Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f702f8fd
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f702f8fd
编写于
1月 08, 2019
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into fuse/seqpool_concat
上级
2dd331cc
55a06723
变更
31
隐藏空白更改
内联
并排
Showing
31 changed file
with
1528 addition
and
288 deletion
+1528
-288
cmake/FindJeMalloc.cmake
cmake/FindJeMalloc.cmake
+7
-0
cmake/cuda.cmake
cmake/cuda.cmake
+15
-1
cmake/external/boost.cmake
cmake/external/boost.cmake
+2
-5
cmake/external/mklml.cmake
cmake/external/mklml.cmake
+16
-18
cmake/generic.cmake
cmake/generic.cmake
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+1
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+1
-0
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
+358
-0
paddle/fluid/framework/ir/lock_free_optimize_pass.h
paddle/fluid/framework/ir/lock_free_optimize_pass.h
+130
-0
paddle/fluid/framework/ngraph_bridge.cc
paddle/fluid/framework/ngraph_bridge.cc
+3
-0
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+5
-2
paddle/fluid/inference/api/api_impl.h
paddle/fluid/inference/api/api_impl.h
+0
-1
paddle/fluid/inference/api/paddle_analysis_config.h
paddle/fluid/inference/api/paddle_analysis_config.h
+96
-7
paddle/fluid/inference/api/paddle_api.h
paddle/fluid/inference/api/paddle_api.h
+104
-72
paddle/fluid/inference/api/paddle_pass_builder.h
paddle/fluid/inference/api/paddle_pass_builder.h
+22
-15
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+5
-5
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
+194
-0
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
+142
-0
paddle/fluid/operators/math/blas_impl.cu.h
paddle/fluid/operators/math/blas_impl.cu.h
+70
-64
paddle/fluid/operators/ngraph/ngraph_ops.h
paddle/fluid/operators/ngraph/ngraph_ops.h
+2
-0
paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h
paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h
+61
-0
paddle/fluid/operators/ngraph/ops/mean_op.h
paddle/fluid/operators/ngraph/ops/mean_op.h
+68
-0
paddle/fluid/operators/ngraph/ops/scale_op.h
paddle/fluid/operators/ngraph/ops/scale_op.h
+41
-0
paddle/fluid/platform/cuda_helper.h
paddle/fluid/platform/cuda_helper.h
+0
-58
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+6
-14
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+52
-24
paddle/fluid/platform/device_context_test.cu
paddle/fluid/platform/device_context_test.cu
+3
-0
python/paddle/fluid/tests/unittests/ngraph/test_mean_ngraph_op.py
...addle/fluid/tests/unittests/ngraph/test_mean_ngraph_op.py
+31
-0
python/paddle/fluid/tests/unittests/ngraph/test_scale_ngraph_op.py
...ddle/fluid/tests/unittests/ngraph/test_scale_ngraph_op.py
+40
-0
python/paddle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py
...addle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py
+51
-0
未找到文件。
cmake/FindJeMalloc.cmake
浏览文件 @
f702f8fd
...
...
@@ -19,3 +19,10 @@ find_package_handle_standard_args(jemalloc DEFAULT_MSG JEMALLOC_LIBRARIES JEMALL
mark_as_advanced
(
JEMALLOC_LIBRARIES
JEMALLOC_INCLUDE_DIR
)
if
(
JEMALLOC_FOUND
)
add_library
(
jemalloc::jemalloc UNKNOWN IMPORTED
)
set_target_properties
(
jemalloc::jemalloc PROPERTIES
IMPORTED_LOCATION
${
JEMALLOC_LIBRARIES
}
INTERFACE_INCLUDE_DIRECTORIES
"
${
JEMALLOC_INCLUDE_DIR
}
"
)
endif
()
cmake/cuda.cmake
浏览文件 @
f702f8fd
...
...
@@ -5,6 +5,8 @@ endif()
set
(
paddle_known_gpu_archs
"30 35 50 52 60 61 70"
)
set
(
paddle_known_gpu_archs7
"30 35 50 52"
)
set
(
paddle_known_gpu_archs8
"30 35 50 52 60 61"
)
set
(
paddle_known_gpu_archs9
"30 35 50 52 60 61 70"
)
set
(
paddle_known_gpu_archs10
"30 35 50 52 60 61 70 75"
)
######################################################################################
# A function for automatic detection of GPUs installed (if autodetection is enabled)
...
...
@@ -59,7 +61,7 @@ endfunction()
# select_nvcc_arch_flags(out_variable)
function
(
select_nvcc_arch_flags out_variable
)
# List of arch names
set
(
archs_names
"Kepler"
"Maxwell"
"Pascal"
"All"
"Manual"
)
set
(
archs_names
"Kepler"
"Maxwell"
"Pascal"
"
Volta"
"Turing"
"
All"
"Manual"
)
set
(
archs_name_default
"All"
)
if
(
NOT CMAKE_CROSSCOMPILING
)
list
(
APPEND archs_names
"Auto"
)
...
...
@@ -93,6 +95,8 @@ function(select_nvcc_arch_flags out_variable)
set
(
cuda_arch_bin
"60 61"
)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"Volta"
)
set
(
cuda_arch_bin
"70"
)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"Turing"
)
set
(
cuda_arch_bin
"75"
)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"All"
)
set
(
cuda_arch_bin
${
paddle_known_gpu_archs
}
)
elseif
(
${
CUDA_ARCH_NAME
}
STREQUAL
"Auto"
)
...
...
@@ -153,6 +157,16 @@ elseif (${CUDA_VERSION} LESS 9.0) # CUDA 8.x
# warning for now.
list
(
APPEND CUDA_NVCC_FLAGS
"-Wno-deprecated-gpu-targets"
)
add_definitions
(
"-DPADDLE_CUDA_BINVER=
\"
80
\"
"
)
elseif
(
${
CUDA_VERSION
}
LESS 10.0
)
# CUDA 9.x
set
(
paddle_known_gpu_archs
${
paddle_known_gpu_archs9
}
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D_MWAITXINTRIN_H_INCLUDED"
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D__STRICT_ANSI__"
)
add_definitions
(
"-DPADDLE_CUDA_BINVER=
\"
90
\"
"
)
elseif
(
${
CUDA_VERSION
}
LESS 11.0
)
# CUDA 10.x
set
(
paddle_known_gpu_archs
${
paddle_known_gpu_archs10
}
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D_MWAITXINTRIN_H_INCLUDED"
)
list
(
APPEND CUDA_NVCC_FLAGS
"-D__STRICT_ANSI__"
)
add_definitions
(
"-DPADDLE_CUDA_BINVER=
\"
100
\"
"
)
endif
()
include_directories
(
${
CUDA_INCLUDE_DIRS
}
)
...
...
cmake/external/boost.cmake
浏览文件 @
f702f8fd
...
...
@@ -23,11 +23,8 @@ set(BOOST_PROJECT "extern_boost")
# checked that the devtools package of CentOS 6 installs boost 1.41.0.
# So we use 1.41.0 here.
set
(
BOOST_VER
"1.41.0"
)
if
((
NOT DEFINED BOOST_TAR
)
OR
(
NOT DEFINED BOOST_URL
))
message
(
STATUS
"use pre defined download url"
)
set
(
BOOST_TAR
"boost_1_41_0"
CACHE STRING
""
FORCE
)
set
(
BOOST_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
BOOST_TAR
}
.tar.gz"
CACHE STRING
""
FORCE
)
endif
()
set
(
BOOST_TAR
"boost_1_41_0"
CACHE STRING
""
FORCE
)
set
(
BOOST_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
BOOST_TAR
}
.tar.gz"
CACHE STRING
""
FORCE
)
MESSAGE
(
STATUS
"BOOST_TAR:
${
BOOST_TAR
}
, BOOST_URL:
${
BOOST_URL
}
"
)
...
...
cmake/external/mklml.cmake
浏览文件 @
f702f8fd
...
...
@@ -16,6 +16,12 @@ IF(NOT ${WITH_MKLML})
return
()
ENDIF
(
NOT
${
WITH_MKLML
}
)
IF
(
APPLE
)
MESSAGE
(
WARNING
"Mac is not supported with MKLML in Paddle yet. Force WITH_MKLML=OFF."
)
SET
(
WITH_MKLML OFF CACHE STRING
"Disable MKLML package in MacOS"
FORCE
)
return
()
ENDIF
()
INCLUDE
(
ExternalProject
)
SET
(
MKLML_DST_DIR
"mklml"
)
SET
(
MKLML_INSTALL_ROOT
"
${
THIRD_PARTY_PATH
}
/install"
)
...
...
@@ -23,32 +29,24 @@ SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET
(
MKLML_ROOT
${
MKLML_INSTALL_DIR
}
)
SET
(
MKLML_INC_DIR
${
MKLML_ROOT
}
/include
)
SET
(
MKLML_LIB_DIR
${
MKLML_ROOT
}
/lib
)
if
(
WIN32
)
SET
(
CMAKE_INSTALL_RPATH
"
${
CMAKE_INSTALL_RPATH
}
"
"
${
MKLML_ROOT
}
/lib"
)
SET
(
TIME_VERSION
"2019.0.1.20181227"
)
IF
(
WIN32
)
SET
(
MKLML_VER
"mklml_win_
${
TIME_VERSION
}
"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"https://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.zip"
CACHE STRING
""
FORCE
)
SET
(
MKLML_LIB
${
MKLML_LIB_DIR
}
/mklml.lib
)
SET
(
MKLML_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5md.lib
)
SET
(
MKLML_SHARED_LIB
${
MKLML_LIB_DIR
}
/mklml.dll
)
SET
(
MKLML_SHARED_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5md.dll
)
else
()
ELSE
()
SET
(
MKLML_VER
"mklml_lnx_
${
TIME_VERSION
}
"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
SET
(
MKLML_LIB
${
MKLML_LIB_DIR
}
/libmklml_intel.so
)
SET
(
MKLML_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5.so
)
SET
(
MKLML_SHARED_LIB
${
MKLML_LIB_DIR
}
/libmklml_intel.so
)
SET
(
MKLML_SHARED_IOMP_LIB
${
MKLML_LIB_DIR
}
/libiomp5.so
)
endif
()
SET
(
CMAKE_INSTALL_RPATH
"
${
CMAKE_INSTALL_RPATH
}
"
"
${
MKLML_ROOT
}
/lib"
)
IF
((
NOT DEFINED MKLML_VER
)
OR
(
NOT DEFINED MKLML_URL
))
MESSAGE
(
STATUS
"use pre defined download url"
)
if
(
WIN32
)
SET
(
MKLML_VER
"mklml_win_2019.0.1.20180928"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"https://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.zip"
CACHE STRING
""
FORCE
)
elseif
(
APPLE
)
SET
(
MKLML_VER
"mklml_mac_2019.0.1.20180928"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
else
()
SET
(
MKLML_VER
"mklml_lnx_2019.0.1.20180928"
CACHE STRING
""
FORCE
)
SET
(
MKLML_URL
"http://paddlepaddledeps.cdn.bcebos.com/
${
MKLML_VER
}
.tgz"
CACHE STRING
""
FORCE
)
ENDIF
()
endif
()
ENDIF
()
SET
(
MKLML_PROJECT
"extern_mklml"
)
MESSAGE
(
STATUS
"MKLML_VER:
${
MKLML_VER
}
, MKLML_URL:
${
MKLML_URL
}
"
)
...
