diff --git a/python/paddle/fluid/tests/unittests/test_bce_loss.py b/python/paddle/fluid/tests/unittests/test_bce_loss.py index 738d30ad93804a11b34022de794a2a2d5f0c4fa4..21571e0981065a0a1e2a5db03e91b4df0ea55d9a 100644 --- a/python/paddle/fluid/tests/unittests/test_bce_loss.py +++ b/python/paddle/fluid/tests/unittests/test_bce_loss.py @@ -66,18 +66,20 @@ class TestBCELoss(unittest.TestCase): self.assertTrue(np.allclose(dy_result, expected)) def test_BCELoss_weight(self): - input_np = np.random.random(size=(20, 30)).astype(np.float64) - label_np = np.random.random(size=(20, 30)).astype(np.float64) - weight_np = np.random.random(size=(20, 30)).astype(np.float64) + input_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64) + label_np = np.random.random(size=(2, 3, 4, 10)).astype(np.float64) + weight_np = np.random.random(size=(3, 4, 10)).astype(np.float64) prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): - input = fluid.data(name='input', shape=[None, 30], dtype='float64') - label = fluid.data(name='label', shape=[None, 30], dtype='float64') + input = fluid.data( + name='input', shape=[None, 3, 4, 10], dtype='float64') + label = fluid.data( + name='label', shape=[None, 3, 4, 10], dtype='float64') weight = fluid.data( - name='weight', shape=[None, 30], dtype='float64') + name='weight', shape=[3, 4, 10], dtype='float64') bce_loss = paddle.nn.loss.BCELoss(weight=weight) res = bce_loss(input, label) diff --git a/python/paddle/nn/layer/loss.py b/python/paddle/nn/layer/loss.py index 38d53ff91950c76152f4d893a9ba1b391a32eda3..5838bf33c6347dcb1aa4551956f9a86855282651 100644 --- a/python/paddle/nn/layer/loss.py +++ b/python/paddle/nn/layer/loss.py @@ -315,40 +315,56 @@ class L1Loss(fluid.dygraph.Layer): class BCELoss(fluid.dygraph.Layer): """ - This op accepts input predictions and target label and returns binary - cross entropy error. - For predictions label, and target label, the loss is calculated as follows. + This interface is used to construct a callable object of the ``BCELoss`` class. + The BCELoss layer measures the binary_cross_entropy loss between input predictions + and target labels. The binary_cross_entropy loss can be described as: + If :attr:`weight` is set, the loss is: + + .. math:: Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input)) If :attr:`weight` is None, the loss is: + + .. math:: Out = -1 * (label * log(input) + (1 - label) * log(1 - input)) If :attr:`reduction` set to ``'none'``, the unreduced loss is: + .. math:: Out = Out If :attr:`reduction` set to ``'mean'``, the reduced mean loss is: + .. math:: Out = MEAN(Out) If :attr:`reduction` set to ``'sum'``, the reduced sum loss is: + .. math:: Out = SUM(Out) + + Note that the input predictions always be the output of sigmoid, and the target labels + should be numbers between 0 and 1. + + The shape of input predictions and target labels are [N, *], where N is batch_size and `*` + means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of + output is scalar, else the shape of output is same as input. + Parameters: - input (Variable): Input tensor, the data type is float32, - float64. Input must in (0, 1). - label (Variable): Label tensor, has the same shape with input, - the data type is float32, float64. - weight (Variable, optional): Weight tensor, a manual rescaling weight given - to each class. It has the same dimensions as class number and the data type - is float32, float64, int32, int64. Default is ``'None'``. + weight (Variable, optional): A manual rescaling weight given to the loss of each + batch element. If given, has to be a Variable of size nbatch and the data type + is float32, float64. Default is ``'None'``. reduction (str, optional): Indicate how to average the loss by batch_size, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. + If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; + If :attr:`reduction` is ``'sum'``, the summed loss is returned. Default is ``'mean'``. - Returns: - The tensor variable storing the bce_loss of input and label. - Return type: Variable. + + Returns: + A callable object of BCELoss. + Examples: .. code-block:: python + # declarative mode import paddle.fluid as fluid import numpy as np @@ -409,7 +425,7 @@ class BCELoss(fluid.dygraph.Layer): if self.weight is not None: if isinstance(self.weight, fluid.framework.Variable): w = self.weight - out = fluid.layers.elementwise_mul(out, w, axis=0) + out = fluid.layers.elementwise_mul(out, w, axis=-1) else: raise ValueError( "The weight is not a Variable, please convert to Variable.")