Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f7be9cb9
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f7be9cb9
编写于
8月 30, 2017
作者:
H
hedaoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine the cpu code.
上级
6efbe2ff
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
186 addition
and
157 deletion
+186
-157
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+2
-2
paddle/operators/math/im2col.cc
paddle/operators/math/im2col.cc
+174
-145
paddle/operators/math/im2col.h
paddle/operators/math/im2col.h
+10
-10
未找到文件。
paddle/operators/math/CMakeLists.txt
浏览文件 @
f7be9cb9
if
(
WITH_GPU
)
if
(
WITH_GPU
)
nv_library
(
math_function SRCS math_function.cc math_function.cu DEPS cblas device_context
)
nv_library
(
math_function SRCS math_function.cc math_function.cu
im2col.cc
DEPS cblas device_context
)
else
()
else
()
cc_library
(
math_function SRCS math_function.cc DEPS cblas device_context
)
cc_library
(
math_function SRCS math_function.cc
im2col.cc
DEPS cblas device_context
)
endif
()
endif
()
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
paddle/operators/math/im2col.cc
浏览文件 @
f7be9cb9
...
@@ -12,48 +12,54 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,48 +12,54 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "
Im2C
ol.h"
#include "
paddle/operators/math/im2c
ol.h"
namespace
paddle
{
namespace
paddle
{
/*
/*
* im
Shape = [inputChannels, inputHeight, inputW
idth]
* im
= [input_channels, input_height, input_w
idth]
* col
Shape
=
* col =
* [input
Channels, filterHeight, filterWidth, outputHeight, outputW
idth]
* [input
_channels, filter_height, filter_width, output_height, output_w
idth]
*/
*/
template
<
class
T
>
template
<
class
T
>
class
Im2ColFunctor
<
kCFO
,
DEVICE_TYPE_CPU
,
T
>
{
class
Im2ColFunctor
<
kCFO
,
platform
::
CPUPlace
,
T
>
{
public:
public:
void
operator
()(
const
T
*
imData
,
const
TensorShape
&
imShape
,
T
*
colData
,
void
operator
()(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
&
col
,
const
TensorShape
&
colShape
,
int
strideHeight
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
padding_width
)
{
int
inputChannels
=
imShape
[
0
];
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
int
inputHeight
=
imShape
[
1
];
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
inputWidth
=
imShape
[
2
];
int
filterHeight
=
colShape
[
1
];
int
input_channels
=
im
.
dims
()[
0
];
int
filterWidth
=
colShape
[
2
];
int
input_height
=
im
.
dims
()[
1
];
int
outputHeight
=
colShape
[
3
];
int
input_width
=
im
.
dims
()[
2
];
int
outputWidth
=
colShape
[
4
];
int
filter_height
=
col
.
dims
()[
1
];
int
channelsCol
=
inputChannels
*
filterHeight
*
filterWidth
;
int
filter_width
=
col
.
dims
()[
2
];
int
output_height
=
col
.
dims
()[
3
];
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
output_width
=
col
.
dims
()[
4
];
int
wOffset
=
c
%
filterWidth
;
int
channels_col
=
input_channels
*
filter_height
*
filter_width
;
int
hOffset
=
(
c
/
filterWidth
)
%
filterHeight
;
int
c_im
=
c
/
filterWidth
/
filterHeight
;
const
T
*
im_data
=
im
.
data
<
T
>
();
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
T
*
col_data
=
col
.
data
<
T
>
();
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
int
imRowIdx
=
h
*
strideHeight
+
hOffset
;
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
imColIdx
=
w
*
strideWidth
+
wOffset
;
int
w_offset
=
c
%
filter_width
;
if
((
imRowIdx
-
paddingHeight
)
<
0
||
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
(
imRowIdx
-
paddingHeight
)
>=
inputHeight
||
int
c_im
=
c
/
filter_width
/
filter_height
;
(
imColIdx
-
paddingWidth
)
<
0
||
for
(
int
h
=
0
;
h
<
output_height
;
++
h
)
{
(
imColIdx
-
paddingWidth
)
>=
inputWidth
)
{
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
]
=
T
(
0
);
int
im_row_idx
=
h
*
stride_height
+
h_offset
;
int
im_col_idx
=
w
*
stride_width
+
w_offset
;
if
((
im_row_idx
-
padding_height
)
<
0
||
(
im_row_idx
-
padding_height
)
>=
input_height
||
(
im_col_idx
-
padding_width
)
<
0
||
(
im_col_idx
-
padding_width
)
>=
input_width
)
{
col_data
[(
c
*
output_height
+
h
)
*
output_width
+
w
]
=
T
(
0
);
}
else
{
}
else
{
im
RowIdx
+=
c_im
*
inputHeight
-
paddingH
eight
;
im
_row_idx
+=
c_im
*
input_height
-
padding_h
eight
;
im
ColIdx
-=
paddingW
idth
;
im
_col_idx
-=
padding_w
idth
;
col
Data
[(
c
*
outputHeight
+
h
)
*
outputW
idth
+
w
]
=
col
_data
[(
c
*
output_height
+
h
)
*
output_w
idth
+
w
]
=
im
Data
[
imRowIdx
*
inputWidth
+
imColI
dx
];
im
_data
[
im_row_idx
*
input_width
+
im_col_i
dx
];
}
}
}
}
}
}
...