...
cmake/generic.cmake
浏览文件 @
f702f8fd
...
...
@@ -117,7 +117,7 @@ function(common_link TARGET_NAME)
endif
()
if
(
WITH_JEMALLOC
)
target_link_libraries
(
${
TARGET_NAME
}
${
JEMALLOC_LIBRARIES
}
)
target_link_libraries
(
${
TARGET_NAME
}
jemalloc::jemalloc
)
endif
()
endfunction
()
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
f702f8fd
...
...
@@ -94,4 +94,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass
memory_optimize_pass
)
memory_optimize_pass
lock_free_optimize_pass
)
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
f702f8fd
...
...
@@ -232,3 +232,4 @@ USE_PASS(analysis_var_pass);
USE_PASS
(
sequential_execution_pass
);
USE_PASS
(
all_reduce_deps_pass
);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
USE_PASS
(
lock_free_optimize_pass
);
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
f702f8fd
...
...
@@ -31,6 +31,7 @@ cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library
(
graph_to_program_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
lock_free_optimize_pass base
)
pass_library
(
fc_fuse_pass inference
)
pass_library
(
attention_lstm_fuse_pass inference
)
pass_library
(
infer_clean_graph_pass inference
)
...
...
paddle/fluid/framework/ir/lock_free_optimize_pass.cc
0 → 100644
浏览文件 @
f702f8fd
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/lock_free_optimize_pass.h"
#include <string>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
const
char
kSumGradOpName
[]
=
"sum"
;
// TODO(minqiyang): only support sgd at current time, please add
// other optimizers later.
const
char
kOptimizerType
[]
=
"sgd"
;
std
::
unique_ptr
<
ir
::
Graph
>
LockFreeOptimizePass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
PADDLE_ENFORCE
(
graph
.
get
());
// We could collect all weights' name from SGD, where
// W1 <- SGD(W0, Grad0)
std
::
unordered_set
<
std
::
string
>
weight_var_set
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
IsOpNamed
(
node
,
kOptimizerType
))
{
auto
&
param_out_vars
=
node
->
Op
()
->
Output
(
"ParamOut"
);
PADDLE_ENFORCE
(
param_out_vars
.
size
()
==
1u
);
weight_var_set
.
insert
(
param_out_vars
[
0
]);
}
}
// find all grad's merge op via weight name, where
// Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
std
::
unordered_set
<
ir
::
Node
*>
grad_sum_op_set
;
for
(
ir
::
Node
*
node
:
graph
->
Nodes
())
{
if
(
IsOpNamed
(
node
,
kSumGradOpName
))
{
for
(
ir
::
Node
*
output
:
node
->
outputs
)
{
// strip the last grad suffix @GRAD
std
::
string
var_name
=
output
->
Name
();
const
std
::
string
suffix
(
kGradVarSuffix
);
if
(
var_name
!=
suffix
&&
var_name
.
size
()
>
suffix
.
size
()
&&
var_name
.
substr
(
var_name
.
size
()
-
suffix
.
size
())
==
suffix
)
{
// if so then strip them off
var_name
=
var_name
.
substr
(
0
,
var_name
.
size
()
-
suffix
.
size
());
if
(
weight_var_set
.
find
(
var_name
)
!=
weight_var_set
.
end
())
{
grad_sum_op_set
.
insert
(
node
);
break
;
}
}
}
}
}
// get the forward op and backward op pairs, where
// out <- forward(X, W)
// Grad1 <- backward(out, X')
// Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
// W0 <- SGD(W1, Grad0)
for
(
ir
::
Node
*
node
:
grad_sum_op_set
)
{
for
(
ir
::
Node
*
merged_grad_var
:
node
->
outputs
)
{
// find the optimizers connected with sum op
if
(
IsVarNameEndsWith
(
merged_grad_var
,
kGradVarSuffix
)
&&
merged_grad_var
->
outputs
.
size
()
==
1u
)
{
ir
::
Node
*
opt_node
=
merged_grad_var
->
outputs
[
0
];
VLOG
(
3
)
<<
"Found opt node "
<<
opt_node
->
Name
();
// find the backward op connected with sum op
for
(
ir
::
Node
*
unmerged_grad_var
:
node
->
inputs
)
{
if
(
IsVarNameContains
(
unmerged_grad_var
,
kGradVarSuffix
)
&&
unmerged_grad_var
->
inputs
.
size
()
==
1u
)
{
ir
::
Node
*
backward_op
=
unmerged_grad_var
->
inputs
[
0
];
VLOG
(
3
)
<<
"Found backward_op "
<<
backward_op
->
Name
();
// find the forward op related to the backward op
ir
::
Node
*
forward_op
=
FindForwardOpViaBackwardOp
(
graph
.
get
(),
backward_op
);
VLOG
(
3
)
<<
"Found forward_op "
<<
forward_op
->
Name
();
PADDLE_ENFORCE
(
forward_op
);
Node
*
new_optimizer_node
=
CreateNewSGDNode
(
graph
.
get
(),
forward_op
,
backward_op
,
node
,
opt_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
}
}
}
}
}
// Remove the sum_op and its' outputs and connected Optimizers
for
(
Node
*
sum_op
:
grad_sum_op_set
)
{
for
(
Node
*
sum_op_output
:
sum_op
->
outputs
)
{
for
(
Node
*
optimize_op
:
sum_op_output
->
outputs
)
{
if
(
optimize_op
->
NodeType
()
==
Node
::
Type
::
kOperation
&&
optimize_op
->
Name
()
==
kOptimizerType
)
{
VLOG
(
3
)
<<
"remove optimize_op: "
<<
optimize_op
->
Name
()
<<
"_"
<<
optimize_op
->
id
();
graph
->
RemoveNode
(
optimize_op
);
}
}
VLOG
(
3
)
<<
"remove sum_op_output: "
<<
sum_op_output
->
Name
()
<<
"_"
<<
sum_op_output
->
id
();
graph
->
RemoveNode
(
sum_op_output
);
}
VLOG
(
3
)
<<
"remove sum_op: "
<<
sum_op
->
Name
()
<<
"_"
<<
sum_op
->
id
();
graph
->
RemoveNode
(
sum_op
);
}
for
(
auto
*
node
:
graph
->
Nodes
())
{
for
(
Node
*
output_node
:
node
->
outputs
)
{
if
(
output_node
->
Name
()
==
"sgd"
)
{
VLOG
(
3
)
<<
"Node link to SGD: "
<<
node
->
Name
()
<<
"_"
<<
node
->
id
()
<<
" --> "
<<
output_node
->
Name
()
<<
"_"
<<
output_node
->
id
();
for
(
Node
*
input_node
:
node
->
inputs
)
{
VLOG
(
3
)
<<
"SGD Input link: "
<<
input_node
->
Name
()
<<
"_"
<<
input_node
->
id
()
<<
" --> "
<<
node
->
Name
()
<<
"_"
<<
node
->
id
();
}
}
}
}
return
graph
;
}
ir
::
Node
*
LockFreeOptimizePass
::
CreateNewSGDNode
(
ir
::
Graph
*
graph
,
ir
::
Node
*
forward_node
,
ir
::
Node
*
backward_node
,
ir
::
Node
*
grad_sum_node
,
ir
::
Node
*
optimize_node
)
const
{
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
forward_node
);
PADDLE_ENFORCE
(
backward_node
);
PADDLE_ENFORCE
(
grad_sum_node
);
PADDLE_ENFORCE
(
optimize_node
);
// find the grad var node between the grad sum node and backward_node
std
::
vector
<
ir
::
Node
*>
grad_vars
=
FindConnectedNode
(
backward_node
,
grad_sum_node
);
ir
::
Node
*
grad_node
=
nullptr
;
for
(
ir
::
Node
*
node
:
grad_vars
)
{
if
(
!
ir
::
IsControlDepVar
(
*
node
))
{
grad_node
=
node
;
}
}
PADDLE_ENFORCE
(
grad_node
);
// create a new SGD node
OpDesc
*
old_desc
=
optimize_node
->
Op
();
// keep with the same block between new optimizer and the old one
OpDesc
new_desc
(
*
old_desc
,
old_desc
->
Block
());
new_desc
.
SetInput
(
"Param"
,
old_desc
->
Input
(
"Param"
));
new_desc
.
SetInput
(
"LearningRate"
,
old_desc
->
Input
(
"LearningRate"
));
new_desc
.
SetInput
(
"Grad"
,
std
::
vector
<
std
::
string
>
({
grad_node
->
Name
()}));
new_desc
.
SetOutput
(
"ParamOut"
,
old_desc
->
Output
(
"ParamOut"
));
std
::
vector
<
std
::
string
>
op_role_vars
=
boost
::
get
<
std
::
vector
<
std
::
string
>>
(
new_desc
.
GetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
()));
// replace the second op role var, because the grad name was
// changed in new optimizer
op_role_vars
.
pop_back
();
op_role_vars
.
push_back
(
grad_node
->
Name
());
new_desc
.
SetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
op_role_vars
);
new_desc
.
SetType
(
kOptimizerType
);
// set backward op's op role var, this will be used to
// set device_id in multi_device_pass
backward_node
->
Op
()
->
SetAttr
(
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
(),
op_role_vars
);
// backward_node->Op()->SetAttr(
// framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(), {});
// keep with the same output nodes between new optimizer and the
// old one
Node
*
sgd_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// change all outputs of the optimize_node to the new one
ReplaceAllDownstreamNode
(
optimize_node
,
sgd_node
);
// find connected node between forward node and optimize node
// and replace the optimize node to new sgd node
std
::
vector
<
ir
::
Node
*>
forward_opt_connected_nodes
=
FindConnectedNode
(
forward_node
,
optimize_node
);
for
(
ir
::
Node
*
node
:
forward_opt_connected_nodes
)
{
ReplaceUpstreamNode
(
node
,
optimize_node
,
sgd_node
);
}
// find connected node between backward node and optimize node
// and replace the optimize node to new sgd node
std
::
vector
<
ir
::
Node
*>
backward_opt_connected_nodes
=
FindConnectedNode
(
backward_node
,
optimize_node
);
for
(
ir
::
Node
*
node
:
backward_opt_connected_nodes
)
{
ReplaceUpstreamNode
(
node
,
optimize_node
,
sgd_node
);
}
// SGD must have only one param and LR in
PADDLE_ENFORCE
(
old_desc
->
Input
(
"LearningRate"
).
size
()
==
1u
);
PADDLE_ENFORCE
(
old_desc
->
Input
(
"Param"
).
