未验证 提交 faf40da5 编写于 作者: O oyxuan-11 提交者: GitHub

[NPU] Support NPU kernel of stack op (#31711)

上级 d55120d7
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/stack_op.h"
#include "paddle/fluid/operators/unsqueeze_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class StackNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto x = ctx.MultiInput<Tensor>("X");
int32_t N = x.size();
PADDLE_ENFORCE_GT(
N, 0, platform::errors::InvalidArgument("number of input Tensor <= 0"));
std::vector<paddle::framework::Tensor> x_list;
for (int i = 0; i < N; i++) {
x_list.push_back(*x[i]);
}
int axis = ctx.Attr<int>("axis");
if (axis < 0) {
axis = axis + x_list[0].dims().size() + 1;
}
auto* out = ctx.Output<Tensor>("Y");
auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
out->mutable_data<T>(place);
if (axis != 0) {
auto x_dim = x_list[0].dims();
std::vector<int> vec_dim_tmp;
vec_dim_tmp.push_back(N);
for (auto i = 0; i < x_dim.size(); ++i) {
vec_dim_tmp.push_back(x_dim[i]);
}
Tensor tmp_stack(out->type());
tmp_stack.Resize(framework::make_ddim(vec_dim_tmp));
tmp_stack.mutable_data<T>(ctx.GetPlace());
auto runner =
NpuOpRunner("Pack", {x_list}, {tmp_stack}, {{"axis", 0}, {"N", N}});
runner.Run(stream);
std::vector<int64_t> vec_trans;
for (auto i = 1; i <= x_dim.size(); ++i) {
vec_trans.push_back(i);
if (i == axis) {
vec_trans.push_back(0);
}
}
auto runner_trans_final =
NpuOpRunner("TransposeD", {tmp_stack}, {*out}, {{"perm", vec_trans}});
runner_trans_final.Run(stream);
} else {
auto runner =
NpuOpRunner("Pack", {x_list}, {*out}, {{"axis", axis}, {"N", N}});
runner.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
stack, ops::StackNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::StackNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
#endif
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
paddle.enable_static()
SEED = 2021
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestStack1(OpTest):
def initDefaultParameters(self):
self.num_inputs = 4
self.input_dim = (5, 6, 7)
self.axis = 0
self.dtype = 'float32'
def get_x_names(self):
x_names = []
for i in range(self.num_inputs):
x_names.append('x{}'.format(i))
return x_names
def setUp(self):
self.initDefaultParameters()
self.set_npu()
self.op_type = "stack"
self.place = paddle.NPUPlace(0)
self.x = []
for i in range(self.num_inputs):
self.x.append(
np.random.random(size=self.input_dim).astype(self.dtype))
tmp = []
x_names = self.get_x_names()
for i in range(self.num_inputs):
tmp.append((x_names[i], self.x[i]))
self.inputs = {'X': tmp}
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
self.attrs = {'axis': self.axis}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
class TestStack2(OpTest):
def initDefaultParameters(self):
self.num_inputs = 4
self.input_dim = (2, 3, 4)
self.axis = -1
self.dtype = 'float32'
def get_x_names(self):
x_names = []
for i in range(self.num_inputs):
x_names.append('x{}'.format(i))
return x_names
def setUp(self):
self.initDefaultParameters()
self.set_npu()
self.op_type = "stack"
self.place = paddle.NPUPlace(0)
self.x = []
for i in range(self.num_inputs):
self.x.append(
np.random.random(size=self.input_dim).astype(self.dtype))
tmp = []
x_names = self.get_x_names()
for i in range(self.num_inputs):
tmp.append((x_names[i], self.x[i]))
self.inputs = {'X': tmp}
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
self.attrs = {'axis': self.axis}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
class TestStack3(OpTest):
def initDefaultParameters(self):
self.num_inputs = 4
self.input_dim = (2, 3, 4)
self.axis = 1
self.dtype = 'float32'
def get_x_names(self):
x_names = []
for i in range(self.num_inputs):
x_names.append('x{}'.format(i))
return x_names
def setUp(self):
self.initDefaultParameters()
self.set_npu()
self.op_type = "stack"
self.place = paddle.NPUPlace(0)
self.x = []
for i in range(self.num_inputs):
self.x.append(
np.random.random(size=self.input_dim).astype(self.dtype))
tmp = []
x_names = self.get_x_names()
for i in range(self.num_inputs):
tmp.append((x_names[i], self.x[i]))
self.inputs = {'X': tmp}
self.outputs = {'Y': np.stack(self.x, axis=self.axis)}
self.attrs = {'axis': self.axis}
def set_npu(self):
self.__class__.use_npu = True
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册