@@ -62,41 +68,46 @@ class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> {
...
@@ -62,41 +68,46 @@ class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> {
};
};
/*
/*
* im
Shape = [inputChannels, inputHeight, inputW
idth]
* im
= [input_channels, input_height, input_w
idth]
* col
Shape
=
* col =
* [input
Channels, filterHeight, filterWidth, outputHeight, outputW
idth]
* [input
_channels, filter_height, filter_width, output_height, output_w
idth]
*/
*/
template
<
class
T
>
template
<
class
T
>
class
Col2ImFunctor
<
kCFO
,
DEVICE_TYPE_CPU
,
T
>
{
class
Col2ImFunctor
<
kCFO
,
platform
::
CPUPlace
,
T
>
{
public:
public:
void
operator
()(
T
*
imData
,
const
TensorShape
&
imShape
,
const
T
*
colData
,
void
operator
()(
framework
::
Tensor
&
im
,
const
framework
::
Tensor
&
col
,
const
TensorShape
&
colShape
,
int
strideHeight
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
padding_width
)
{
int
inputChannels
=
imShape
[
0
];
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
int
inputHeight
=
imShape
[
1
];
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
inputWidth
=
imShape
[
2
];
int
input_channels
=
im
.
dims
()[
0
];
int
filterHeight
=
colShape
[
1
];
int
input_height
=
im
.
dims
()[
1
];
int
filterWidth
=
colShape
[
2
];
int
input_width
=
im
.
dims
()[
2
];
int
outputHeight
=
colShape
[
3
];
int
filter_height
=
col
.
dims
()[
1
];
int
outputWidth
=
colShape
[
4
];
int
filter_width
=
col
.
dims
()[
2
];
int
channelsCol
=
inputChannels
*
filterHeight
*
filterWidth
;
int
output_height
=
col
.
dims
()[
3
];
int
output_width
=
col
.
dims
()[
4
];
for
(
int
c
=
0
;
c
<
channelsCol
;
++
c
)
{
int
channels_col
=
input_channels
*
filter_height
*
filter_width
;
int
wOffset
=
c
%
filterWidth
;
int
hOffset
=
(
c
/
filterWidth
)
%
filterHeight
;
T
*
im_data
=
im
.
data
<
T
>
();
int
c_im
=
c
/
filterWidth
/
filterHeight
;
const
T
*
col_data
=
col
.
data
<
T
>
();
for
(
int
h
=
0
;
h
<
outputHeight
;
++
h
)
{
for
(
int
w
=
0
;
w
<
outputWidth
;
++
w
)
{
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
imRowIdx
=
h
*
strideHeight
+
hOffset
;
int
w_offset
=
c
%
filter_width
;
int
imColIdx
=
w
*
strideWidth
+
wOffset
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
if
((
imRowIdx
-
paddingHeight
)
>=
0
&&
int
c_im
=
c
/
filter_width
/
filter_height
;
(
imRowIdx
-
paddingHeight
)
<
inputHeight
&&
for
(
int
h
=
0
;
h
<
output_height
;
++
h
)
{
(
imColIdx
-
paddingWidth
)
>=
0
&&
for
(
int
w
=
0
;
w
<
output_width
;
++
w
)
{
(
imColIdx
-
paddingWidth
)
<
inputWidth
)
{
int
im_row_idx
=
h
*
stride_height
+
h_offset
;
imRowIdx
+=
c_im
*
inputHeight
-
paddingHeight
;
int
im_col_idx
=
w
*
stride_width
+
w_offset
;
imColIdx
-=
paddingWidth
;
if
((
im_row_idx
-
padding_height
)
>=
0
&&
imData
[
imRowIdx
*
inputWidth
+
imColIdx
]
+=
(
im_row_idx
-
padding_height
)
<
input_height
&&
colData
[(
c
*
outputHeight
+
h
)
*
outputWidth
+
w
];
(
im_col_idx
-
padding_width
)
>=
0
&&
(
im_col_idx
-
padding_width
)
<
input_width
)
{
im_row_idx
+=
c_im
*
input_height
-
padding_height
;
im_col_idx
-=
padding_width
;
im_data
[
im_row_idx
*
input_width
+
im_col_idx
]
+=
col_data
[(
c
*
output_height
+
h
)
*
output_width
+
w
];
}
}
}
}
}
}
...
