Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f7a0bfa1
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f7a0bfa1
编写于
8月 11, 2022
作者:
P
peachlcy
提交者:
GitHub
8月 11, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【PaddlePaddle Hackathon 3 No.17】为 Paddle 新增 sgn (#44568)
上级
0dd895d2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
131 addition
and
0 deletion
+131
-0
python/paddle/__init__.py
python/paddle/__init__.py
+2
-0
python/paddle/fluid/tests/unittests/test_sgn.py
python/paddle/fluid/tests/unittests/test_sgn.py
+85
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+2
-0
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+42
-0
未找到文件。
python/paddle/__init__.py
浏览文件 @
f7a0bfa1
...
...
@@ -277,6 +277,7 @@ from .tensor.math import inner # noqa: F401
from
.tensor.math
import
outer
# noqa: F401
from
.tensor.math
import
heaviside
# noqa: F401
from
.tensor.math
import
frac
# noqa: F401
from
.tensor.math
import
sgn
# noqa: F401
from
.tensor.random
import
bernoulli
# noqa: F401
from
.tensor.random
import
poisson
# noqa: F401
...
...
@@ -650,4 +651,5 @@ __all__ = [ # noqa
'put_along_axis'
,
'heaviside'
,
'tril_indices'
,
'sgn'
,
]
python/paddle/fluid/tests/unittests/test_sgn.py
0 → 100644
浏览文件 @
f7a0bfa1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
def
np_sgn
(
x
:
np
.
ndarray
):
if
x
.
dtype
==
'complex128'
or
x
.
dtype
==
'complex64'
:
x_abs
=
np
.
abs
(
x
)
eps
=
np
.
finfo
(
x
.
dtype
).
eps
x_abs
=
np
.
maximum
(
x_abs
,
eps
)
out
=
x
/
x_abs
else
:
out
=
np
.
sign
(
x
)
return
out
class
TestSgnError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
# The input dtype of sgn must be float16, float32, float64,complex64,complex128.
input2
=
paddle
.
to_tensor
(
np
.
random
.
randint
(
-
10
,
10
,
size
=
[
12
,
20
]).
astype
(
'int32'
))
input3
=
paddle
.
to_tensor
(
np
.
random
.
randint
(
-
10
,
10
,
size
=
[
12
,
20
]).
astype
(
'int64'
))
self
.
assertRaises
(
TypeError
,
paddle
.
sgn
,
input2
)
self
.
assertRaises
(
TypeError
,
paddle
.
sgn
,
input3
)
class
TestSignAPI
(
unittest
.
TestCase
):
def
setUp
(
self
)
->
None
:
self
.
support_dtypes
=
[
'float16'
,
'float32'
,
'float64'
,
'complex64'
,
'complex128'
]
if
paddle
.
device
.
get_device
()
==
'cpu'
:
self
.
support_dtypes
=
[
'float32'
,
'float64'
,
'complex64'
,
'complex128'
]
def
test_dtype
(
self
):
for
dtype
in
self
.
support_dtypes
:
x
=
paddle
.
to_tensor
(
np
.
random
.
randint
(
-
10
,
10
,
size
=
[
12
,
20
,
2
]).
astype
(
dtype
))
paddle
.
sgn
(
x
)
def
test_complex
(
self
):
for
dtype
in
[
'complex64'
,
'complex128'
]:
np_x
=
np
.
array
([[
3
+
4j
,
7
-
24j
,
0
,
1
+
2j
],
[
6
+
8j
,
3
,
0
,
-
2
]],
dtype
=
dtype
)
x
=
paddle
.
to_tensor
(
np_x
)
z
=
paddle
.
sgn
(
x
)
np_z
=
z
.
numpy
()
z_expected
=
np_sgn
(
np_x
)
self
.
assertTrue
(
np
.
allclose
(
np_z
,
z_expected
))
def
test_float
(
self
):
for
dtype
in
self
.
support_dtypes
:
np_x
=
np
.
random
.
randint
(
-
10
,
10
,
size
=
[
12
,
20
,
2
]).
astype
(
dtype
)
x
=
paddle
.
to_tensor
(
np_x
)
z
=
paddle
.
sgn
(
x
)
np_z
=
z
.
numpy
()
z_expected
=
np_sgn
(
np_x
)
self
.
assertTrue
(
np
.
allclose
(
np_z
,
z_expected
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
f7a0bfa1
...
...
@@ -233,6 +233,7 @@ from .math import inner # noqa: F401
from
.math
import
outer
# noqa: F401
from
.math
import
heaviside
# noqa: F401
from
.math
import
frac
# noqa: F401
from
.math
import
sgn
# noqa: F401
from
.random
import
multinomial
# noqa: F401
from
.random
import
standard_normal
# noqa: F401
...
...
@@ -505,6 +506,7 @@ tensor_method_func = [ #noqa
'exponential_'
,
'heaviside'
,
'bucketize'
,
'sgn'
,
]
#this list used in math_op_patch.py for magic_method bind
...
...
python/paddle/tensor/math.py
浏览文件 @
f7a0bfa1
...
...
@@ -4708,3 +4708,45 @@ def frac(x, name=None):
helper
.
append_op
(
type
=
"trunc"
,
inputs
=
inputs
,
attrs
=
attrs
,
outputs
=
{
"Out"
:
y
})
return
_elementwise_op
(
LayerHelper
(
op_type
,
**
locals
()))
def
sgn
(
x
,
name
=
None
):
"""
For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
elements of input and absolute values of one.
For other float dtype tensor,
this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.
Args:
x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Returns:
Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.
Examples:
.. code-block:: Python
import paddle
x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
print(paddle.sgn(x))
#[[0.6+0.8j 0.28-0.96j 0.+0.j 0.4472136+0.8944272j]
# [0.6+0.8j 1.+0.j 0.+0.j -1.+0.j]]
"""
if
x
.
dtype
not
in
[
paddle
.
float16
,
paddle
.
float32
,
paddle
.
float64
,
paddle
.
complex64
,
paddle
.
complex128
]:
raise
TypeError
(
"The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}"
.
format
(
x
.
dtype
))
if
paddle
.
is_complex
(
x
):
expand_x
=
paddle
.
as_real
(
x
)
x_abs
=
paddle
.
abs
(
x
)
x_abs
=
paddle
.
unsqueeze
(
x_abs
,
axis
=-
1
)
output
=
expand_x
/
x_abs
zeros
=
paddle
.
zeros_like
(
output
)
output
=
paddle
.
where
(
paddle
.
isnan
(
output
),
zeros
,
output
)
return
paddle
.
as_complex
(
output
)
else
:
return
paddle
.
sign
(
x
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录