提交 fafd3e0f 编写于 作者: C caoying03

Merge branch 'develop' into softsign

...@@ -40,7 +40,8 @@ REGISTER_OP(conv_cudnn, ops::ConvOp, ops::CudnnConvOpMaker, conv_cudnn_grad, ...@@ -40,7 +40,8 @@ REGISTER_OP(conv_cudnn, ops::ConvOp, ops::CudnnConvOpMaker, conv_cudnn_grad,
ops::ConvOpGrad); ops::ConvOpGrad);
REGISTER_OP_CPU_KERNEL(conv_cudnn, REGISTER_OP_CPU_KERNEL(conv_cudnn,
ops::GemmConvKernel<paddle::platform::CPUPlace, float>); ops::GemmConvKernel<paddle::platform::CPUPlace, float>,
ops::GemmConvKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
conv_cudnn_grad, conv_cudnn_grad, ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>,
ops::GemmConvGradKernel<paddle::platform::CPUPlace, float>); ops::GemmConvGradKernel<paddle::platform::CPUPlace, double>);
...@@ -259,6 +259,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel<T> { ...@@ -259,6 +259,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel<T> {
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel<float>); REGISTER_OP_GPU_KERNEL(conv_cudnn, paddle::operators::CudnnConvOpKernel<float>,
paddle::operators::CudnnConvOpKernel<double>);
REGISTER_OP_GPU_KERNEL(conv_cudnn_grad, REGISTER_OP_GPU_KERNEL(conv_cudnn_grad,
paddle::operators::CudnnConvGradOpKernel<float>); paddle::operators::CudnnConvGradOpKernel<float>,
paddle::operators::CudnnConvGradOpKernel<double>);
...@@ -61,10 +61,12 @@ REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp, ...@@ -61,10 +61,12 @@ REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp,
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
conv2d_transpose_cudnn, conv2d_transpose_cudnn,
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>); ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>,
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
conv2d_transpose_cudnn_grad, conv2d_transpose_cudnn_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>); ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp, REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp,
ops::CudnnConv3DTransposeOpMaker, conv3d_transpose_cudnn_grad, ops::CudnnConv3DTransposeOpMaker, conv3d_transpose_cudnn_grad,
...@@ -72,7 +74,9 @@ REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp, ...@@ -72,7 +74,9 @@ REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp,
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
conv3d_transpose_cudnn, conv3d_transpose_cudnn,
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>); ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, float>,
ops::GemmConvTransposeKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
conv3d_transpose_cudnn_grad, conv3d_transpose_cudnn_grad,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>); ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, float>,
ops::GemmConvTransposeGradKernel<paddle::platform::CPUPlace, double>);
...@@ -235,11 +235,15 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> { ...@@ -235,11 +235,15 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn, REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn,
ops::CudnnConvTransposeOpKernel<float>); ops::CudnnConvTransposeOpKernel<float>,
ops::CudnnConvTransposeOpKernel<double>);
REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn_grad, REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn_grad,
ops::CudnnConvTransposeGradOpKernel<float>); ops::CudnnConvTransposeGradOpKernel<float>,
ops::CudnnConvTransposeGradOpKernel<double>);
REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn, REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn,
ops::CudnnConvTransposeOpKernel<float>); ops::CudnnConvTransposeOpKernel<float>,
ops::CudnnConvTransposeOpKernel<double>);
REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn_grad, REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn_grad,
ops::CudnnConvTransposeGradOpKernel<float>); ops::CudnnConvTransposeGradOpKernel<float>,
ops::CudnnConvTransposeGradOpKernel<double>);
...@@ -20,6 +20,18 @@ REGISTER_OP(pool2d_cudnn, ops::PoolOp, ops::Pool2dOpMaker, pool2d_cudnn_grad, ...@@ -20,6 +20,18 @@ REGISTER_OP(pool2d_cudnn, ops::PoolOp, ops::Pool2dOpMaker, pool2d_cudnn_grad,
ops::PoolOpGrad); ops::PoolOpGrad);
REGISTER_OP_CPU_KERNEL(pool2d_cudnn, REGISTER_OP_CPU_KERNEL(pool2d_cudnn,
ops::PoolKernel<paddle::platform::CPUPlace, float>); ops::PoolKernel<paddle::platform::CPUPlace, float>,
ops::PoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad, REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad,
ops::PoolGradKernel<paddle::platform::CPUPlace, float>) ops::PoolGradKernel<paddle::platform::CPUPlace, float>,
ops::PoolGradKernel<paddle::platform::CPUPlace, double>)
REGISTER_OP(pool3d_cudnn, ops::PoolOp, ops::Pool3dOpMaker, pool3d_cudnn_grad,
ops::PoolOpGrad);
REGISTER_OP_CPU_KERNEL(pool3d_cudnn,
ops::PoolKernel<paddle::platform::CPUPlace, float>,
ops::PoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(pool3d_cudnn_grad,
ops::PoolGradKernel<paddle::platform::CPUPlace, float>,
ops::PoolGradKernel<paddle::platform::CPUPlace, double>)
...@@ -52,7 +52,13 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> { ...@@ -52,7 +52,13 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor input_desc; ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc; ScopedTensorDescriptor output_desc;
ScopedPoolingDescriptor pool_desc; ScopedPoolingDescriptor pool_desc;
DataLayout layout = DataLayout::kNCHW; DataLayout layout;
if (strides.size() == 2U) {
layout = DataLayout::kNCHW;
} else {