size
()
==
1u
);
// LR and weight nodes should be copied
for
(
Node
*
upstream_node
:
optimize_node
->
inputs
)
{
if
(
upstream_node
->
Name
()
==
old_desc
->
Input
(
"LearningRate"
)[
0
]
||
upstream_node
->
Name
()
==
old_desc
->
Input
(
"Param"
)[
0
])
{
ReplaceUpstreamNode
(
upstream_node
,
optimize_node
,
sgd_node
);
}
}
VLOG
(
3
)
<<
"Create new opt node"
<<
sgd_node
->
Name
()
<<
"_"
<<
sgd_node
->
id
();
return
sgd_node
;
}
std
::
vector
<
ir
::
Node
*>
LockFreeOptimizePass
::
FindConnectedNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
downstream_node
)
const
{
std
::
vector
<
ir
::
Node
*>
result
;
for
(
ir
::
Node
*
out_node
:
upstream_node
->
outputs
)
{
for
(
ir
::
Node
*
in_node
:
downstream_node
->
inputs
)
{
if
(
in_node
==
out_node
)
{
result
.
push_back
(
in_node
);
}
}
}
return
result
;
}
void
LockFreeOptimizePass
::
ReplaceUpstreamNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
{
PADDLE_ENFORCE
(
upstream_node
);
PADDLE_ENFORCE
(
old_optimizer_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
// Remove the old_optimizer_node from upstream_node's outputs vector
auto
&
output_node_vec
=
upstream_node
->
outputs
;
for
(
auto
output_node_iter
=
output_node_vec
.
begin
();
output_node_iter
!=
output_node_vec
.
end
();)
{
if
(
*
output_node_iter
==
old_optimizer_node
)
{
output_node_vec
.
erase
(
output_node_iter
);
break
;
}
else
{
++
output_node_iter
;
}
}
// Add the new_optimizer_node to upstream_node's outputs vector
output_node_vec
.
emplace_back
(
new_optimizer_node
);
new_optimizer_node
->
inputs
.
emplace_back
(
upstream_node
);
}
void
LockFreeOptimizePass
::
ReplaceAllDownstreamNode
(
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
{
PADDLE_ENFORCE
(
old_optimizer_node
);
PADDLE_ENFORCE
(
new_optimizer_node
);
for
(
ir
::
Node
*
downstream_node
:
old_optimizer_node
->
outputs
)
{
// Remove the old_optimizer_node from downstream_node's inputs vector
auto
&
input_node_vec
=
downstream_node
->
inputs
;
for
(
auto
input_node_iter
=
input_node_vec
.
begin
();
input_node_iter
!=
input_node_vec
.
end
();)
{
if
(
*
input_node_iter
==
old_optimizer_node
)
{
input_node_vec
.
erase
(
input_node_iter
);
break
;
}
else
{
++
input_node_iter
;
}
}
// Add the new_optimizer_node to downstream_node's inputs vector
input_node_vec
.
emplace_back
(
new_optimizer_node
);
new_optimizer_node
->
outputs
.
emplace_back
(
downstream_node
);
}
}
ir
::
Node
*
LockFreeOptimizePass
::
FindForwardOpViaBackwardOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
backward_node
)
const
{
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
backward_node
);
// strip the suffix _grad of backward_node's name
std
::
string
forward_op_name
=
backward_node
->
Name
();
const
std
::
string
suffix
(
"_grad"
);
if
(
forward_op_name
!=
suffix
&&
forward_op_name
.
size
()
>
suffix
.
size
()
&&
forward_op_name
.
substr
(
forward_op_name
.
size
()
-
suffix
.
size
())
==
suffix
)
{
// if so then strip them off
forward_op_name
=
forward_op_name
.
substr
(
0
,
forward_op_name
.
size
()
-
suffix
.
size
());
}
else
{
LOG
(
WARNING
)
<<
"Illegal backward node's name "
<<
backward_node
->
Name
()
<<
" id "
<<
backward_node
->
id
();
return
nullptr
;
}
for
(
ir
::
Node
*
node
:
graph
->
Nodes
())
{
if
(
node
->
Name
()
==
forward_op_name
)
{
if
(
node
->
outputs
.
size
()
==
0u
)
{
// if forward_node has no output, then it has NO grad op
continue
;
}
// check whether all inputs of the backward_op that ends_with @GRAD
// comes from the output of forward_op is the input of the backward_op
bool
is_related_forward_node
=
true
;
for
(
ir
::
Node
*
backward_input
:
backward_node
->
inputs
)
{
if
(
IsVarNameEndsWith
(
backward_input
,
kGradVarSuffix
))
{
bool
meets_correct_output
=
false
;
for
(
ir
::
Node
*
forward_output
:
node
->
outputs
)
{
if
(
forward_output
->
Name
()
+
kGradVarSuffix
==
backward_input
->
Name
())
{
meets_correct_output
=
true
;
break
;
}
}
if
(
!
meets_correct_output
)
{
is_related_forward_node
=
false
;
break
;
}
}
}
if
(
is_related_forward_node
)
{
return
node
;
}
}
}
return
nullptr
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
lock_free_optimize_pass
,
paddle
::
framework
::
ir
::
LockFreeOptimizePass
);
paddle/fluid/framework/ir/lock_free_optimize_pass.h
0 → 100644
浏览文件 @
f702f8fd
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
#define PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
#include <string>
#include <vector>
#include <boost/algorithm/string/predicate.hpp>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
Node
;
/*
* Remove the sum op of all gradients of the backward op.
* And remove the dependecies of the optimizer related to the
* same backward op.
*
* Before this pass:
*
* forward_op1 forward_op2
* | |
* grad_op1 grad_op2
* \ /
* \ /
* sum_op
* |
* sgd_op
*
* After this pass:
* forward_op1 forward_op2
* | |
* grad_op1 grad_op2
* | |
* sgd_op1 sgd_op2
*
* sgd_op1 and sgd_op2 will update the same weight which holds the same
* memory, so we could benefits from the acceleration
*/
class
LockFreeOptimizePass
:
public
Pass
{
public:
virtual
~
LockFreeOptimizePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
private:
// Create a new sgd node via current optimizer node
ir
::
Node
*
CreateNewSGDNode
(
ir
::
Graph
*
graph
,
ir
::
Node
*
forward_node
,
ir
::
Node
*
backward_node
,
ir
::
Node
*
grad_sum_node
,
ir
::
Node
*
optimize_node
)
const
;
// Replace the input weight's optimizers
void
ReplaceUpstreamNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
;
// Replace the output weight's optimizers
void
ReplaceAllDownstreamNode
(
ir
::
Node
*
old_optimizer_node
,
ir
::
Node
*
new_optimizer_node
)
const
;
// Find all weight variables in graph
bool
FindAllWeightVars
(
ir
::
Graph
*
graph
)
const
;
// Find the forward_op node via the backward_op node
ir
::
Node
*
FindForwardOpViaBackwardOp
(
ir
::
Graph
*
graph
,
ir
::
Node
*
backward_node
)
const
;
std
::
vector
<
ir
::
Node
*>
FindConnectedNode
(
ir
::
Node
*
upstream_node
,
ir
::
Node
*
downstream_node
)
const
;
inline
bool
IsOpNamed
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kOperation
&&
node
->
Name
()
==
name
;
}
inline
bool
IsVarNamed
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
node
->
Name
()
==
name
;
}
inline
bool
IsVarNameEndsWith
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
boost
::
algorithm
::
ends_with
(
node
->
Name
(),
name
);
}
inline
bool
IsVarNameContains
(
ir
::
Node
*
node
,
const
std
::
string
&
name
)
const
{
PADDLE_ENFORCE
(
node
);
return
node
->
NodeType
()
==
Node
::
Type
::
kVariable
&&
node
->
Name
().
find
(
name
)
!=
std
::
string
::
npos
;
}
inline
bool
IsControlDepFrom
(
ir
::
Node
*
ctrl_dep_node
,
ir
::
Node
*
node
)
const
{
PADDLE_ENFORCE
(
ctrl_dep_node
);
PADDLE_ENFORCE
(
node
);
return
IsControlDepVar
(
*
ctrl_dep_node
)
&&
ctrl_dep_node
->
inputs
.
size
()
>=
1u
&&
ctrl_dep_node
->
inputs
[
0
]
==
node
;
}
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
#endif // PADDLE_FLUID_FRAMEWORK_IR_LOCK_FREE_OPTIMIZE_PASS_H_
paddle/fluid/framework/ngraph_bridge.cc
浏览文件 @
f702f8fd
...
...
@@ -32,8 +32,11 @@ std::map<std::string,
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
NgraphBridge
::
NG_NODE_MAP
=
{
{
"fill_constant"
,
paddle
::
operators
::
ngraphs
::
BuildFillConstantNode
},
{
"mean"
,
paddle
::
operators
::
ngraphs
::
BuildMeanNode
},
{
"mean_grad"
,
paddle
::
operators
::
ngraphs
::
BuildMeanGradNode
},
{
"mul"
,
paddle
::
operators
::
ngraphs
::
BuildMulNode
},
{
"mul_grad"
,
paddle
::
operators
::
ngraphs
::
BuildMulGradNode
},
{
"scale"
,
paddle
::
operators
::
ngraphs
::
BuildScaleNode
},
{
"relu"
,
paddle
::
operators
::
ngraphs
::
BuildUnaryNode
<
ngraph
::
op
::
Relu
>
},
{
"tanh"
,
paddle
::
operators
::
ngraphs
::
BuildUnaryNode
<
ngraph
::
op
::
Tanh
>
},
{
"top_k"
,
paddle
::
operators
::
ngraphs
::
BuildTopKNode
}};
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
f702f8fd
...
...
@@ -35,8 +35,11 @@ using framework::proto::ProgramDesc;
using
framework
::
NaiveExecutor
;
using
contrib
::
AnalysisConfig
;
/* This predictor is based on the original native predictor with IR and Analysis
* support. It will optimize IR and Parameters in the runtime.
/** \brief This predictor is based on the original native predictor with IR and
* Analysis support.
*
* It will optimize IR and Parameters in the runtime.
*
* TODO(Superjomn) Replace the Navive predictor?
*/
class
AnalysisPredictor
:
public
PaddlePredictor
{
...
...
paddle/fluid/inference/api/api_impl.h
浏览文件 @
f702f8fd
...
...
@@ -19,7 +19,6 @@ limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
...
...
paddle/fluid/inference/api/paddle_analysis_config.h
浏览文件 @
f702f8fd
...
...
@@ -19,6 +19,8 @@
#include <unordered_set>
#include <vector>
/*! \file */
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h" // NOLINT
...
...
@@ -41,49 +43,125 @@ struct AnalysisConfig {
explicit
AnalysisConfig
(
const
std
::
string
&
prog_file
,
const
std
::
string
&
params_file
);
// Model path related.
/** Set model with a directory.
*/
void
SetModel
(
const
std
::
string
&
model_dir
)
{
model_dir_
=
model_dir
;
}
/** Set model with two specific pathes for program and parameters.
*/
void
SetModel
(
const
std
::
string
&
prog_file_path
,
const
std
::
string
&
params_file_path
);
/** Set program file path.
*/
void
SetProgFile
(
const
std
::
string
&
x
)
{
prog_file_
=
x
;
}
/** Set parameter composed file path.
