
op = op_proto_pb2.OpProto()
op.type = "test"
out = op.outputs.add()
op_proto = op_proto_pb2.OpProto()
op_proto.type = "test"
out = op_proto.outputs.add()
out.name = "OUT"
out.comment = ""
out = op.outputs.add()
out = op_proto.outputs.add()
out.name = "TMP"
out.comment = ""
out.temporary = True
out = op.outputs.add()
out = op_proto.outputs.add()
out.name = "OUT2"
out.comment = ""
op.comment = ""
op_proto.comment = ""
method = creation.OpDescCreationMethod(op)
method = op.OpDescCreationMethod(op_proto)
generated = method(OUT="a", OUT2="b")
desc = op_desc_pb2.OpDesc()
desc.outputs.extend(["a", core.var_names.temp(), "b"])
......@@ -190,60 +190,9 @@ class TestOpDescCreationMethod(unittest.TestCase):
self.assertEqual(generated, desc)
class TestOpCreationDocStr(unittest.TestCase):
def test_all(self):
op = op_proto_pb2.OpProto()
op.type = "test"
op.comment = """Test Op.
This op is used for unit test, not a real op.
"""
a = op.inputs.add()
a.name = "a"
a.comment = "Input a for test op"
a.multiple = True
b = op.inputs.add()
b.name = "b"
b.comment = "Input b for test op"
self.assertTrue(op.IsInitialized())
o1 = op.outputs.add()
o1.name = "output"
o1.comment = "The output of test op"
o2 = op.outputs.add()
o2.name = "temp output"
o2.comment = "The temporary output of test op"
o2.temporary = True
test_str = op.attrs.add()
test_str.name = "str_attr"
test_str.type = attribute_pb2.STRING
test_str.comment = "A string attribute for test op"
actual = creation.get_docstring_from_op_proto(op)
expected_docstring = '''Test Op.
This op is used for unit test, not a real op.
:param a: Input a for test op
:type a: list | basestr
:param b: Input b for test op
:type b: basestr
:param output: The output of test op
:type output: basestr
:param temp output: This is a temporary variable. It does not have to set by user. The temporary output of test op
:type temp output: basestr
:param str_attr: A string attribute for test op
:type str_attr: basestr
'''
self.assertEqual(expected_docstring, actual)
class TestOpCreations(unittest.TestCase):
def test_all(self):
add_op = creation.op_creations.add_two(X="a", Y="b", Out="z")
add_op = op.Operator("add_two", X="a", Y="b", Out="z")
self.assertIsNotNone(add_op)
# Invoke C++ DebugString()
self.assertEqual('Op(add_two), inputs:(a, b), outputs:(z).',
......
......@@ -2,7 +2,7 @@ import unittest
import numpy as np
import paddle.v2.framework.core as core
import paddle.v2.framework.create_op_creation_methods as creation
from paddle.v2.framework.op import Operator
from op_test_util import OpTestMeta
......@@ -25,7 +25,7 @@ class TestSoftmaxOp(unittest.TestCase):
class TestSoftmaxGradOp(unittest.TestCase):
def test_softmax_grad(self):
op = creation.op_creations.softmax(X="X", Y="Y")
op = Operator('softmax', X="X", Y="Y")
backward_op = core.Operator.backward(op, set())
self.assertEqual(backward_op.type(), "softmax_grad")
expected = '''Op(softmax_grad), inputs:(X, Y, Y@GRAD), outputs:(X@GRAD).'''
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册