layout = DataLayout::kNCDHW;
}
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>( cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims())); layout, framework::vectorize2int(input->dims()));
...@@ -112,7 +118,13 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> { ...@@ -112,7 +118,13 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
ScopedTensorDescriptor input_desc; ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc; ScopedTensorDescriptor output_desc;
ScopedPoolingDescriptor pool_desc; ScopedPoolingDescriptor pool_desc;
DataLayout layout = DataLayout::kNCHW; DataLayout layout;
if (strides.size() == 2U) {
layout = DataLayout::kNCHW;
} else {
layout = DataLayout::kNCDHW;
}
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>( cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims())); layout, framework::vectorize2int(input->dims()));
...@@ -150,5 +162,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> { ...@@ -150,5 +162,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel<float>); REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel<float>,
REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>); ops::PoolCudnnOpKernel<double>);
REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>,
ops::PoolCudnnGradOpKernel<double>);
REGISTER_OP_GPU_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel<float>,
ops::PoolCudnnOpKernel<double>);
REGISTER_OP_GPU_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel<float>,
ops::PoolCudnnGradOpKernel<double>);
...@@ -217,14 +217,18 @@ REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad, ...@@ -217,14 +217,18 @@ REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad,
ops::PoolOpGrad); ops::PoolOpGrad);
REGISTER_OP_CPU_KERNEL(pool2d, REGISTER_OP_CPU_KERNEL(pool2d,
ops::PoolKernel<paddle::platform::CPUPlace, float>); ops::PoolKernel<paddle::platform::CPUPlace, float>,
ops::PoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(pool2d_grad, REGISTER_OP_CPU_KERNEL(pool2d_grad,
ops::PoolGradKernel<paddle::platform::CPUPlace, float>) ops::PoolGradKernel<paddle::platform::CPUPlace, float>,
ops::PoolGradKernel<paddle::platform::CPUPlace, double>)
REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad, REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad,
ops::PoolOpGrad); ops::PoolOpGrad);
REGISTER_OP_CPU_KERNEL(pool3d, REGISTER_OP_CPU_KERNEL(pool3d,
ops::PoolKernel<paddle::platform::CPUPlace, float>); ops::PoolKernel<paddle::platform::CPUPlace, float>,
ops::PoolKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(pool3d_grad, REGISTER_OP_CPU_KERNEL(pool3d_grad,
ops::PoolGradKernel<paddle::platform::CPUPlace, float>); ops::PoolGradKernel<paddle::platform::CPUPlace, float>,
ops::PoolGradKernel<paddle::platform::CPUPlace, double>);
...@@ -17,11 +17,15 @@ limitations under the License. */ ...@@ -17,11 +17,15 @@ limitations under the License. */
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(pool2d, REGISTER_OP_GPU_KERNEL(pool2d,
ops::PoolKernel<paddle::platform::GPUPlace, float>); ops::PoolKernel<paddle::platform::GPUPlace, float>,
ops::PoolKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(pool2d_grad, REGISTER_OP_GPU_KERNEL(pool2d_grad,
ops::PoolGradKernel<paddle::platform::GPUPlace, float>); ops::PoolGradKernel<paddle::platform::GPUPlace, float>,
ops::PoolGradKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(pool3d, REGISTER_OP_GPU_KERNEL(pool3d,
ops::PoolKernel<paddle::platform::GPUPlace, float>); ops::PoolKernel<paddle::platform::GPUPlace, float>,
ops::PoolKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(pool3d_grad, REGISTER_OP_GPU_KERNEL(pool3d_grad,
ops::PoolGradKernel<paddle::platform::GPUPlace, float>); ops::PoolGradKernel<paddle::platform::GPUPlace, float>,
ops::PoolGradKernel<paddle::platform::GPUPlace, double>);
...@@ -250,10 +250,12 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp, ...@@ -250,10 +250,12 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
max_pool2d_with_index, max_pool2d_with_index,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>); ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
max_pool2d_with_index_grad, max_pool2d_with_index_grad,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>) ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, double>)
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad, ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
...@@ -261,7 +263,9 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, ...@@ -261,7 +263,9 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
max_pool3d_with_index, max_pool3d_with_index,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>); ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>,
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
max_pool3d_with_index_grad, max_pool3d_with_index_grad,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>) ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>,
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, double>)
...@@ -18,14 +18,18 @@ namespace ops = paddle::operators; ...@@ -18,14 +18,18 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
max_pool2d_with_index, max_pool2d_with_index,
ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, float>); ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, float>,
ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
max_pool2d_with_index_grad, max_pool2d_with_index_grad,
ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, float>) ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, float>,
ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, double>)
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
max_pool3d_with_index, max_pool3d_with_index,
ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, float>); ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, float>,
ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL( REGISTER_OP_GPU_KERNEL(
max_pool3d_with_index_grad, max_pool3d_with_index_grad,
ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, float>) ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, float>,
ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, double>)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_slice_op.h"
namespace paddle {
namespace operators {
class SequenceSliceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequenceSliceOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Offset"),
"Input(Offset) of SequenceSliceOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Length"),
"Input(Length) of SequenceSliceOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceSliceOp should not be null.");
auto input_dims = ctx->GetInputDim("X");
auto offset_dim = ctx->GetInputDim("Offset");
auto length_dim = ctx->GetInputDim("Length");
PADDLE_ENFORCE_EQ(
offset_dim.size(), 2UL,
"Only support one level sequence now, The rank of offset must be 2.");
PADDLE_ENFORCE_EQ(
length_dim.size(), 2UL,
"Only support one level sequence now, The rank of Length must be 2.");
// Initialize the output's dims to maximum,
// and re-set to real dims by the value of Offset and Length at kernel
ctx->SetOutputDim("Out", input_dims);
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
class SequenceSliceGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"The gradient of Out should not be null.");
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
"The gradient of X should not be null.");
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
}
protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
};
class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceSliceOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(LoDTensor), "
"the input of SequenceSliceOp.");
AddInput("Offset",
"(Tensor), "
"a vector<int> to describe the offset of every input sequence for "
"sub sequence item.");
AddInput("Length",
"(Tensor), "
"a vector<int> to describe the length of every input sequence for "
"sub sequence item.");
AddOutput("Out",
"(LoDTensor), the output of SequenceSliceOp.");
AddComment(R"DOC(
Sequence slice operator
The operator crops a subsequence from given sequence with given start offset and subsequence length.
It only supports sequence (LoD Tensor with level number is 1).
- Case:
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2;
e1, e2]]
LoD(X) = {{0, 3, 5}}; Dims(X) = (5, 2)
Offset = [[0], [1]]; Length = [[2], [1]]
Out = [[a1, a2;
b1, b2]
[e1, e2]]
LoD(Out) = {{0, 2, 3}}; Dims(Out) = (3, 2)
NOTE: The first dimension size of input, the size of offset and Length, should be equal. The offset start from 0.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sequence_slice, ops::SequenceSliceOp, ops::SequenceSliceOpMaker,
sequence_slice_grad, ops::SequenceSliceGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_slice,
ops::SequenceSliceOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
sequence_slice_grad,
ops::SequenceSliceGradOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_slice_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
sequence_slice,
ops::SequenceSliceOpKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
sequence_slice_grad,
ops::SequenceSliceGradOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/strided_memcpy.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
template <typename T>
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
const int64_t* length_data) {
auto out_lod = in.lod();
size_t lod_offset = 0;
auto n = in.lod()[0].size() - 1;
out_lod[0][0] = 0;
for (size_t i = 0; i < n; ++i) {
lod_offset += length_data[i];
out_lod[0][i+1] = lod_offset;
}
return out_lod;
}
template <typename Place, typename T>
class SequenceSliceOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<LoDTensor>("X");
auto* offset = ctx.Input<Tensor>("Offset");
auto* length = ctx.Input<Tensor>("Length");
auto* out = ctx.Output<LoDTensor>("Out");
auto lod = in->lod();
auto n = lod[0].size() - 1;
PADDLE_ENFORCE_EQ(lod.size(), 1UL,
"Only support one level sequence now.");
PADDLE_ENFORCE_EQ(
n, static_cast<size_t>(length->dims()[0]),
"The size of input-sequence and length-array should be the same")
PADDLE_ENFORCE_EQ(
n, static_cast<size_t>(offset->dims()[0]),
"The size of input-sequence and offset-array should be the same")
const int64_t* offset_data = offset->data<int64_t>();
const int64_t* length_data = length->data<int64_t>();
framework::Tensor offset_cpu;
framework::Tensor length_cpu;
if (platform::is_gpu_place(ctx.GetPlace())) {
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
offset_data = offset_cpu.data<int64_t>();
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
length_data = length_cpu.data<int64_t>();
}
for (size_t i = 0; i < n; ++i) {
PADDLE_ENFORCE_LT(0, offset_data[i],
"The offset[%d] must greater than zero.", i)
PADDLE_ENFORCE_LT(0, length_data[i],
"The length[%d] must greater than zero.", i)
PADDLE_ENFORCE_LT(
lod[0][i] + offset_data[i] + length_data[i],
lod[0][i + 1],
"The target tensor's length overflow.")