@@ -104,52 +115,61 @@ class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, T> {
...
@@ -104,52 +115,61 @@ class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, T> {
}
}
};
};
template
class
Im2ColFunctor
<
kCFO
,
DEVICE_TYPE_CPU
,
float
>;
template
class
Im2ColFunctor
<
kCFO
,
platform
::
CPUPlace
,
float
>;
template
class
Im2ColFunctor
<
kCFO
,
DEVICE_TYPE_CPU
,
double
>;
template
class
Im2ColFunctor
<
kCFO
,
platform
::
CPUPlace
,
double
>;
template
class
Col2ImFunctor
<
kCFO
,
DEVICE_TYPE_CPU
,
float
>;
template
class
Col2ImFunctor
<
kCFO
,
platform
::
CPUPlace
,
float
>;
template
class
Col2ImFunctor
<
kCFO
,
DEVICE_TYPE_CPU
,
double
>;
template
class
Col2ImFunctor
<
kCFO
,
platform
::
CPUPlace
,
double
>;
/*
/*
* im
Shape = [inputChannels, inputHeight, inputW
idth]
* im
= [input_channels, input_height, input_w
idth]
* col
Shape
=
* col =
* [output
Height, outputWidth, inputChannels, filterHeight, filterW
idth]
* [output
_height, output_width, input_channels, filter_height, filter_w
idth]
*/
*/
template
<
class
T
>
template
<
class
T
>
class
Im2ColFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
class
Im2ColFunctor
<
kOCF
,
platform
::
CPUPlace
,
T
>
{
public:
public:
void
operator
()(
const
T
*
imData
,
const
TensorShape
&
imShape
,
T
*
colData
,
void
operator
()(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
&
col
,
const
TensorShape
&
colShape
,
int
strideHeight
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
padding_width
)
{
int
inputChannels
=
imShape
[
0
];
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
int
inputHeight
=
imShape
[
1
];
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
inputWidth
=
imShape
[
2
];
int
input_channels
=
im
.
dims
()[
0
];
int
filterHeight
=
colShape
[
3
];
int
input_height
=
im
.
dims
()[
1
];
int
filterWidth
=
colShape
[
4
];
int
input_width
=
im
.
dims
()[
2
];
int
outputHeight
=
colShape
[
0
];
int
filter_height
=
col
.
dims
()[
3
];
int
outputWidth
=
colShape
[
1
];
int
filter_width
=
col
.
dims
()[
4
];
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
int
output_height
=
col
.
dims
()[
0
];
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
int
output_width
=
col
.
dims
()[
1
];
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
filterH
=
0
;
filterH
<
filterHeight
;
++
filterH
)
{
const
T
*
im_data
=
im
.
data
<
T
>
();
for
(
int
filterW
=
0
;
filterW
<
filterWidth
;
++
filterW
)
{
T
*
col_data
=
col
.
