提交 f59a7c1d 编写于 作者: Q qijun

add gpu functor for SelectedRows

上级 4741266d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......
......@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
namespace paddle {
......@@ -34,9 +35,9 @@ class SelectedRows {
void set_height(int64_t height) { height_ = height; }
const std::vector<int64_t>& rows() const { return rows_; }
const Vector<int64_t>& rows() const { return rows_; }
void set_rows(const std::vector<int64_t>& rows) { rows_ = rows; }
void set_rows(const Vector<int64_t>& rows) { rows_ = rows; }
DDim GetCompleteDims() const {
std::vector<int64_t> dims = vectorize(value_->dims());
......@@ -48,7 +49,7 @@ class SelectedRows {
// Notice: rows can be duplicate. We can have {0, 4, 7, 0, 5, 7, 9} here.
// SelectedRows are simplely concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
std::vector<int64_t> rows_;
Vector<int64_t> rows_;
std::unique_ptr<Tensor> value_{nullptr};
int64_t height_;
};
......
......@@ -18,7 +18,7 @@ namespace framework {
class SelectedRowsTester : public ::testing::Test {
public:
virtual void SetUp() override {
std::vector<int64_t> rows{0, 4, 7};
Vector<int64_t> rows{0, 4, 7};
int64_t height = 10;
int64_t row_numel = 100;
selected_rows_.reset(new SelectedRows(rows, height));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
......@@ -37,7 +34,8 @@ using OpCreator = std::function<OperatorBase*(
const VariableNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
using GradOpMakerFN = std::function<std::vector<std::unique_ptr<OpDescBind>>(
const OpDescBind&, const std::unordered_set<std::string>& /*no_grad_set*/)>;
const OpDescBind&, const std::unordered_set<std::string>& /*no_grad_set*/,
std::unordered_map<std::string, std::string>* /*grad_to_var*/)>;
} // namespace framework
} // namespace paddle
if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context operator)
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
nv_test(math_function_gpu_test SRCS math_function_test.cu DEPS math_function tensor)
nv_library(softmax SRCS softmax.cc softmax.cu DEPS operator)
nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator)
nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context)
......
......@@ -162,15 +162,24 @@ struct SelectedRowsAdd<platform::CPUPlace, T> {
PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());
auto* out_data = out_value->data<T>();
auto in1_place = input1.place();
PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
auto in2_place = input2.place();
PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
auto out_place = context.GetPlace();
PADDLE_ENFORCE(platform::is_cpu_place(out_place));
auto* out_data = out_value->data<T>();
auto* in1_data = in1_value.data<T>();
memory::Copy(platform::CPUPlace(), out_data, platform::CPUPlace(), in1_data,
memory::Copy(boost::get<platform::CPUPlace>(out_place), out_data,
boost::get<platform::CPUPlace>(in1_place), in1_data,
in1_value.numel() * sizeof(T));
auto* in2_data = in2_value.data<T>();
memory::Copy(platform::CPUPlace(), out_data + in1_value.numel(),
platform::CPUPlace(), in2_data, in2_value.numel() * sizeof(T));
memory::Copy(boost::get<platform::CPUPlace>(out_place),
out_data + in1_value.numel(),
boost::get<platform::CPUPlace>(in2_place), in2_data,
in2_value.numel() * sizeof(T));
}
};
......