}
out->mutable_data<T>(ctx.GetPlace());
auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
auto out_dims = in->dims();
out_dims[0] = out_lod[0][out_lod[0].size() - 1];
out->Resize(out_dims);
out->set_lod(out_lod);
auto in_stride = framework::stride(in->dims());
auto out_stride = framework::stride(out->dims());
size_t out_offset = 0;
for (size_t i = 0; i < n; ++i) {
Tensor in_t =
in->Slice(static_cast<int>(lod[0][i] + offset_data[i]),
static_cast<int>(lod[0][i] + offset_data[i] +
length_data[i]));
StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(),
in_stride, in_t.dims(), out_stride,
out->data<T>() + out_offset);
out_offset += length_data[i] * in_stride[0];
}
}
};
template <typename Place, typename T>
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<LoDTensor>("X");
auto* offset = ctx.Input<Tensor>("Offset");
auto* length = ctx.Input<Tensor>("Length");
auto* out_grad =
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto* x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
const int64_t* offset_data = offset->data<int64_t>();
const int64_t* length_data = length->data<int64_t>();
framework::Tensor offset_cpu;
framework::Tensor length_cpu;
if (platform::is_gpu_place(ctx.GetPlace())) {
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
offset_data = offset_cpu.data<int64_t>();
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
length_data = length_cpu.data<int64_t>();
}
auto lod = in->lod();
auto out_lod = out_grad->lod();
if (x_grad) {
x_grad->mutable_data<T>(ctx.GetPlace());
x_grad->set_lod(in->lod());
math::SetConstant<Place, T> set_zero;
set_zero(ctx.device_context(), x_grad, static_cast<T>(0));
auto out_grad_stride = framework::stride(out_grad->dims());
for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
Tensor out_grad_t =
out_grad->Slice(static_cast<int>(out_lod[0][i]),
static_cast<int>(out_lod[0][i + 1]));
auto out_grad_stride = framework::stride(out_grad_t.dims());
auto x_grad_stride = framework::stride(x_grad->dims());
Tensor x_grad_t = x_grad->Slice(
static_cast<int>(lod[0][i] + offset_data[i]),
static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
out_grad_stride, out_grad_t.dims(), x_grad_stride,
x_grad_t.data<T>());
}
}
}
};
} // namespace operators
} // namespace paddle
...@@ -224,13 +224,15 @@ class ScopedConvolutionDescriptor { ...@@ -224,13 +224,15 @@ class ScopedConvolutionDescriptor {
PADDLE_ENFORCE_EQ(pads.size(), strides.size()); PADDLE_ENFORCE_EQ(pads.size(), strides.size());
PADDLE_ENFORCE_EQ(pads.size(), dilations.size()); PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
#if CUDNN_VERSION < 6000 #if !CUDNN_VERSION_MIN(6, 0, 0)
// cudnn v5 does not support dilation conv, the argument is called upscale // cudnn v5 does not support dilation conv, the argument is called upscale
// instead of dilations and it is must be one. // instead of dilations and it is must be one.
for (size_t i = 0; i < dilations.size(); ++i) { for (size_t i = 0; i < dilations.size(); ++i) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
dilations[i], 1, dilations[i], 1,
"Dilations conv is not supported in this cuDNN version"); "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
CUDNN_VERSION % 100);
} }
#endif #endif
......
...@@ -38,6 +38,26 @@ TEST(CudnnHelper, ScopedTensorDescriptor) { ...@@ -38,6 +38,26 @@ TEST(CudnnHelper, ScopedTensorDescriptor) {
EXPECT_EQ(strides[2], 6); EXPECT_EQ(strides[2], 6);
EXPECT_EQ(strides[1], 36); EXPECT_EQ(strides[1], 36);
EXPECT_EQ(strides[0], 144); EXPECT_EQ(strides[0], 144);
// test tensor5d: ScopedTensorDescriptor
ScopedTensorDescriptor tensor5d_desc;
std::vector<int> shape_5d = {2, 4, 6, 6, 6};
auto desc_5d = tensor5d_desc.descriptor<float>(DataLayout::kNCDHW, shape_5d);
std::vector<int> dims_5d(5);
std::vector<int> strides_5d(5);
paddle::platform::dynload::cudnnGetTensorNdDescriptor(
desc_5d, 5, &type, &nd, dims_5d.data(), strides_5d.data());
EXPECT_EQ(nd, 5);
for (size_t i = 0; i < dims_5d.size(); ++i) {
EXPECT_EQ(dims_5d[i], shape_5d[i]);
}
EXPECT_EQ(strides_5d[4], 1);
EXPECT_EQ(strides_5d[3], 6);
EXPECT_EQ(strides_5d[2], 36);
EXPECT_EQ(strides_5d[1], 216);
EXPECT_EQ(strides_5d[0], 864);
} }
TEST(CudnnHelper, ScopedFilterDescriptor) { TEST(CudnnHelper, ScopedFilterDescriptor) {
...@@ -60,6 +80,20 @@ TEST(CudnnHelper, ScopedFilterDescriptor) { ...@@ -60,6 +80,20 @@ TEST(CudnnHelper, ScopedFilterDescriptor) {
for (size_t i = 0; i < shape.size(); ++i) { for (size_t i = 0; i < shape.size(); ++i) {
EXPECT_EQ(kernel[i], shape[i]); EXPECT_EQ(kernel[i], shape[i]);
} }
ScopedFilterDescriptor filter_desc_4d;
std::vector<int> shape_4d = {2, 3, 3, 3};
auto desc_4d = filter_desc.descriptor<float>(DataLayout::kNCDHW, shape_4d);
std::vector<int> kernel_4d(4);
paddle::platform::dynload::cudnnGetFilterNdDescriptor(
desc_4d, 4, &type, &format, &nd, kernel_4d.data());
EXPECT_EQ(GetCudnnTensorFormat(DataLayout::kNCHW), format);
EXPECT_EQ(nd, 4);
for (size_t i = 0; i < shape_4d.size(); ++i) {
EXPECT_EQ(kernel_4d[i], shape_4d[i]);
}
} }
TEST(CudnnHelper, ScopedConvolutionDescriptor) { TEST(CudnnHelper, ScopedConvolutionDescriptor) {
......