*/
void
SetParamsFile
(
const
std
::
string
&
x
)
{
params_file_
=
x
;
}
/** Get the model directory path.
*/
const
std
::
string
&
model_dir
()
const
{
return
model_dir_
;
}
/** Get the program file path.
*/
const
std
::
string
&
prog_file
()
const
{
return
prog_file_
;
}
/** Get the composed parameters file.
*/
const
std
::
string
&
params_file
()
const
{
return
params_file_
;
}
// GPU related.
/**
* \brief Turn on GPU.
* @param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
* @param device_id the GPU card to use (default is 0).
*/
void
EnableUseGpu
(
uint64_t
memory_pool_init_size_mb
,
int
device_id
=
0
);
/** Turn off the GPU.
*/
void
DisableGpu
();
/** A bool state telling whether the GPU is turned on.
*/
bool
use_gpu
()
const
{
return
use_gpu_
;
}
/** Get the GPU device id.
*/
int
gpu_device_id
()
const
{
return
device_id_
;
}
/** Get the initial size in MB of the GPU memory pool.
*/
int
memory_pool_init_size_mb
()
const
{
return
memory_pool_init_size_mb_
;
}
/** Get the proportion of the initial memory pool size compared to the device.
*/
float
fraction_of_gpu_memory_for_pool
()
const
;
// Determine whether to perform graph optimization.
/** \brief Control whether to perform IR graph optimization.
*
* If turned off, the AnalysisConfig will act just like a NativeConfig.
*/
void
SwitchIrOptim
(
int
x
=
true
)
{
enable_ir_optim_
=
x
;
}
/** A boolean state tell whether the ir graph optimization is actived.
*/
bool
ir_optim
()
const
{
return
enable_ir_optim_
;
}
/** \brief INTERNAL Determine whether to use the feed and fetch operators.
* Just for internal development, not stable yet.
* When ZeroCopyTensor is used, this should turned off.
*/
void
SwitchUseFeedFetchOps
(
int
x
=
true
)
{
use_feed_fetch_ops_
=
x
;
}
/** A boolean state telling whether to use the feed and fetch operators.
*/
bool
use_feed_fetch_ops_enabled
()
const
{
return
use_feed_fetch_ops_
;
}
/** \brief Control whether to specify the inputs' names.
*
* The PaddleTensor type has a `name` member, assign it with the corresponding
* variable name. This is used only when the input PaddleTensors passed to the
* `PaddlePredictor.Run(...)` cannot follow the order in the training phase.
*/
void
SwitchSpecifyInputNames
(
bool
x
=
true
)
{
specify_input_name_
=
x
;
}
/** A boolean state tell whether the input PaddleTensor names specified should
* be used to reorder the inputs in `PaddlePredictor.Run(...)`.
*/
bool
specify_input_name
()
const
{
return
specify_input_name_
;
}
/**
* \brief Turn on the TensorRT engine.
*
* The TensorRT engine will accelerate some subgraphes in the original Fluid
* computation graph. In some models such as TensorRT50, GoogleNet and so on,
* it gains significant performance acceleration.
*
* @param workspace_size the memory size(in byte) used for TensorRT workspace.
* @param max_batch_size the maximum batch size of this prediction task,
* better set as small as possible, or performance loss.
* @param min_subgrpah_size the minimum TensorRT subgraph size needed, if a
* subgraph is less than this, it will not transfer to TensorRT engine.
*/
void
EnableTensorRtEngine
(
int
workspace_size
=
1
<<
20
,
int
max_batch_size
=
1
,
int
min_subgraph_size
=
3
);
/** A boolean state telling whether the TensorRT engine is used.
*/
bool
tensorrt_engine_enabled
()
const
{
return
use_tensorrt_
;
}
/** Control whther to debug IR graph analysis phase.
*/
void
SwitchIrDebug
(
int
x
=
true
)
{
ir_debug_
=
x
;
}
/** Turn on MKLDNN.
*/
void
EnableMKLDNN
();
/** A boolean state telling whether to use the MKLDNN.
*/
bool
mkldnn_enabled
()
const
{
return
use_mkldnn_
;
}
// Set and get the number of cpu math library threads.
/** Set and get the number of cpu math library threads.
*/
void
SetCpuMathLibraryNumThreads
(
int
cpu_math_library_num_threads
);
/** An int state telling how many threads are used in the CPU math library.
*/
int
cpu_math_library_num_threads
()
const
{
return
cpu_math_library_num_threads_
;
}
/** Transform the AnalysisConfig to NativeConfig.
*/
NativeConfig
ToNativeConfig
()
const
{
NativeConfig
config
;
config
.
model_dir
=
model_dir_
;
...
...
@@ -95,19 +173,30 @@ struct AnalysisConfig {
config
.
specify_input_name
=
specify_input_name_
;
return
config
;
}
/** Specify the operator type list to use MKLDNN acceleration.
* @param op_list the operator type list.
*/
void
SetMKLDNNOp
(
std
::
unordered_set
<
std
::
string
>
op_list
)
{
mkldnn_enabled_op_types_
=
op_list
;
}
// Specify the memory buffer of program and parameter
/** Specify the memory buffer of program and parameter
* @param prog_buffer the memory buffer of program.
* @param prog_buffer_size the size of the data.
* @param params_buffer the memory buffer of the composed parameters file.
* @param params_buffer_size the size of the commposed parameters data.
*/
void
SetModelBuffer
(
const
char
*
prog_buffer
,
size_t
prog_buffer_size
,
const
char
*
program_buffer
,
size_t
program_buffer_size
);
const
char
*
params_buffer
,
size_t
params_buffer_size
);
/** A boolean state telling whether the model is set from the CPU memory.
*/
bool
model_from_memory
()
const
{
return
model_from_memory_
;
}
friend
class
::
paddle
::
AnalysisPredictor
;
// NOTE just for developer, not an official API, easily to be broken.
// Get a pass builder for customize the passes in IR analysis phase.
/** NOTE just for developer, not an official API, easily to be broken.
* Get a pass builder for customize the passes in IR analysis phase.
*/
PassStrategy
*
pass_builder
()
const
;
protected:
...
...
paddle/fluid/inference/api/paddle_api.h
浏览文件 @
f702f8fd
...
...
@@ -13,61 +13,76 @@
// limitations under the License.
#pragma once
/*! \file paddle_api.h
*/
#include <cassert>
#include <memory>
#include <string>
#include <vector>
/*! \namespace paddle
*/
namespace
paddle
{
// Data type.
/** paddle data type.
*/
enum
PaddleDType
{
FLOAT32
,
INT64
,
// TODO(Superjomn) support more data types if needed.
};
/*
* Memory menage for PaddleTensor.
* The PaddleBuf holds a buffer for data input or output. The memory can be
* allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
* should be reused for better performance.
/**
*\brief Memory menager for PaddleTensor.
*
* For user allocated memory, the following API can be used:
* - PaddleBuf(void* data, size_t length) to set an external memory by
* specifying
* the memory address and length.
* - Reset(void* data, size_t length) to reset the PaddleBuf with an external
* memory.
* ATTENTION, for user allocated memory, deallocation should be done by users
* externally after the program finished. The PaddleBuf won't do any allocation
* or deallocation.
*The PaddleBuf holds a buffer for data input or output. The memory can be
*allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
*should be reused for better performance.
*
* To have the PaddleBuf allocate and manage the memory:
* - PaddleBuf(size_t length) will allocate a memory of size `length`.
* - Resize(size_t length) resize the memory to no less than `length`, ATTENTION
* if the allocated memory is larger than `length`, nothing will done.
*For user allocated memory, the following API can be used:
*- PaddleBuf(void* data, size_t length) to set an external memory by
*specifying
* the memory address and length.
*- Reset(void* data, size_t length) to reset the PaddleBuf with an external
*memory.
*ATTENTION, for user allocated memory, deallocation should be done by users
*externally after the program finished. The PaddleBuf won't do any allocation
*or deallocation.
*
*To have the PaddleBuf allocate and manage the memory:
*- PaddleBuf(size_t length) will allocate a memory of size `length`.
*- Resize(size_t length) resize the memory to no less than `length`, ATTENTION
* if the allocated memory is larger than `length`, nothing will done.
*/
class
PaddleBuf
{
public:
// PaddleBuf allocate memory internally, and manage it.
/** PaddleBuf allocate memory internally, and manage it.
*/
explicit
PaddleBuf
(
size_t
length
)
:
data_
(
new
char
[
length
]),
length_
(
length
),
memory_owned_
(
true
)
{}
// Set external memory, the PaddleBuf won't manage it.
/** Set external memory, the PaddleBuf won't manage it.
*/
PaddleBuf
(
void
*
data
,
size_t
length
)
:
data_
(
data
),
length_
(
length
),
memory_owned_
{
false
}
{}
// Copy only available when memory is managed externally.
/** Copy only available when memory is managed externally.
*/
explicit
PaddleBuf
(
const
PaddleBuf
&
);
// Resize the memory.
/** Resize the memory.
*/
void
Resize
(
size_t
length
);
// Reset to external memory, with address and length set.
/** Reset to external memory, with address and length set.
*/
void
Reset
(
void
*
data
,
size_t
length
);
// Tell whether the buffer is empty.
/** Tell whether the buffer is empty.
*/
bool
empty
()
const
{
return
length_
==
0
;
}
// Get the memory address.
/** Get the memory address.
*/
void
*
data
()
const
{
return
data_
;
}
// Get the memory length.
/** Get the memory length.
*/
size_t
length
()
const
{
return
length_
;
}
~
PaddleBuf
()
{
Free
();
}
...
...
@@ -83,7 +98,8 @@ class PaddleBuf {
bool
memory_owned_
{
true
};
};
// Basic input and output data structure for PaddlePredictor.
/** Basic input and output data structure for PaddlePredictor.
*/
struct
PaddleTensor
{
PaddleTensor
()
=
default
;
std
::
string
name
;
// variable name.
...
...
@@ -94,19 +110,22 @@ struct PaddleTensor {
};
enum
class
PaddlePlace
{
kUNK
=
-
1
,
kCPU
,
kGPU
};
// Tensor without copy, currently only supports AnalysisPredictor.
/** Tensor without copy, currently only supports AnalysisPredictor.
*/
class
ZeroCopyTensor
{
public:
void
Reshape
(
const
std
::
vector
<
int
>&
shape
);
// Get the memory in CPU or GPU with specific data type, should Reshape first
// to tell the data size.
// Once can directly call this data to feed the data.
// This is for write the input tensor.
/** Get the memory in CPU or GPU with specific data type, should Reshape first
* to tell the data size.
* Once can directly call this data to feed the data.
* This is for write the input tensor.
*/
template
<
typename
T
>
T
*
mutable_data
(
PaddlePlace
place
);
// Get the memory directly, will return the place and memory size by pointer.
// This is for reading the output tensor.
/** Get the memory directly, will return the place and memory size by pointer.
* This is for reading the output tensor.
*/
template
<
typename
T
>
T
*
data
(
PaddlePlace
*
place
,
int
*
size
)
const
;
...
...
