未验证 提交 f612ae3c 编写于 作者: C ceci3 提交者: GitHub

[cherry-pick] fix bceloss weight,test=release/2.0 (#23976)

* update bce docs,test=release/2.0

* update docs, test=release/2.0
上级 acec1446
......@@ -66,18 +66,20 @@ class TestBCELoss(unittest.TestCase):
self.assertTrue(np.allclose(dy_result, expected))
def test_BCELoss_weight(self):
input_np = np.random.random(size=(20, 30)).astype(np.float64)
label_np = np.random.random(size=(20, 30)).astype(np.float64)
weight_np = np.random.random(size=(20, 30)).astype(np.float64)
input_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64)
label_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64)
weight_np = np.random.random(size=(3, 4, 10)).astype(np.float64)
prog = fluid.Program()
startup_prog = fluid.Program()
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
with fluid.program_guard(prog, startup_prog):
input = fluid.data(name='input', shape=[None, 30], dtype='float64')
label = fluid.data(name='label', shape=[None, 30], dtype='float64')
input = fluid.data(
name='input', shape=[None, 3, 4, 10], dtype='float64')
label = fluid.data(
name='label', shape=[None, 3, 4, 10], dtype='float64')
weight = fluid.data(
name='weight', shape=[None, 30], dtype='float64')
name='weight', shape=[3, 4, 10], dtype='float64')
bce_loss = paddle.nn.loss.BCELoss(weight=weight)
res = bce_loss(input, label)
......
......@@ -315,40 +315,56 @@ class L1Loss(fluid.dygraph.Layer):
class BCELoss(fluid.dygraph.Layer):
"""
This op accepts input predictions and target label and returns binary
cross entropy error.
For predictions label, and target label, the loss is calculated as follows.
This interface is used to construct a callable object of the ``BCELoss`` class.
The BCELoss layer measures the binary_cross_entropy loss between input predictions
and target labels. The binary_cross_entropy loss can be described as:
If :attr:`weight` is set, the loss is:
.. math::
Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`weight` is None, the loss is:
.. math::
Out = -1 * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`reduction` set to ``'none'``, the unreduced loss is:
.. math::
Out = Out
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
.. math::
Out = MEAN(Out)
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
.. math::
Out = SUM(Out)
Note that the input predictions always be the output of sigmoid, and the target labels
should be numbers between 0 and 1.
The shape of input predictions and target labels are [N, *], where N is batch_size and `*`
means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of
output is scalar, else the shape of output is same as input.
Parameters:
input (Variable): Input tensor, the data type is float32,
float64. Input must in (0, 1).
label (Variable): Label tensor, has the same shape with input,
the data type is float32, float64.
weight (Variable, optional): Weight tensor, a manual rescaling weight given
to each class. It has the same dimensions as class number and the data type
is float32, float64, int32, int64. Default is ``'None'``.
weight (Variable, optional): A manual rescaling weight given to the loss of each
batch element. If given, has to be a Variable of size nbatch and the data type
is float32, float64. Default is ``'None'``.
reduction (str, optional): Indicate how to average the loss by batch_size,
the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default is ``'mean'``.
Returns:
The tensor variable storing the bce_loss of input and label.
Return type: Variable.
A callable object of BCELoss.
Examples:
.. code-block:: python
# declarative mode
import paddle.fluid as fluid
import numpy as np
......@@ -409,7 +425,7 @@ class BCELoss(fluid.dygraph.Layer):
if self.weight is not None:
if isinstance(self.weight, fluid.framework.Variable):
w = self.weight
out = fluid.layers.elementwise_mul(out, w, axis=0)
out = fluid.layers.elementwise_mul(out, w, axis=-1)
else:
raise ValueError(
"The weight is not a Variable, please convert to Variable.")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册