...@@ -256,7 +256,7 @@ class SoftSignActivation(BaseActivation): ...@@ -256,7 +256,7 @@ class SoftSignActivation(BaseActivation):
SoftSign Activation. SoftSign Activation.
.. math:: .. math::
f(z)=\\frac{1}{1 + |z|} f(z)=\\frac{z}{1 + |z|}
""" """
def __init__(self): def __init__(self):
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import math
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \ from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
IdentityActivation, TanhActivation, SequenceSoftmaxActivation IdentityActivation, TanhActivation, SequenceSoftmaxActivation
...@@ -26,9 +26,9 @@ __all__ = [ ...@@ -26,9 +26,9 @@ __all__ = [
'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
"img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
'simple_attention', 'dot_product_attention', 'simple_gru2', 'simple_attention', 'dot_product_attention', 'multi_head_attention',
'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', 'inputs', 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm',
'outputs' 'inputs', 'outputs'
] ]
###################################################### ######################################################
...@@ -1476,10 +1476,8 @@ def dot_product_attention(encoded_sequence, ...@@ -1476,10 +1476,8 @@ def dot_product_attention(encoded_sequence,
expand_as=encoded_sequence, expand_as=encoded_sequence,
name='%s_expand' % name) name='%s_expand' % name)
m = linear_comb_layer( m = dot_prod_layer(
weights=expanded, input1=expanded, input2=encoded_sequence, name='%s_dot-product' % name)
vectors=encoded_sequence,
name='%s_dot-product' % name)
attention_weight = fc_layer( attention_weight = fc_layer(
input=m, input=m,
...@@ -1498,6 +1496,134 @@ def dot_product_attention(encoded_sequence, ...@@ -1498,6 +1496,134 @@ def dot_product_attention(encoded_sequence,
input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name) input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
@wrap_name_default()
def multi_head_attention(query,
key,
value,
key_proj_size,
value_proj_size,
head_num,
attention_type,
softmax_param_attr=None,
name=None):
"""
Calculate and return a context vector with dot-product attention mechanism.
The dimension of the context vector equals to value_proj_size * head_num.
Please refer to **Attention Is All You Need** for more details. The link is
as follows:
https://arxiv.org/abs/1706.03762.
The example usage is:
.. code-block:: python
context = multi_head_attention(query=decoder_state,
key=enc_seq,
value=enc_seq,
key_proj_size=64,
value_pro_size=64,
head_num=8,
attention_type='dot-product attention')
:param name: A prefix attached to the name of each layer that defined inside
the multi_head_attention.
:type name: basestring
:param softmax_param_attr: The parameter attribute of sequence softmax
that is used to produce attention weight.
:type softmax_param_attr: ParameterAttribute
:param query: query is used to calculate attention weights over values at current step.
:type query: LayerOutput
:param key: key is used to calculate the attention weight of the corresponding value.
:type key: LayerOutput
:param value: value is the sequence to be attended.
:type value: LayerOutput
:param key_proj_size: The dimension of the linear projection performed on key and query.
:type key_proj_size: int
:param value_proj_size: The dimension of the linear projection performed on value.
:type value_proj_size: int
:param head_num: The number of attention heads.
:type head_num: int
:param attention_type: The type of the attention mechanism used in each attention
heads. Now, we only support scaled dot-product attention and
additive attention.
:type attention_type: basestring
:return: The context vector.