@@ -128,8 +147,7 @@ class ZeroCopyTensor {
void
*
scope_
{
nullptr
};
};
/*
* A simple Inference API for Paddle.
/** A simple Inference API for Paddle.
*/
class
PaddlePredictor
{
public:
...
...
@@ -138,18 +156,20 @@ class PaddlePredictor {
PaddlePredictor
(
const
PaddlePredictor
&
)
=
delete
;
PaddlePredictor
&
operator
=
(
const
PaddlePredictor
&
)
=
delete
;
// Predict an record.
// The caller should be responsible for allocating and releasing the memory of
// `inputs`. `inputs` should be available until Run returns. Caller should be
// responsible for the output tensor's buffer, either allocated or passed from
// outside.
/** Predict an record.
* The caller should be responsible for allocating and releasing the memory of
* `inputs`. `inputs` should be available until Run returns. Caller should be
* responsible for the output tensor's buffer, either allocated or passed from
* outside.
*/
virtual
bool
Run
(
const
std
::
vector
<
PaddleTensor
>&
inputs
,
std
::
vector
<
PaddleTensor
>*
output_data
,
int
batch_size
=
-
1
)
=
0
;
// Zero copy input and output optimization.
// Get the input or output tensors, and operate on their memory directly,
// without copy.
/** Zero copy input and output optimization.
* Get the input or output tensors, and operate on their memory directly,
* without copy.
*/
virtual
std
::
unique_ptr
<
ZeroCopyTensor
>
GetInputTensor
(
const
std
::
string
&
name
)
{
return
nullptr
;
...
...
@@ -160,16 +180,19 @@ class PaddlePredictor {
}
virtual
bool
ZeroCopyRun
()
{
return
false
;
}
// Clone a predictor that share the model weights, the Cloned predictor should
// be thread-safe.
/** Clone a predictor that share the model weights, the Cloned predictor
* should be thread-safe.
*/
virtual
std
::
unique_ptr
<
PaddlePredictor
>
Clone
()
=
0
;
// Destroy the Predictor.
/** Destroy the Predictor.
*/
virtual
~
PaddlePredictor
()
=
default
;
// The common configs for all the predictors.
/** The common configs for all the predictors.
*/
struct
Config
{
std
::
string
model_dir
;
// path to the model directory.
std
::
string
model_dir
;
/*!< path to the model directory. */
};
};
...
...
@@ -177,17 +200,21 @@ struct NativeConfig : public PaddlePredictor::Config {
// GPU related fields.
bool
use_gpu
{
false
};
int
device
{
0
};
float
fraction_of_gpu_memory
{
-
1.
f
};
// Change to a float in (0,1] if needed.
float
fraction_of_gpu_memory
{
-
1.
f
};
/*!< Change to a float in (0,1] if needed. */
// Specify the exact path of program and parameter files.
std
::
string
prog_file
;
std
::
string
param_file
;
// Specify the variable's name of each input if input tensors don't follow the
// `feeds` and `fetches` of the phase `save_inference_model`.
/** Specify the variable's name of each input if input tensors don't follow
* the
* `feeds` and `fetches` of the phase `save_inference_model`.
*/
bool
specify_input_name
{
false
};
// Set and get the number of cpu math library threads.
/** Set and get the number of cpu math library threads.
*/
void
SetCpuMathLibraryNumThreads
(
int
cpu_math_library_num_threads
)
{
cpu_math_library_num_threads_
=
cpu_math_library_num_threads
;
}
...
...
@@ -201,28 +228,33 @@ struct NativeConfig : public PaddlePredictor::Config {
int
cpu_math_library_num_threads_
{
1
};
};
// A factory to help create different predictors.
//
// Usage:
//
// NativeConfig config;
// ... // change the configs.
// auto native_predictor = CreatePaddlePredictor(config);
//
// FOR EXTENSION DEVELOPER:
// Different predictors are designated by config type. Similar configs can be
// merged, but there shouldn't be a huge config containing different fields for
// more than one kind of predictors.
/*! \fn std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&
* config);
*
* \brief A factory to help create different predictors.
*
* Usage:
*
* NativeConfig config;
* ... // change the configs.
* auto native_predictor = CreatePaddlePredictor(config);
*
* FOR EXTENSION DEVELOPER:
* Different predictors are designated by config type. Similar configs can be
* merged, but there shouldn't be a huge config containing different fields for
* more than one kind of predictors.
*/
template
<
typename
ConfigT
>
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
(
const
ConfigT
&
config
);
// NOTE The following APIs are too trivial, we will discard it in the following
// versions.
/** NOTE The following APIs are too trivial, we will discard it in the following
* versions.
*/
enum
class
PaddleEngineKind
{
kNative
=
0
,
// Use the native Fluid facility.
kAutoMixedTensorRT
,
// Automatically mix Fluid with TensorRT.
kAnalysis
,
// More optimization.
kAnakin
// Use Anakin for inference, not mature yet.
kNative
=
0
,
/*!< Use the native Fluid facility. */
kAutoMixedTensorRT
,
/*!< Automatically mix Fluid with TensorRT. */
kAnalysis
,
/*!< More optimization. */
kAnakin
/*!< Use Anakin for inference, not mature yet. */
};
template
<
typename
ConfigT
,
PaddleEngineKind
engine
>
...
...
paddle/fluid/inference/api/paddle_pass_builder.h
浏览文件 @
f702f8fd
...
...
@@ -18,30 +18,39 @@
#include <string>
#include <vector>
/*! \file */
/*! \namespace paddle */
namespace
paddle
{
/*
* This is a pass builder based on string. It is part of inference API.
/*
* This is a pass builder based on string. It is part of inference API.
*/
class
PaddlePassBuilder
{
public:
explicit
PaddlePassBuilder
(
const
std
::
vector
<
std
::
string
>
&
passes
)
:
passes_
(
passes
)
{}
/** Append a pass to the end of the passes. */
void
AppendPass
(
const
std
::
string
&
pass_type
);
/** Insert a pass to a specific position.
* @param idx the position to insert.
* @param pass_type the pass key.
*/
void
InsertPass
(
size_t
idx
,
const
std
::
string
&
pass_type
);
/
/ Delete the `idx`-th pass.
/
** Delete the `idx`-th pass. */
void
DeletePass
(
size_t
idx
);
/
/ Delete all the passes that has type `pass_type`.
/
** Delete all the passes that has type `pass_type`. */
void
DeletePass
(
const
std
::
string
&
pass_type
);
// Visualize the computation graph after each pass by generating a DOT
// language file, one can draw them with the Graphviz toolkit.
/** Visualize the computation graph after each pass by generating a DOT
* language file, one can draw them with the Graphviz toolkit.
*/
void
TurnOnDebug
();
/
/ Human-readible information.
/
** Human-readible information. */
std
::
string
DebugString
();
const
std
::
vector
<
std
::
string
>
&
AllPasses
()
const
{
return
passes_
;
}
...
...
@@ -50,16 +59,16 @@ class PaddlePassBuilder {
std
::
vector
<
std
::
string
>
passes_
;
};
/*
* Pass strategy to help control the IR passes.
/**Pass strategy to help control the IR passes.
*/
class
PassStrategy
:
public
PaddlePassBuilder
{
public:
explicit
PassStrategy
(
const
std
::
vector
<
std
::
string
>
&
passes
)
:
PaddlePassBuilder
(
passes
)
{}
// The MKLDNN control exists in both CPU and GPU mode, because there can be
// still some CPU kernels running in CPU mode.
/** The MKLDNN control exists in both CPU and GPU mode, because there can be
* still some CPU kernels running in CPU mode.
*/
virtual
void
EnableMKLDNN
()
=
0
;
bool
use_gpu
()
const
{
return
use_gpu_
;
}
...
...
@@ -70,8 +79,7 @@ class PassStrategy : public PaddlePassBuilder {
bool
use_gpu_
{
false
};
};
/*
* The CPU passes controller, it is used in AnalysisPredictor with CPU mode.
/** The CPU passes controller, it is used in AnalysisPredictor with CPU mode.
*/
class
CpuPassStrategy
:
public
PassStrategy
{
public:
...
...
@@ -117,8 +125,7 @@ class CpuPassStrategy : public PassStrategy {
CpuPassStrategy
(
const
CpuPassStrategy
&
other
)
:
PassStrategy
(
other
.
passes_
)
{}
};
/*
* The GPU passes strategy, it is used in
/** The GPU passes strategy, it is used in AnalysisPredictor with GPU mode.
*/
class
GpuPassStrategy
:
public
PassStrategy
{
public:
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
f702f8fd
...
...
@@ -41,7 +41,7 @@ endfunction()
if
(
NOT APPLE AND WITH_MKLML
)
set
(
RNN1_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/rnn1"
)
download_model_and_data
(
${
RNN1_INSTALL_DIR
}
"rnn1%2Fmodel.tar.gz"
"rnn1%2Fdata.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_rnn1
${
RNN1_INSTALL_DIR
}
analyzer_rnn1_tester.cc
)
inference_analysis_api_test
(
test_analyzer_rnn1
${
RNN1_INSTALL_DIR
}
analyzer_rnn1_tester.cc
SERIAL
)
else
()
# TODO: fix this test on MACOS and OPENBLAS, the reason is that
# fusion_seqexpand_concat_fc_op is not supported on MACOS and OPENBLAS
...
...
@@ -56,14 +56,14 @@ inference_analysis_api_test(test_analyzer_rnn2 ${RNN2_INSTALL_DIR} analyzer_rnn2
# normal DAM
set
(
DAM_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/dam"
)
download_model_and_data
(
${
DAM_INSTALL_DIR
}
"DAM_model.tar.gz"
"DAM_data.txt.tar.gz"
)
inference_analysis_api_test
(
test_analyzer_dam
${
DAM_INSTALL_DIR
}
analyzer_dam_tester.cc
)
inference_analysis_api_test
(
test_analyzer_dam
${
DAM_INSTALL_DIR
}
analyzer_dam_tester.cc
SERIAL
)
# small DAM
set
(
DAM_SMALL_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/small_dam"
)
download_model_and_data
(
${
DAM_SMALL_INSTALL_DIR
}
"dam_small_model.tar.gz"
"dam_small_data.txt.tar.gz"
)
inference_analysis_test
(
test_analyzer_small_dam SRCS analyzer_dam_tester.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
DAM_SMALL_INSTALL_DIR
}
/model --infer_data=
${
DAM_SMALL_INSTALL_DIR
}
/data.txt --max_turn_num=1
)
ARGS --infer_model=
${
DAM_SMALL_INSTALL_DIR
}
/model --infer_data=
${
DAM_SMALL_INSTALL_DIR
}
/data.txt --max_turn_num=1
SERIAL
)
# chinese_ner
set
(
CHINESE_NER_INSTALL_DIR
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/chinese_ner"
)
...
...
