Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
fb62f8cb
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fb62f8cb
编写于
1月 11, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python api for warp-ctc op
上级
1797f3db
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
58 addition
and
7 deletion
+58
-7
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+58
-7
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
fb62f8cb
...
@@ -14,7 +14,7 @@ __all__ = [
...
@@ -14,7 +14,7 @@ __all__ = [
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'sequence_pool'
,
'pool2d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'warpctc'
]
]
...
@@ -248,13 +248,13 @@ def gru_unit(input,
...
@@ -248,13 +248,13 @@ def gru_unit(input,
h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
:math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
...
@@ -276,7 +276,7 @@ def gru_unit(input,
...
@@ -276,7 +276,7 @@ def gru_unit(input,
.. code-block:: python
.. code-block:: python
# assuming we have x_t_data and prev_hidden of size=10
# assuming we have x_t_data and prev_hidden of size=10
x_t = fluid.layers.fc(input=x_t_data, size=30)
x_t = fluid.layers.fc(input=x_t_data, size=30)
hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
hidden = prev_hidden)
hidden = prev_hidden)
...
@@ -1504,3 +1504,54 @@ def reduce_min(input, dim=None, keep_dim=False):
...
@@ -1504,3 +1504,54 @@ def reduce_min(input, dim=None, keep_dim=False):
'reduce_all'
:
True
if
dim
==
None
else
False
'reduce_all'
:
True
if
dim
==
None
else
False
})
})
return
out
return
out
def
warpctc
(
input
,
label
,
blank
=
0
,
norm_by_times
=
False
,
**
kwargs
):
"""
An operator integrating the open source warp-ctc library
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with ctc, since a native softmax activation is
interated to the warp-ctc library, to to normlize values for each row of the
input tensor.
Args:
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank: (int, default: 0), the blank label of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false), whether to
normalize the gradients by the number of time-step,
which is also the sequence's length.
Returns:
Variable: The Connectionist Temporal Classification (CTC) loss, which is a 2-D Tensor of the shape [batch_size, 1].
Examples:
.. code-block:: python
y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
cost = layers.warpctc(input=y_predict, label=y)
"""
helper
=
LayerHelper
(
'warpctc'
,
**
kwargs
)
loss_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
grad_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'warpctc'
,
inputs
=
{
'Logits'
:
[
input
],
'Label'
:
[
label
]},
outputs
=
{
'WarpCTCGrad'
:
[
grad_out
],
'Loss'
:
[
loss_out
]},
attrs
=
{
'blank'
:
blank
,
'norm_by_times'
:
norm_by_times
})
return
loss_out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录