:rtype: LayerOutput
"""
assert attention_type in ['dot-product attention', 'additive attention']
with mixed_layer(
size=key_proj_size * head_num,
name='%s_query_proj' % name) as query_proj:
query_proj += full_matrix_projection(query)
query_proj = expand_layer(input=query_proj, expand_as=key)
with mixed_layer(
size=key_proj_size * head_num,
name='%s_key_proj' % name) as key_proj:
key_proj += full_matrix_projection(key)
with mixed_layer(
size=value_proj_size * head_num,
name='%s_value_proj' % name) as value_proj:
value_proj += full_matrix_projection(value)
head_list = []
for i in range(head_num):
with mixed_layer(size=key_proj_size) as sub_query_proj:
sub_query_proj += identity_projection(
query_proj, offset=key_proj_size * i, size=key_proj_size)
with mixed_layer(size=key_proj_size) as sub_key_proj:
sub_key_proj += identity_projection(
key_proj, offset=key_proj_size * i, size=key_proj_size)
with mixed_layer(size=value_proj_size) as sub_value_proj:
sub_value_proj += identity_projection(
value_proj, offset=value_proj_size * i, size=value_proj_size)
if attention_type == 'dot-product attention':
m = dot_prod_layer(
input1=sub_query_proj,
input2=sub_key_proj,
name='%s_dot-product_%d' % (name, i))
m = slope_intercept_layer(
input=m,
slope=math.sqrt(1.0 / key_proj_size),
name='%s_dot-product_scaling_%d' % (name, i))
else:
with mixed_layer(
size=key_proj_size,
act=TanhActivation(),
name='%s_combine_%d' % (name, i)) as m:
m += identity_projection(sub_query_proj)
m += identity_projection(sub_key_proj)
attention_weight = fc_layer(
input=m,
size=1,
act=SequenceSoftmaxActivation(),
param_attr=softmax_param_attr,
name="%s_softmax_%d" % (name, i),
bias_attr=False)
scaled = scaling_layer(
weight=attention_weight,
input=sub_value_proj,
name='%s_scaling_%d' % (name, i))
head = pooling_layer(
input=scaled,
pooling_type=SumPooling(),
name="%s_pooling_%d" % (name, i))
head_list.append(head)
attended = concat_layer(head_list)
return attended
def inputs(layers, *args): def inputs(layers, *args):
""" """
Declare the inputs of network. The order of input should be as same as Declare the inputs of network. The order of input should be as same as
......
...@@ -11,7 +11,6 @@ test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_l ...@@ -11,7 +11,6 @@ test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_l
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_roi_pool_layer test_pooling3D_layer test_seq_slice_layer test_cross_entropy_over_beam test_roi_pool_layer test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D test_resize_layer
test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer) test_scale_sub_region_layer test_dot_prod_layer test_l2_distance_layer)
export whole_configs=(test_split_datasource) export whole_configs=(test_split_datasource)
...@@ -3,8 +3,7 @@ import numpy as np ...@@ -3,8 +3,7 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
N, C, H, W = x.shape N, C, H, W = x.shape
if global_pool == 1: if global_pool == 1:
ksize = [H, W] ksize = [H, W]
...@@ -23,8 +22,7 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): ...@@ -23,8 +22,7 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
return out return out
def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): def avg_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
N, C, H, W = x.shape N, C, H, W = x.shape
if global_pool == 1: if global_pool == 1:
ksize = [H, W] ksize = [H, W]
...@@ -47,6 +45,7 @@ def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): ...@@ -47,6 +45,7 @@ def avg_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
class TestPool2d_Op(OpTest): class TestPool2d_Op(OpTest):
def setUp(self): def setUp(self):
self.init_test_case() self.init_test_case()
self.init_global_pool()
self.init_op_type() self.init_op_type()
self.init_pool_type() self.init_pool_type()
if self.global_pool: if self.global_pool:
...@@ -75,8 +74,6 @@ class TestPool2d_Op(OpTest): ...@@ -75,8 +74,6 @@ class TestPool2d_Op(OpTest):
self.check_grad(set(['X']), 'Out', max_relative_error=0.07) self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
def init_test_case(self): def init_test_case(self):
self.global_pool = True
self.pool2D_forward_naive = avg_pool2D_forward_naive
self.shape = [2, 3, 5, 5] self.shape = [2, 3, 5, 5]
self.ksize = [3, 3] self.ksize = [3, 3]
self.strides = [1, 1] self.strides = [1, 1]
...@@ -87,12 +84,14 @@ class TestPool2d_Op(OpTest): ...@@ -87,12 +84,14 @@ class TestPool2d_Op(OpTest):
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
self.pool2D_forward_naive = avg_pool2D_forward_naive
def init_global_pool(self):
self.global_pool = True
class TestCase1(TestPool2d_Op): class TestCase1(TestPool2d_Op):
def init_test_case(self): def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = avg_pool2D_forward_naive
self.shape = [2, 3, 7, 7] self.shape = [2, 3, 7, 7]
self.ksize = [3, 3] self.ksize = [3, 3]
self.strides = [1, 1] self.strides = [1, 1]
...@@ -103,12 +102,14 @@ class TestCase1(TestPool2d_Op): ...@@ -103,12 +102,14 @@ class TestCase1(TestPool2d_Op):
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
self.pool2D_forward_naive = avg_pool2D_forward_naive