@@ -111,11 +111,11 @@ inference_analysis_api_test_with_refer_result(test_analyzer_mobilenet_transpose
# resnet50
inference_analysis_api_test_with_fake_data
(
test_analyzer_resnet50
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/resnet50"
analyzer_resnet50_tester.cc
"resnet50_model.tar.gz"
)
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/resnet50"
analyzer_resnet50_tester.cc
"resnet50_model.tar.gz"
SERIAL
)
# mobilenet with depthwise_conv op
inference_analysis_api_test_with_fake_data
(
test_analyzer_mobilenet_depthwise_conv
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/mobilenet_depthwise_conv"
analyzer_resnet50_tester.cc
"mobilenet_model.tar.gz"
)
"
${
INFERENCE_DEMO_INSTALL_DIR
}
/mobilenet_depthwise_conv"
analyzer_resnet50_tester.cc
"mobilenet_model.tar.gz"
SERIAL
)
# anakin
if
(
WITH_ANAKIN AND WITH_MKL
)
# only needed in CI
...
...
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.cc
0 → 100644
浏览文件 @
f702f8fd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
namespace
operators
{
class
FusedEmbeddingSeqPoolOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input W of FusedEmbeddingSeqPoolOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input Ids of FusedEmbeddingSeqPoolOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output of FusedEmbeddingSeqPoolOp should not be null."
);
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
const
std
::
string
&
combiner
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"combiner"
);
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
);
PADDLE_ENFORCE_GE
(
ids_dims
.
size
(),
1
,
"The dim size of the 'Ids' tensor must greater than 1."
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
ids_dims
.
size
()
-
1
],
1
,
"The last dimension of the 'Ids' tensor must be 1."
);
// we only support sum now
PADDLE_ENFORCE_EQ
(
combiner
,
"sum"
);
int64_t
last_dim
=
table_dims
[
1
];
for
(
int
i
=
1
;
i
!=
ids_dims
.
size
();
++
i
)
{
last_dim
*=
ids_dims
[
i
];
}
if
(
ctx
->
IsRuntime
())
{
framework
::
Variable
*
ids_var
=
boost
::
get
<
framework
::
Variable
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
const
auto
&
ids_lod
=
ids_var
->
Get
<
LoDTensor
>
().
lod
();
// in run time, the LoD of ids must be 1
PADDLE_ENFORCE
(
ids_lod
.
size
(),
1u
,
"The LoD level of Input(Ids) must be 1"
);
PADDLE_ENFORCE_GE
(
ids_lod
[
0
].
size
(),
1u
,
"The LoD could NOT be empty"
);
int64_t
batch_size
=
ids_lod
[
0
].
size
()
-
1
;
// in run time, the shape from Ids -> output
// should be [seq_length, 1] -> [batch_size, embedding_size]
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
batch_size
,
last_dim
}));
}
else
{
// in compile time, the lod level of ids must be 1
framework
::
VarDesc
*
ids_desc
=
boost
::
get
<
framework
::
VarDesc
*>
(
ctx
->
GetInputVarPtrs
(
"Ids"
)[
0
]);
PADDLE_ENFORCE_EQ
(
ids_desc
->
GetLoDLevel
(),
1
);
// in compile time, the shape from Ids -> output
// should be [-1, 1] -> [-1, embedding_size]
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
-
1
,
last_dim
}));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"W"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
FusedEmbeddingSeqPoolOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"W"
,
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
std
::
string
>
(
"combiner"
,
"(string, default sum) "
"A string specifying the reduction op. Currently sum "
"are supported, sum computes the weighted sum of the "
"embedding results for each row."
)
.
SetDefault
(
"sum"
);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr
<
bool
>
(
"grad_inplace"
,
"(boolean, default false) "
"If the grad op reuse the input's variable."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
FusedEmbeddingSeqPool Operator.
Computes embeddings for the given ids and weights.
This operator is used to perform lookups on the parameter W,
then computes the weighted sum of the lookups results for each row
and concatenated into a dense tensor.
The input Ids should carry the LoD (Level of Details) information.
And the output will change the LoD information with input Ids.
)DOC"
);
}
};
class
FusedEmbeddingSeqPoolOpGradDescMaker
:
public
framework
::
DefaultGradOpDescMaker
<
true
>
{
using
::
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>::
DefaultGradOpDescMaker
;
protected:
virtual
std
::
string
GradOpType
()
const
{
return
"fused_embedding_seq_pool_grad"
;
}
};
class
FusedEmbeddingSeqPoolOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"W"
),
table_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"W"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
FusedEmbeddingSeqPoolOpGradVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
framework
::
GradVarName
(
"W"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"fused_embedding_seq_pool_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
out_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
out_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fused_embedding_seq_pool
,
ops
::
FusedEmbeddingSeqPoolOp
,
ops
::
FusedEmbeddingSeqPoolOpGradDescMaker
,
ops
::
FusedEmbeddingSeqPoolOpMaker
);
REGISTER_OPERATOR
(
fused_embedding_seq_pool_grad
,
ops
::
FusedEmbeddingSeqPoolOpGrad
,
ops
::
FusedEmbeddingSeqPoolOpGradVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
fused_embedding_seq_pool
,
ops
::
FusedEmbeddingSeqPoolKernel
<
float
>
,
ops
::
FusedEmbeddingSeqPoolKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
fused_embedding_seq_pool_grad
,
ops
::
FusedEmbeddingSeqPoolGradKernel
<
float
>
,
ops
::
FusedEmbeddingSeqPoolGradKernel
<
double
>
);
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
0 → 100644
浏览文件 @
f702f8fd
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
template
<
typename
T
>
struct
EmbeddingVSumFunctor
{
void
operator
()(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
*
table_t
,
const
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
int64_t
last_dim
=
output_t
->
dims
()[
1
];
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
auto
ids_lod
=
ids_t
->
lod
()[
0
];
int64_t
ids_count
=
ids_t
->
numel
()
/
ids_lod
.
back
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
]
*
ids_count
;
for
(
int64_t
j
=
0
;
j
!=
ids_count
;
++
j
)
{
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
+
j
]
*
row_width
,
output
+
i
*
last_dim
+
j
*
row_width
);
}
for
(
int64_t
r
=
(
ids_lod
[
i
]
+
1
)
*
ids_count
;
r
<
ids_lod
[
i
+
1
]
*
ids_count
;
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
last_dim
+
(
r
%
ids_count
)
*
row_width
);
}
}
}
};
template
<
typename
T
>
class
FusedEmbeddingSeqPoolKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
LoDTensor
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
LoDTensor
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
const
LoDTensor
*
table_var
=
context
.
Input
<
LoDTensor
>
(
"W"
);
const
std
::
string
&
combiner_type
=
context
.
Attr
<
std
::
string
>
(
"combiner"
);
if
(
combiner_type
==
"sum"
)
{
EmbeddingVSumFunctor
<
T
>
functor
;
functor
(
context
,
table_var
,
ids_t
,
output_t
);
}
}
};
template
<
typename
T
>
class
FusedEmbeddingSeqPoolGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
table_var
=
context
.
InputVar
(
"W"
);
DDim
table_dim
;
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
table_dim
=
context
.
Input
<
LoDTensor
>
(
"W"
)
->
dims
();
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"W"
);
table_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter W of a LookupTable "
"must be either LoDTensor or SelectedRows"
);
}
bool
is_sparse
=
context
.
Attr
<
bool
>
(
"is_sparse"
);
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
if
(
is_sparse
)
{
auto
*
ids
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
auto
*
d_output
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_table
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
auto
*
ids_data
=
ids
->
data
<
int64_t
>
();
int64_t
ids_num
=
ids
->
numel
();
auto
lod
=
ids
->
lod
()[
0
];
int64_t
row_width
=
d_output
->
dims
()[
1
];
framework
::
Vector
<
int64_t
>
*
new_rows
=
d_table
->
mutable_rows
();
new_rows
->
resize
(
ids_num
);
std
::
memcpy
(
&
(
*
new_rows
)[
0
],
ids_data
,
ids_num
*
sizeof
(
int64_t
));
auto
*
d_table_value
=
d_table
->
mutable_value
();
d_table_value
->
Resize
({
ids_num
,
table_dim
[
1
]});
T
*
d_table_data
=
d_table_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
d_output_data
=
d_output
->
data
<
T
>
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
int64_t
in_offset
=
lod
[
i
]
*
row_width
;
const
T
*
out_pos
=
d_output_data
+
i
*
row_width
;
T
*
in_pos
=
d_table_data
+
in_offset
;
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
row_width
,
out_pos
,
in_pos
+
r
*
row_width
);
}
}
}
else
{
LOG
(
ERROR
)
<<
"Dense is not supported in fused_embedding_seq_pool_op now"
;
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/math/blas_impl.cu.h
浏览文件 @
f702f8fd
...
...
@@ -62,19 +62,27 @@ struct CUBlas<float> {
cudaDataType_t
Atype
,
int
lda
,
const
void
*
B
,
cudaDataType_t
Btype
,
int
ldb
,
const
float
*
beta
,
void
*
C
,
cudaDataType_t
Ctype
,
int
ldc
)
{
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
// Because the gcc 4.8 doesn't expand template parameter pack that
// appears in a lambda-expression, I can not use template parameter pack
// here.
auto
cublas_call
=
[
&
]()
{
#if CUDA_VERSION >= 8000
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
dev_ctx
->
tensor_core_available
()
?
"True"
:
"False"
);
dev_ctx
->
TensorCoreCublasCallIfAvailable
([
&
](
cublasHandle_t
handle
)
{
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
platform
::
TensorCoreAvailable
()
?
"True"
:
"False"
);
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSgemmEx
(
handle
,
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
));
});
dev_ctx
->
cublas_handle
(),
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
));
#else
PADDLE_THROW
(
"cublasSgemmEx is supported on cuda >= 8.0"
);
PADDLE_THROW
(
"cublasSgemmEx is supported on cuda >= 8.0"
);
#endif
};
#if CUDA_VERSION >= 9000
// NOTES: To use Tensor Core, we should change the cublas config,
// but the cublas may be hold by multi-thread.
dev_ctx
->
CublasCall
(
cublas_call
,
CUBLAS_TENSOR_OP_MATH
);
#else
cublas_call
();
#endif
}
};
...
...
@@ -162,24 +170,32 @@ struct CUBlas<platform::float16> {
cudaDataType_t
Btype
,
int
ldb
,
const
void
*
beta
,
void
*
C
,
cudaDataType_t
Ctype
,
int
ldc
,
cudaDataType_t
computeType
)
{
auto
cublas_call
=
[
&
]()
{
#if CUDA_VERSION >= 8000
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
#if CUDA_VERSION >= 9000
bool
use_tensor_op_math
=
dev_ctx
->
tensor_core_a
vailable
();
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
bool
use_tensor_op_math
=
platform
::
TensorCoreA
vailable
();
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
#endif // CUDA_VERSION >= 9000
dev_ctx
->
TensorCoreCublasCallIfAvailable
([
&
](
cublasHandle_t
handle
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasGemmEx
(
handle
,
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
,
computeType
,
algo
));
});
dev_ctx
->
cublas_handle
(),
transa
,
transb
,
m
,
n
,
k
,
alpha
,
A
,
Atype
,
lda
,
B
,
Btype
,
ldb
,
beta
,
C
,
Ctype
,
ldc
,
computeType
,
algo
));
#else
PADDLE_THROW
(
"cublasGemmEx is supported on cuda >= 8.0"
);
PADDLE_THROW
(
"cublasGemmEx is supported on cuda >= 8.0"
);
#endif
};
#if CUDA_VERSION >= 9000
// NOTES: To use Tensor Core, we should change the cublas config,
// but the cublas may be hold by multi-thread.
dev_ctx
->
CublasCall
(
cublas_call
,
CUBLAS_TENSOR_OP_MATH
);
#else
cublas_call
();
#endif
}
};
...