data
<
T
>
();
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
-
paddingHeight
;
for
(
int
col_row_idx
=
0
;
col_row_idx
<
output_height
;
++
col_row_idx
)
{
int
imColOffset
=
outputW
*
strideWidth
+
filterW
-
paddingWidth
;
for
(
int
col_col_idx
=
0
;
col_col_idx
<
output_width
;
++
col_col_idx
)
{
int
colDataOffset
=
for
(
int
channel
=
0
;
channel
<
input_channels
;
++
channel
)
{
(((
outputH
*
outputWidth
+
outputW
)
*
inputChannels
+
for
(
int
filter_row_idx
=
0
;
filter_row_idx
<
filter_height
;
channel
)
*
++
filter_row_idx
)
{
filterHeight
+
for
(
int
filter_col_idx
=
0
;
filter_col_idx
<
filter_width
;
filterH
)
*
++
filter_col_idx
)
{
filterWidth
+
int
im_row_offset
=
filterW
;
col_row_idx
*
stride_height
+
filter_row_idx
-
padding_height
;
if
(
imRowOffset
<
0
||
imRowOffset
>=
inputHeight
||
int
im_col_offset
=
imColOffset
<
0
||
imColOffset
>=
inputWidth
)
{
col_col_idx
*
stride_width
+
filter_col_idx
-
padding_width
;
colData
[
colDataOffset
]
=
float
(
0
);
int
col_offset
=
(((
col_row_idx
*
output_width
+
col_col_idx
)
*
input_channels
+
channel
)
*
filter_height
+
filter_row_idx
)
*
filter_width
+
filter_col_idx
;
if
(
im_row_offset
<
0
||
im_row_offset
>=
input_height
||
im_col_offset
<
0
||
im_col_offset
>=
input_width
)
{
col_data
[
col_offset
]
=
T
(
0
);
}
else
{
}
else
{
int
im
DataO
ffset
=
int
im
_o
ffset
=
(
channel
*
input
Height
+
imRowOffset
)
*
inputW
idth
+
(
channel
*
input
_height
+
im_row_offset
)
*
input_w
idth
+
im
ColO
ffset
;
im
_col_o
ffset
;
col
Data
[
colDataOffset
]
=
imData
[
imDataO
ffset
];
col
_data
[
col_offset
]
=
im_data
[
im_o
ffset
];
}
}
}
}
}
}
...
@@ -160,44 +180,53 @@ class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
...
@@ -160,44 +180,53 @@ class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
};
};
/*
/*
* im
Shape = [inputChannels, inputHeight, inputW
idth]
* im
= [input_channels, input_height, input_w
idth]
* col
Shape
=
* col =
* [output
Height, outputWidth, inputChannels, filterHeight, filterW
idth]
* [output
_height, output_width, input_channels, filter_height, filter_w
idth]
*/
*/
template
<
class
T
>
template
<
class
T
>
class
Col2ImFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
T
>
{
class
Col2ImFunctor
<
kOCF
,
platform
::
CPUPlace
,
T
>
{
public:
public:
void
operator
()(
T
*
imData
,
const
TensorShape
&
imShape
,
const
T
*
colData
,
void
operator
()(
framework
::
Tensor
&
im
,
const
framework
::
Tensor
&
col
,
const
TensorShape
&
colShape
,
int
strideHeight
,
int
stride_height
,
int
stride_width
,
int
padding_height
,
int
strideWidth
,
int
paddingHeight
,
int
paddingWidth
)
{
int
padding_width
)
{
int
inputChannels
=
imShape
[
0
];
PADDLE_ENFORCE
(
im
.
dims
().
size
()
==
3
);
int
inputHeight
=
imShape
[
1
];
PADDLE_ENFORCE
(
col
.
dims
().
size
()
==
5
);
int
inputWidth
=
imShape
[
2
];
int
input_channels
=
im
.
dims
()[
0
];
int
filterHeight
=
colShape
[
3
];
int
input_height
=
im
.
dims
()[
1
];
int
filterWidth
=
colShape
[
4
];
int
input_width
=
im
.
dims
()[
2
];
int
outputHeight
=
colShape
[
0
];
int
filter_height
=
col
.
dims
()[
3
];
int
outputWidth
=
colShape
[
1
];
int
filter_width
=
col
.
dims
()[
4
];
for
(
int
outputH
=
0
;
outputH
<
outputHeight
;
++
outputH
)
{
int
output_height
=
col
.
dims
()[
0
];
for
(
int
outputW
=
0
;
outputW
<
outputWidth
;
++
outputW
)
{
int
output_width
=
col
.
dims
()[
1
];
for
(
int
channel
=
0
;
channel
<
inputChannels
;
++
channel
)
{
for
(
int
filterH
=
0
;
filterH
<
filterHeight
;
++
filterH
)
{
T
*
im_data
=
im
.
data
<
T
>
();
for
(
int
filterW
=
0
;
filterW
<
filterWidth
;
++
filterW
)
{
const
T
*
col_data
=
col
.