def init_global_pool(self):
self.global_pool = False
class TestCase2(TestPool2d_Op): class TestCase2(TestPool2d_Op):
def init_test_case(self): def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = avg_pool2D_forward_naive
self.shape = [2, 3, 7, 7] self.shape = [2, 3, 7, 7]
self.ksize = [3, 3] self.ksize = [3, 3]
self.strides = [1, 1] self.strides = [1, 1]
...@@ -119,152 +120,69 @@ class TestCase2(TestPool2d_Op): ...@@ -119,152 +120,69 @@ class TestCase2(TestPool2d_Op):
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
self.pool2D_forward_naive = avg_pool2D_forward_naive
def init_global_pool(self):
self.global_pool = False
class TestCase3(TestPool2d_Op):
def init_test_case(self):
self.global_pool = True
self.pool2D_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 5, 5]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [0, 0]
class TestCase3(TestPool2d_Op):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d" self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
class TestCase4(TestPool2d_Op):
def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = max_pool2D_forward_naive self.pool2D_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [0, 0]
class TestCase4(TestCase1):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d" self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
class TestCase5(TestPool2d_Op):
def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = max_pool2D_forward_naive self.pool2D_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [1, 1]
class TestCase5(TestCase2):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d" self.op_type = "pool2d"
def init_pool_type(self): def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool2D_forward_naive = max_pool2D_forward_naive
#--------------------test pool2d_cudnn-------------------- #--------------------test pool2d_cudnn--------------------
class TestCaseCudnn1(TestPool2d_Op): class TestCudnnCase1(TestPool2d_Op):
def init_test_case(self):
self.global_pool = True
self.pool2D_forward_naive = avg_pool2D_forward_naive
self.shape = [2, 3, 5, 5]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [0, 0]
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d_cudnn" self.op_type = "pool2d_cudnn"
def init_pool_type(self):
self.pool_type = "avg"
class TestCaseCudnn2(TestPool2d_Op):
def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = avg_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [0, 0]
class TestCudnnCase2(TestCase1):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d_cudnn" self.op_type = "pool2d_cudnn"
def init_pool_type(self):
self.pool_type = "avg"
class TestCaseCudnn3(TestPool2d_Op):
def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = avg_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [1, 1]
class TestCudnnCase3(TestCase2):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d_cudnn" self.op_type = "pool2d_cudnn"
def init_pool_type(self):
self.pool_type = "avg"
class TestCaseCudnn4(TestPool2d_Op):
def init_test_case(self):
self.global_pool = True
self.pool2D_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 5, 5]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [0, 0]
class TestCudnnCase4(TestCase3):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d_cudnn" self.op_type = "pool2d_cudnn"
def init_pool_type(self):
self.pool_type = "max"
class TestCaseCudnn5(TestPool2d_Op):
def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [0, 0]
class TestCudnnCase5(TestCase4):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d_cudnn" self.op_type = "pool2d_cudnn"
def init_pool_type(self):
self.pool_type = "max"
class TestCaseCudnn6(TestPool2d_Op):
def init_test_case(self):
self.global_pool = False
self.pool2D_forward_naive = max_pool2D_forward_naive
self.shape = [2, 3, 7, 7]
self.ksize = [3, 3]
self.strides = [1, 1]
self.paddings = [1, 1]
class TestCudnnCase6(TestCase5):
def init_op_type(self): def init_op_type(self):
self.op_type = "pool2d_cudnn" self.op_type = "pool2d_cudnn"
def init_pool_type(self):
self.pool_type = "max"
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -3,8 +3,7 @@ import numpy as np ...@@ -3,8 +3,7 @@ import numpy as np
from op_test import OpTest from op_test import OpTest
def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0):
N, C, D, H, W = x.shape N, C, D, H, W = x.shape
if global_pool == 1: if global_pool == 1:
ksize = [D, H, W] ksize = [D, H, W]
...@@ -27,8 +26,7 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): ...@@ -27,8 +26,7 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
return out return out
def avg_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): def avg_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0):
N, C, D, H, W = x.shape N, C, D, H, W = x.shape
if global_pool == 1: if global_pool == 1:
ksize = [D, H, W] ksize = [D, H, W]
...@@ -55,6 +53,10 @@ def avg_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0): ...@@ -55,6 +53,10 @@ def avg_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
class TestPool3d_Op(OpTest): class TestPool3d_Op(OpTest):
def setUp(self): def setUp(self):
self.init_test_case() self.init_test_case()
self.init_global_pool()
self.init_op_type()