...
@@ -207,10 +223,9 @@ void Blas<platform::CUDADeviceContext>::GEMM(CBLAS_TRANSPOSE transA,
CUDA_R_32F
,
N
);
}
else
{
#endif // CUDA_VERSION >= 8000
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
N
);
});
CUBlas
<
T
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
N
);
#if CUDA_VERSION >= 8000
}
...
...
@@ -251,12 +266,9 @@ inline void Blas<platform::CUDADeviceContext>::GEMM(
CUDA_R_16F
,
lda
,
&
h_beta
,
C
,
CUDA_R_16F
,
N
,
CUDA_R_32F
);
#else
// CUDA 7.5 does not support cublasGemmEx, hence we fall back to use hgemm
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
platform
::
float16
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
h_alpha
,
h_B
,
ldb
,
h_A
,
lda
,
&
h_beta
,
h_C
,
N
);
});
CUBlas
<
platform
::
float16
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
h_alpha
,
h_B
,
ldb
,
h_A
,
lda
,
&
h_beta
,
h_C
,
N
);
#endif // CUDA_VERSION >= 8000
}
...
...
@@ -280,10 +292,8 @@ void Blas<platform::CUDADeviceContext>::GEMM(bool transA, bool transB, int M,
}
else
{
#endif // CUDA_VERSION >= 8000
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
});
CUBlas
<
T
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
#if CUDA_VERSION >= 8000
}
...
...
@@ -301,19 +311,16 @@ inline void Blas<platform::CUDADeviceContext>::GEMM(
cublasOperation_t
cuTransA
=
transA
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
cublasOperation_t
cuTransB
=
transB
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
platform
::
float16
>::
GEMM
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
});
CUBlas
<
platform
::
float16
>::
GEMM
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
);
}
template
<
>
template
<
typename
T
>
void
Blas
<
platform
::
CUDADeviceContext
>::
AXPY
(
int
n
,
T
alpha
,
const
T
*
x
,
T
*
y
)
const
{
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
AXPY
(
handle
,
n
,
&
alpha
,
x
,
1
,
y
,
1
);
});
CUBlas
<
T
>::
AXPY
(
context_
.
cublas_handle
(),
n
,
&
alpha
,
x
,
1
,
y
,
1
);
}
template
<
>
...
...
@@ -323,9 +330,8 @@ void Blas<platform::CUDADeviceContext>::GEMV(bool trans_a, int M, int N,
T
beta
,
T
*
C
)
const
{
cublasOperation_t
cuTransA
=
!
trans_a
?
CUBLAS_OP_T
:
CUBLAS_OP_N
;
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMV
(
handle
,
cuTransA
,
N
,
M
,
&
alpha
,
A
,
N
,
B
,
1
,
&
beta
,
C
,
1
);
});
CUBlas
<
T
>::
GEMV
(
context_
.
cublas_handle
(),
cuTransA
,
N
,
M
,
&
alpha
,
A
,
N
,
B
,
1
,
&
beta
,
C
,
1
);
}
template
<
>
...
...
@@ -347,28 +353,28 @@ void Blas<platform::CUDADeviceContext>::BatchedGEMM(
#if CUDA_VERSION >= 9010
if
(
FLAGS_enable_cublas_tensor_op_math
&&
std
::
is_same
<
T
,
float
>::
value
)
{
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
bool
use_tensor_op_math
=
context_
.
tensor_core_available
()
;
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
context_
.
TensorCoreCublasCallIfAvailable
([
&
](
cublasHandle_t
handle
)
{
auto
cublas_call
=
[
&
]()
{
cublasGemmAlgo_t
algo
=
CUBLAS_GEMM_DFALT
;
bool
use_tensor_op_math
=
platform
::
TensorCoreAvailable
();
if
(
use_tensor_op_math
)
{
algo
=
CUBLAS_GEMM_DFALT_TENSOR_OP
;
}
VLOG
(
5
)
<<
"use_tensor_op_math: "
<<
(
use_tensor_op_math
?
"True"
:
"False"
);
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasGemmStridedBatchedEx
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
CUDA_R_32F
,
ldb
,
strideB
,
A
,
CUDA_R_32F
,
lda
,
strideA
,
&
beta
,
C
,
CUDA_R_32F
,
ldc
,
strideC
,
batchCount
,
CUDA_R_32F
,
algo
));
});
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
CUDA_R_32F
,
ldb
,
strideB
,
A
,
CUDA_R_32F
,
lda
,
strideA
,
&
beta
,
C
,
CUDA_R_32F
,
ldc
,
strideC
,
batchCount
,
CUDA_R_32F
,
algo
));
};
auto
&
dev_ctx
=
const_cast
<
platform
::
CUDADeviceContext
&>
(
context_
);
dev_ctx
.
CublasCall
(
cublas_call
,
CUBLAS_TENSOR_OP_MATH
);
}
else
{
#endif // CUDA_VERSION >= 9010
context_
.
CublasCall
([
&
](
cublasHandle_t
handle
)
{
CUBlas
<
T
>::
GEMM_STRIDED_BATCH
(
handle
,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
strideB
,
A
,
lda
,
strideA
,
&
beta
,
C
,
ldc
,
strideC
,
batchCount
);
});
CUBlas
<
T
>::
GEMM_STRIDED_BATCH
(
context_
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
strideB
,
A
,
lda
,
strideA
,
&
beta
,
C
,
ldc
,
strideC
,
batchCount
);
#if CUDA_VERSION >= 9010
}
...
...
paddle/fluid/operators/ngraph/ngraph_ops.h
浏览文件 @
f702f8fd
...
...
@@ -23,5 +23,7 @@ limitations under the License. */
#include "ops/binary_unnary_op.h"
#include "ops/fill_constant_op.h"
#include "ops/mean_op.h"
#include "ops/mul_op.h"
#include "ops/scale_op.h"
#include "ops/top_k_op.h"
paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h
0 → 100644
浏览文件 @
f702f8fd
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
template
<
typename
T
>
std
::
shared_ptr
<
ngraph
::
Node
>
ElementwiseScalar
(
float
scale
,
std
::
shared_ptr
<
ngraph
::
Node
>
node
)
{
auto
node_shape
=
node
->
get_shape
();
auto
scale_const
=
ngraph
::
op
::
Constant
::
create
(
node
->
get_element_type
(),
node_shape
,
{
scale
});
return
std
::
make_shared
<
T
>
(
scale_const
,
node
);
}
template
<
typename
T
>
std
::
shared_ptr
<
ngraph
::
Node
>
ElementwiseScalar
(
std
::
shared_ptr
<
ngraph
::
Node
>
scale_1d
,
std
::
shared_ptr
<
ngraph
::
Node
>
node
)
{
auto
scale_shape
=
scale_1d
->
get_shape
();
PADDLE_ENFORCE_EQ
(
scale_shape
.
size
(),
1
,
"Supporting 1d scale node"
);
PADDLE_ENFORCE_EQ
(
scale_shape
.
at
(
0
),
1
,
"scale 1d in in shape {1}"
);
auto
node_shape
=
node
->
get_shape
();
ngraph
::
AxisSet
axis_set
;
for
(
size_t
i
=
0
;
i
<
node_shape
.
size
();
++
i
)
{
axis_set
.
insert
(
i
);
}
node_shape
.
push_back
(
1
);
auto
scale_bcast
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
scale_1d
,
node_shape
,
axis_set
);
auto
scale_reshape
=
paddle
::
platform
::
NgReshaper
(
scale_bcast
,
node
->
get_shape
());
return
std
::
make_shared
<
T
>
(
scale_reshape
,
node
);
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/mean_op.h
0 → 100644
浏览文件 @
f702f8fd
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <functional>
#include <string>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
void
BuildMeanNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
input
=
paddle
::
platform
::
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
ngraph
::
AxisSet
axes
;
for
(
size_t
i
=
0
;
i
<
input
->
get_shape
().
size
();
++
i
)
{
axes
.
insert
(
i
);
}
auto
mean
=
ngraph
::
builder
::
mean
(
input
,
axes
);
auto
mean_1d
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
mean
,
ngraph
::
AxisVector
{},
ngraph
::
Shape
{
1
});
paddle
::
platform
::
SetOutputNode
(
op
,
"Out"
,
mean_1d
,
ngb_node_map
);
}
void
BuildMeanGradNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
x
=
paddle
::
platform
::
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
og
=
paddle
::
platform
::
GetInputNode
(
op
,
"Out@GRAD"
,
ngb_node_map
);
auto
x_shape
=
x
->
get_shape
();
float
x_size
=
std
::
accumulate
(
std
::
begin
(
x_shape
),
std
::
end
(
x_shape
),
1
,
std
::
multiplies
<
float
>
());
auto
node_const
=
ngraph
::
op
::
Constant
::
create
(
og
->
get_element_type
(),
ngraph
::
Shape
{
1
},
{
x_size
});
auto
node_div
=
std
::
make_shared
<
ngraph
::
op
::
Divide
>
(
og
,
node_const
);
auto
result
=
ElementwiseScalar
<
ngraph
::
op
::
Add
>
(
og
/
node_const
,
ngraph
::
op
::
Constant
::
create
(
og
->
get_element_type
(),
x_shape
,
{
0
}));
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
result
,
ngb_node_map
);
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/ngraph/ops/scale_op.h
0 → 100644
浏览文件 @
f702f8fd
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#pragma once
#include <string>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_scalar_op.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
void
BuildScaleNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
op_attrs
=
paddle
::
framework
::
AttrReader
(
op
->
Attrs
());
float
scale
=
op_attrs
.
Get
<
float
>
(
"scale"
);
auto
x
=
paddle
::
platform
::
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
out
=
ElementwiseScalar
<
ngraph
::
op
::
Multiply
>
(
scale
,
x
);
paddle
::
platform
::
SetOutputNode
(
op
,
"Out"
,
out
,
ngb_node_map
);
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/platform/cuda_helper.h
已删除
100644 → 0
浏览文件 @
2dd331cc
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <mutex> // NOLINT
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/macros.h"
#if CUDA_VERSION < 9000
enum
cublasMath_t
{
CUBLAS_DEFAULT_MATH
=
0
};
#endif
namespace
paddle
{
namespace
platform
{
class
CublasHandleHolder
{
public:
CublasHandleHolder
(
cudaStream_t
stream
,
cublasMath_t
math_type
)
{
PADDLE_ENFORCE
(
dynload
::
cublasCreate
(
&
handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasSetStream
(
handle_
,
stream
));
#if CUDA_VERSION >= 9000
if
(
math_type
==
CUBLAS_TENSOR_OP_MATH
)
{
PADDLE_ENFORCE
(
dynload
::
cublasSetMathMode
(
handle_
,
CUBLAS_TENSOR_OP_MATH
));
}
#endif
}
~
CublasHandleHolder
()
{
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
handle_
));
}
template
<
typename
Callback
>
inline
void
Call
(
Callback
&&
callback
)
const
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx_
);
callback
(
handle_
);
}
private:
DISABLE_COPY_AND_ASSIGN
(
CublasHandleHolder
);
cublasHandle_t
handle_
;
mutable
std
::
mutex
mtx_
;
};
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/device_context.cc
浏览文件 @
f702f8fd
...