data
<
T
>
();
int
imRowOffset
=
outputH
*
strideHeight
+
filterH
-
paddingHeight
;
for
(
int
col_row_idx
=
0
;
col_row_idx
<
output_height
;
++
col_row_idx
)
{
int
imColOffset
=
outputW
*
strideWidth
+
filterW
-
paddingWidth
;
for
(
int
col_col_idx
=
0
;
col_col_idx
<
output_width
;
++
col_col_idx
)
{
int
colDataOffset
=
for
(
int
channel
=
0
;
channel
<
input_channels
;
++
channel
)
{
(((
outputH
*
outputWidth
+
outputW
)
*
inputChannels
+
for
(
int
filter_row_idx
=
0
;
filter_row_idx
<
filter_height
;
channel
)
*
++
filter_row_idx
)
{
filterHeight
+
for
(
int
filter_col_idx
=
0
;
filter_col_idx
<
filter_width
;
filterH
)
*
++
filter_col_idx
)
{
filterWidth
+
int
im_row_offset
=
filterW
;
col_row_idx
*
stride_height
+
filter_row_idx
-
padding_height
;
if
(
imRowOffset
>=
0
&&
imRowOffset
<
inputHeight
&&
int
im_col_offset
=
imColOffset
>=
0
&&
imColOffset
<
inputWidth
)
{
col_col_idx
*
stride_width
+
filter_col_idx
-
padding_width
;
int
imDataOffset
=
int
col_offset
=
(((
col_row_idx
*
output_width
+
col_col_idx
)
*
(
channel
*
inputHeight
+
imRowOffset
)
*
inputWidth
+
input_channels
+
imColOffset
;
channel
)
*
imData
[
imDataOffset
]
+=
colData
[
colDataOffset
];
filter_height
+
filter_row_idx
)
*
filter_width
+
filter_col_idx
;
if
(
im_row_offset
>=
0
&&
im_row_offset
<
input_height
&&
im_col_offset
>=
0
&&
im_col_offset
<
input_width
)
{
int
im_offset
=
(
channel
*
input_height
+
im_row_offset
)
*
input_width
+
im_col_offset
;
im_data
[
im_offset
]
+=
col_data
[
col_offset
];
}
}
}
}
}
}
...
@@ -207,9 +236,9 @@ class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
...
@@ -207,9 +236,9 @@ class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
}
}
};
};
template
class
Im2ColFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
float
>;
template
class
Im2ColFunctor
<
kOCF
,
platform
::
CPUPlace
,
float
>;
template
class
Im2ColFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
double
>;
template
class
Im2ColFunctor
<
kOCF
,
platform
::
CPUPlace
,
double
>;
template
class
Col2ImFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
float
>;
template
class
Col2ImFunctor
<
kOCF
,
platform
::
CPUPlace
,
float
>;
template
class
Col2ImFunctor
<
kOCF
,
DEVICE_TYPE_CPU
,
double
>;
template
class
Col2ImFunctor
<
kOCF
,
platform
::
CPUPlace
,
double
>;
}
// namespace paddle
}
// namespace paddle
paddle/operators/math/im2col.h
浏览文件 @
f7be9cb9
...
@@ -14,8 +14,8 @@ limitations under the License. */
...
@@ -14,8 +14,8 @@ limitations under the License. */
#pragma once
#pragma once
#include "
TensorShape
.h"
#include "
paddle/framework/tensor
.h"
#include "
TensorType
.h"
#include "
paddle/platform/device_context
.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -67,20 +67,20 @@ enum ColFormat { kCFO = 0, kOCF = 1 };
...
@@ -67,20 +67,20 @@ enum ColFormat { kCFO = 0, kOCF = 1 };
* \note The caller needs to ensure that imShape.inputChannels is equal to
* \note The caller needs to ensure that imShape.inputChannels is equal to
* colShape.inputChannels.
* colShape.inputChannels.
*/
*/
template
<
ColFormat
Format
,
DeviceType
Device
,
class
T
>
template
<
ColFormat
Format
,
typename
Place
,
typename
T
>
class
Im2ColFunctor
{
class
Im2ColFunctor
{
public:
public:
void
operator
()(
const
T
*
imData
,
const
TensorShape
&
imShape
,
T
*
colData
,
void
operator
()(
const
framework
::
Tensor
&
im
,
framework
::
Tensor
&
col
,
const
TensorShape
&
colShape
,
int
strideH
eight
,
int
stride_height
,
int
stride_width
,
int
padding_h
eight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingW
idth
);
int
padding_w
idth
);
};
};
template
<
ColFormat
Format
,
DeviceType
Device
,
class
T
>
template
<
ColFormat
Format
,
typename
Place
,
typename
T
>
class
Col2ImFunctor
{
class
Col2ImFunctor
{
public:
public:
void
operator
()(
T
*
imData
,
const
TensorShape
&
imShape
,
const
T
*
colData
,
void
operator
()(
framework
::
Tensor
&
im
,
const
framework
::
Tensor
&
col
,
const
TensorShape
&
colShape
,
int
strideH
eight
,
int
stride_height
,
int
stride_width
,
int
padding_h
eight
,
int
strideWidth
,
int
paddingHeight
,
int
paddingW
idth
);
int
padding_w
idth
);
};
};
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录