self.init_pool_type()
if self.global_pool: if self.global_pool:
self.paddings = [0 for _ in range(len(self.paddings))] self.paddings = [0 for _ in range(len(self.paddings))]
input = np.random.random(self.shape).astype("float32") input = np.random.random(self.shape).astype("float32")
...@@ -81,74 +83,115 @@ class TestPool3d_Op(OpTest): ...@@ -81,74 +83,115 @@ class TestPool3d_Op(OpTest):
self.check_grad(set(['X']), 'Out', max_relative_error=0.07) self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
def init_test_case(self): def init_test_case(self):
self.global_pool = True
self.op_type = "pool3d"
self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive
self.shape = [2, 3, 5, 5, 5] self.shape = [2, 3, 5, 5, 5]
self.ksize = [3, 3, 3] self.ksize = [3, 3, 3]
self.strides = [1, 1, 1] self.strides = [1, 1, 1]
self.paddings = [0, 0, 0] self.paddings = [0, 0, 0]
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive
def init_global_pool(self):
self.global_pool = True
class TestCase1(TestPool3d_Op): class TestCase1(TestPool3d_Op):
def init_test_case(self): def init_test_case(self):
self.global_pool = False
self.op_type = "pool3d" self.op_type = "pool3d"
self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive
self.shape = [2, 3, 7, 7, 7] self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3] self.ksize = [3, 3, 3]
self.strides = [1, 1, 1] self.strides = [1, 1, 1]
self.paddings = [0, 0, 0] self.paddings = [0, 0, 0]
def init_op_type(self):
class TestCase2(TestPool3d_Op):
def init_test_case(self):
self.global_pool = False
self.op_type = "pool3d" self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "avg" self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive self.pool3D_forward_naive = avg_pool3D_forward_naive
def init_global_pool(self):
self.global_pool = False
class TestCase2(TestPool3d_Op):
def init_test_case(self):
self.shape = [2, 3, 7, 7, 7] self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3] self.ksize = [3, 3, 3]
self.strides = [1, 1, 1] self.strides = [1, 1, 1]
self.paddings = [1, 1, 1] self.paddings = [1, 1, 1]
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive
def init_global_pool(self):
self.global_pool = False
class TestCase3(TestPool3d_Op): class TestCase3(TestPool3d_Op):
def init_test_case(self): def init_op_type(self):
self.global_pool = True
self.op_type = "pool3d" self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool3D_forward_naive = max_pool3D_forward_naive self.pool3D_forward_naive = max_pool3D_forward_naive
self.shape = [2, 3, 5, 5, 5]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1]
self.paddings = [0, 0, 0]
class TestCase4(TestPool3d_Op): class TestCase4(TestCase1):
def init_test_case(self): def init_op_type(self):
self.global_pool = False
self.op_type = "pool3d" self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool3D_forward_naive = max_pool3D_forward_naive self.pool3D_forward_naive = max_pool3D_forward_naive
self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1]
self.paddings = [0, 0, 0]
class TestCase5(TestPool3d_Op): class TestCase5(TestCase2):
def init_test_case(self): def init_op_type(self):
self.global_pool = False
self.op_type = "pool3d" self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "max" self.pool_type = "max"
self.pool3D_forward_naive = max_pool3D_forward_naive self.pool3D_forward_naive = max_pool3D_forward_naive
self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1] #--------------------test pool3d_cudnn--------------------
self.paddings = [1, 1, 1] class TestCudnnCase1(TestPool3d_Op):
def init_op_type(self):
self.op_type = "pool3d_cudnn"
class TestCudnnCase2(TestCase1):
def init_op_type(self):
self.op_type = "pool3d_cudnn"
class TestCudnnCase3(TestCase2):
def init_op_type(self):
self.op_type = "pool3d_cudnn"
class TestCudnnCase4(TestCase3):
def init_op_type(self):
self.op_type = "pool3d_cudnn"
class TestCudnnCase5(TestCase4):
def init_op_type(self):
self.op_type = "pool3d_cudnn"
class TestCudnnCase6(TestCase5):
def init_op_type(self):
self.op_type = "pool3d_cudnn"
if __name__ == '__main__': if __name__ == '__main__':
......
import unittest
import numpy as np
import sys
from op_test import OpTest
class TestSequenceSliceOp(OpTest):
def set_data(self):
self.init_test_case()
# only supprot one level LoD
x = np.random.random(self.x_dim).astype('float32')
lod = self.x_lod
offset = np.array(self.offset).astype("int64")
length = np.array(self.length).astype("int64")
self.inputs = {'X': (x, lod), 'Offset': offset, 'Length': length}
outs = [] #np.zeros((100, 3, 2)).astype('float32')
out_lod = [[0]]
out_lod_offset = 0
for i in range(len(offset)):
sub_x = x[lod[0][i] + offset[i, 0]:lod[0][i] + offset[i, 0] +
length[i, 0], :]
out_lod_offset = out_lod_offset + len(sub_x)
outs.append(sub_x)
out_lod[0].append(out_lod_offset)
outs = np.concatenate(outs, axis=0)
self.outputs = {'Out': (outs, out_lod)}
def init_test_case(self):
self.x_dim = (100, 3, 2)
self.x_lod = [[0, 20, 40, 60, 80, 100]]
self.offset = [[1], [2], [3], [4], [5]]
self.length = [[10], [8], [6], [4], [2]]
def setUp(self):
self.op_type = "sequence_slice"
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册