...
@@ -245,15 +245,8 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
eigen_stream_
.
reset
(
new
EigenCudaStreamDevice
());
eigen_stream_
->
Reinitialize
(
&
stream_
,
place
);
eigen_device_
.
reset
(
new
Eigen
::
GpuDevice
(
eigen_stream_
.
get
()));
cublas_handle_
.
reset
(
new
CublasHandleHolder
(
stream_
,
CUBLAS_DEFAULT_MATH
));
if
(
TensorCoreAvailable
())
{
#if CUDA_VERSION >= 9000
cublas_tensor_core_handle_
.
reset
(
new
CublasHandleHolder
(
stream_
,
CUBLAS_TENSOR_OP_MATH
));
#endif
}
PADDLE_ENFORCE
(
dynload
::
cublasCreate
(
&
cublas_handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasSetStream
(
cublas_handle_
,
stream_
));
if
(
dynload
::
HasCUDNN
())
{
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
}
...
...
@@ -292,7 +285,7 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
if
(
dynload
::
HasCUDNN
())
{
auto
local_cudnn_version
=
cudnn_dso_ver
/
100
;
auto
compile_cudnn_version
=
CUDNN_VERSION
/
100
;
if
(
local_cud
a_version
<
compile_cuda
_version
)
{
if
(
local_cud
nn_version
<
compile_cudnn
_version
)
{
LOG_FIRST_N
(
WARNING
,
1
)
<<
"WARNING: device: "
<<
place_
.
device
<<
". The installed Paddle is compiled with CUDNN "
...
...
@@ -313,8 +306,7 @@ CUDADeviceContext::~CUDADeviceContext() {
SetDeviceId
(
place_
.
device
);
Wait
();
WaitStreamCallback
();
cublas_handle_
.
reset
();
cublas_tensor_core_handle_
.
reset
();
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
eigen_stream_
.
reset
();
eigen_device_
.
reset
();
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
...
...
@@ -343,8 +335,8 @@ Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
return
eigen_device_
.
get
();
}
bool
CUDADeviceContext
::
tensor_core_availab
le
()
const
{
return
cublas_
tensor_core_handle_
!=
nullptr
;
cublasHandle_t
CUDADeviceContext
::
cublas_hand
le
()
const
{
return
cublas_
handle_
;
}
cudnnHandle_t
CUDADeviceContext
::
cudnn_handle
()
const
{
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
f702f8fd
...
...
@@ -20,7 +20,6 @@ limitations under the License. */
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/temporary_allocator.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_helper.h"
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/gpu_info.h"
...
...
@@ -210,6 +209,39 @@ class CudnnWorkspaceHandle {
std
::
unique_ptr
<
std
::
lock_guard
<
std
::
mutex
>>
guard_
;
};
#if CUDA_VERSION >= 9000
class
ScopedCublasMathMode
{
public:
ScopedCublasMathMode
(
cublasHandle_t
handle
,
cublasMath_t
new_math_mode
)
:
handle_
(
handle
)
{
need_reset
=
false
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasGetMathMode
(
handle_
,
&
old_math_mode_
),
"Failed to get old cublas math mode"
);
if
(
old_math_mode_
!=
new_math_mode
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSetMathMode
(
handle_
,
new_math_mode
),
"Failed to set old cublas math mode"
);
need_reset
=
true
;
}
}
~
ScopedCublasMathMode
()
{
if
(
need_reset
)
{
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSetMathMode
(
handle_
,
old_math_mode_
),
"Failed to set old cublas math mode"
);
}
}
private:
cublasHandle_t
handle_
;
cublasMath_t
old_math_mode_
;
bool
need_reset
;
};
#endif
class
CUDADeviceContext
:
public
DeviceContext
{
public:
explicit
CUDADeviceContext
(
CUDAPlace
place
);
...
...
@@ -230,25 +262,8 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return eigen device in the device context. */
Eigen
::
GpuDevice
*
eigen_device
()
const
;
/*! \brief Call cublas function safely. */
template
<
typename
Callback
>
inline
void
CublasCall
(
Callback
&&
callback
)
const
{
cublas_handle_
->
Call
(
std
::
forward
<
Callback
>
(
callback
));
}
/*! \brief Check whether tensor core is supported */
bool
tensor_core_available
()
const
;
/*! \brief Call cublas function with Tensor Core safely. If
Tensor Core is not available, use DEFAULT_MATH instead. */
template
<
typename
Callback
>
inline
void
TensorCoreCublasCallIfAvailable
(
Callback
&&
callback
)
const
{
if
(
cublas_tensor_core_handle_
)
{
cublas_tensor_core_handle_
->
Call
(
std
::
forward
<
Callback
>
(
callback
));
}
else
{
cublas_handle_
->
Call
(
std
::
forward
<
Callback
>
(
callback
));
}
}
/*! \brief Return cublas handle in the device context. */
cublasHandle_t
cublas_handle
()
const
;
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t
cudnn_handle
()
const
;
...
...
@@ -267,6 +282,7 @@ class CUDADeviceContext : public DeviceContext {
template
<
typename
Callback
>
void
RecordEvent
(
cudaEvent_t
ev
,
Callback
callback
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx_
);
callback
();
PADDLE_ENFORCE
(
cudaEventRecord
(
ev
,
stream_
));
}
...
...
@@ -278,6 +294,18 @@ class CUDADeviceContext : public DeviceContext {
void
WaitStreamCallback
()
const
{
callback_manager_
->
Wait
();
}
#if CUDA_VERSION >= 9000
/*! \brief CublasCall may need to change cublas's config,
* but the cublas may be hold by multi-thread, so we should
* add lock here. */
template
<
typename
Callback
>
void
CublasCall
(
Callback
callback
,
cublasMath_t
new_math
)
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
cublas_mtx_
);
ScopedCublasMathMode
scoped_cublas_math
(
cublas_handle_
,
new_math
);
callback
();
}
#endif
private:
CUDAPlace
place_
;
...
...
@@ -285,9 +313,7 @@ class CUDADeviceContext : public DeviceContext {
std
::
unique_ptr
<
EigenCudaStreamDevice
>
eigen_stream_
;
std
::
unique_ptr
<
CudnnHolder
>
cudnn_holder_
;
cudaStream_t
stream_
;
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_handle_
;
std
::
unique_ptr
<
CublasHandleHolder
>
cublas_tensor_core_handle_
;
cublasHandle_t
cublas_handle_
;
int
compute_capability_
;
int
runtime_version_
;
...
...
@@ -295,10 +321,12 @@ class CUDADeviceContext : public DeviceContext {
int
multi_process_
;
int
max_threads_per_mp_
;
mutable
std
::
mutex
mtx_
;
// StreamCallbackManager is thread-safe
std
::
unique_ptr
<
StreamCallbackManager
>
callback_manager_
;
DISABLE_COPY_AND_ASSIGN
(
CUDADeviceContext
)
;
mutable
std
::
mutex
cublas_mtx_
;
};
template
<
>
...
...
paddle/fluid/platform/device_context_test.cu
浏览文件 @
f702f8fd
...
...
@@ -43,6 +43,9 @@ TEST(Device, CUDADeviceContext) {
ASSERT_NE
(
nullptr
,
gpu_device
);
cudnnHandle_t
cudnn_handle
=
device_context
->
cudnn_handle
();
ASSERT_NE
(
nullptr
,
cudnn_handle
);
cublasHandle_t
cublas_handle
=
device_context
->
cublas_handle
();
ASSERT_NE
(
nullptr
,
cublas_handle
);
ASSERT_NE
(
nullptr
,
device_context
->
stream
());
delete
device_context
;
}
}
...
...
python/paddle/fluid/tests/unittests/ngraph/test_mean_ngraph_op.py
0 → 100644
浏览文件 @
f702f8fd
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
paddle.fluid.tests.unittests.test_mean_op
import
TestMeanOp
,
TestFP16MeanOp
class
TestNGRAPHMeanOp
(
TestMeanOp
):
def
setUp
(
self
):
super
(
TestNGRAPHMeanOp
,
self
).
setUp
()
class
TestNGRAPHFP16MeanOp
(
TestFP16MeanOp
):
def
setUp
(
self
):
super
(
TestNGRAPHFP16MeanOp
,
self
).
setUp
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ngraph/test_scale_ngraph_op.py
0 → 100644
浏览文件 @
f702f8fd
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
paddle.fluid.tests.unittests.test_scale_op
import
TestScaleOp
,
TestScaleOpSelectedRows
,
TestScaleFp16Op
,
TestScaleFp16OpSelectedRows
class
TestNGRAPHScaleOp
(
TestScaleOp
):
def
init_dtype_type
(
self
):
pass
class
TestNGRAPHScaleOpSelectedRows
(
TestScaleOpSelectedRows
):
def
init_dtype_type
(
self
):
pass
class
TestNGRAPHScaleFp16Op
(
TestScaleFp16Op
):
def
init_dtype_type
(
self
):
pass
class
TestNGRAPHScaleFp16OpSelectedRows
(
TestScaleFp16OpSelectedRows
):
def
init_dtype_type
(
self
):
pass
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_fused_emb_seq_pool_op.py
0 → 100644
浏览文件 @
f702f8fd
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid.op
import
Operator
import
paddle.compat
as
cpt
class
TestFusedEmbeddingSeqPoolOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fused_embedding_seq_pool"
self
.
emb_size
=
2
table
=
np
.
random
.
random
((
17
,
self
.
emb_size
)).
astype
(
"float32"
)
ids
=
np
.
array
([[[
4
],
[
3
]],
[[
4
],
[
3
]],
[[
2
],
[
1
]],
[[
16
],
[
1
]]]).
astype
(
"int64"
)
merged_ids
=
np
.
array
([
4
,
2
,
16
]).
astype
(
"int64"
)
ids_expand
=
np
.
expand_dims
(
ids
,
axis
=
1
)
self
.
lod
=
[[
3
,
1
]]
self
.
attrs
=
{
'is_sparse'
:
True
}
self
.
inputs
=
{
'W'
:
table
,
'Ids'
:
(
ids_expand
,
self
.
lod
)}
self
.
outputs
=
{
'Out'
:
np
.
reshape
(
np
.
array
([
table
[[
4
,
3
]]
+
table
[[
4
,
3
]]
+
table
[[
2
,
1
]],
table
[[
16
,
1
]]
]),
[
len
(
self
.
lod
[
0
]),
2
*
self
.
emb_size
])
}
def
test_check_output
(
self
):
self
.
check_output
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录