提交 fb62f8cb 编写于 作者: W wanghaoshuang

Add python api for warp-ctc op

上级 1797f3db
...@@ -14,7 +14,7 @@ __all__ = [ ...@@ -14,7 +14,7 @@ __all__ = [
'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min',
'sequence_first_step', 'sequence_last_step', 'dropout' 'sequence_first_step', 'sequence_last_step', 'dropout', 'warpctc'
] ]
...@@ -248,13 +248,13 @@ def gru_unit(input, ...@@ -248,13 +248,13 @@ def gru_unit(input,
h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1}) h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts - of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
implement a full GRU unit operator for an input, a fully implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`. connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`. an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})` This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`. and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
...@@ -276,7 +276,7 @@ def gru_unit(input, ...@@ -276,7 +276,7 @@ def gru_unit(input,
.. code-block:: python .. code-block:: python
# assuming we have x_t_data and prev_hidden of size=10 # assuming we have x_t_data and prev_hidden of size=10
x_t = fluid.layers.fc(input=x_t_data, size=30) x_t = fluid.layers.fc(input=x_t_data, size=30)
hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t, hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
hidden = prev_hidden) hidden = prev_hidden)
...@@ -1504,3 +1504,54 @@ def reduce_min(input, dim=None, keep_dim=False): ...@@ -1504,3 +1504,54 @@ def reduce_min(input, dim=None, keep_dim=False):
'reduce_all': True if dim == None else False 'reduce_all': True if dim == None else False
}) })
return out return out
def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
"""
An operator integrating the open source warp-ctc library
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with ctc, since a native softmax activation is
interated to the warp-ctc library, to to normlize values for each row of the
input tensor.
Args:
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank: (int, default: 0), the blank label of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false), whether to
normalize the gradients by the number of time-step,
which is also the sequence's length.
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss, which is a 2-D Tensor of the shape [batch_size, 1].
Examples:
.. code-block:: python
y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
cost = layers.warpctc(input=y_predict, label=y)
"""
helper = LayerHelper('warpctc', **kwargs)
loss_out = helper.create_tmp_variable(dtype=input.dtype)
grad_out = helper.create_tmp_variable(dtype=input.dtype)
helper.append_op(
type='warpctc',
inputs={'Logits': [input],
'Label': [label]},
outputs={'WarpCTCGrad': [grad_out],
'Loss': [loss_out]},
attrs={'blank': blank,
'norm_by_times': norm_by_times})
return loss_out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册