......@@ -155,6 +155,113 @@ void matmul<platform::GPUPlace, double>(
matrix_b.data<double>(), beta, matrix_out->data<double>());
}
template <typename T>
struct SelectedRowsAdd<platform::GPUPlace, T> {
void operator()(const platform::DeviceContext& context,
const framework::SelectedRows& input1,
const framework::SelectedRows& input2,
framework::SelectedRows* output) {
auto in1_height = input1.height();
PADDLE_ENFORCE_EQ(in1_height, input2.height());
output->set_height(in1_height);
auto& in1_rows = input1.rows();
auto& in2_rows = input2.rows();
std::vector<int64_t> out_rows;
out_rows.reserve(in1_rows.size() + in2_rows.size());
// concat rows
out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
output->set_rows(out_rows);
auto* out_value = output->mutable_value();
auto& in1_value = input1.value();
auto& in2_value = input2.value();
auto in1_row_numel = in1_value.numel() / in1_rows.size();
PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());
auto* out_data = out_value->data<T>();
auto* in1_data = in1_value.data<T>();
auto in1_place = input1.place();
PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
auto in2_place = input2.place();
PADDLE_ENFORCE(platform::is_gpu_place(in2_place));
auto out_place = context.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(out_place))
memory::Copy(
boost::get<platform::GPUPlace>(out_place), out_data,
boost::get<platform::GPUPlace>(in1_place), in1_data,
in1_value.numel() * sizeof(T),
reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());
auto* in2_data = in2_value.data<T>();
memory::Copy(
boost::get<platform::GPUPlace>(out_place), out_data + in1_value.numel(),
boost::get<platform::GPUPlace>(in2_place), in2_data,
in2_value.numel() * sizeof(T),
reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());
}
};
template struct SelectedRowsAdd<platform::GPUPlace, float>;
namespace {
template <int block_size, typename T>
__global__ void SelectedRowsAddTensorKernel(T* selected_rows, int64_t* rows,
T* tensor_in, T* tensor_out,
const int64_t row_numel) {
const ty = blockIdx.y;
int tid = threadIdx.x;
selected_rows += ty * row_numel;
tensor_in += rows[ty] * row_numel;
tensor_out += rows[ty] * row_numel;
for (int index = tid; index < row_numel; index += block_size) {
tensor_out[index] = tensor_in[index] + selected_rows[index];
}
}
}
template <typename T>
struct SelectedRowsAddTensor<platform::GPUPlace, T> {
void operator()(const platform::DeviceContext& context,
const framework::SelectedRows& input1,
const framework::Tensor& input2, framework::Tensor* output) {
auto in1_height = input1.height();
auto in2_dims = input2.dims();
auto out_dims = output->dims();
PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);
auto& in1_value = input1.value();
auto& in1_rows = input1.rows();
int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);
auto* in1_data = in1_value.data<T>();
auto* in2_data = input2.data<T>();
auto* out_data = output->data<T>();
const int block_size = 256;
dim3 threads(block_size, 1);
dim3 grid(1, in1_height);
SelectedRowsAddTensorKernel<block_size, T><<<
grid, threads, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
in1_data, in1_rows.data(), in2_data, out_data, in1_row_numel);
}
};
template struct SelectedRowsAddTensor<platform::GPUPlace, float>;
} // namespace math
} // namespace operators
} // namespace paddle
#include "paddle/operators/math/math_function.h"
#include "gtest/gtest.h"
#ifdef PADDLE_WITH_CUDA
TEST(math_function, notrans_mul_trans) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor out_gpu;
paddle::framework::Tensor out;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
out_gpu.mutable_data<float>({2, 2}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place, context);
float* out_ptr = out.data<float>();
context.Wait();
EXPECT_EQ(out_ptr[0], 5);
EXPECT_EQ(out_ptr[1], 14);
EXPECT_EQ(out_ptr[2], 14);
EXPECT_EQ(out_ptr[3], 50);
delete gpu_place;
}
TEST(math_function, trans_mul_notrans) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor out_gpu;
paddle::framework::Tensor out;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
out_gpu.mutable_data<float>({3, 3}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place, context);
float* out_ptr = out.data<float>();
context.Wait();
EXPECT_EQ(out_ptr[0], 9);
EXPECT_EQ(out_ptr[1], 12);
EXPECT_EQ(out_ptr[2], 15);
EXPECT_EQ(out_ptr[3], 12);
EXPECT_EQ(out_ptr[4], 17);
EXPECT_EQ(out_ptr[5], 22);
EXPECT_EQ(out_ptr[6], 15);
EXPECT_EQ(out_ptr[7], 22);
EXPECT_EQ(out_ptr[8], 29);
delete gpu_place;
}
TEST(math_function, gemm_notrans_cublas) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input2;
paddle::framework::Tensor input3;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor input3_gpu;
int m = 2;
int n = 3;
int k = 3;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr1[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr1, 6 * sizeof(float));
float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
memcpy(input2_ptr, arr2, 12 * sizeof(float));
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
memcpy(input3_ptr, arr3, 8 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(*gpu_place);
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);
input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
// numpy code:
// a = np.arange(6).reshape(2, 3)
// b = np.arange(12).reshape(3, 4)[:, 1:]
// c = np.arange(8).reshape(2, 4)[:, 1:]
// out = np.arange(8).reshape(2, 4)
// out[:, 1:] = np.dot(a, b) + c
context.Wait();
EXPECT_EQ(input3_ptr[0], 0);
EXPECT_EQ(input3_ptr[1], 24);
EXPECT_EQ(input3_ptr[2], 28);
EXPECT_EQ(input3_ptr[3], 32);
EXPECT_EQ(input3_ptr[4], 4);
EXPECT_EQ(input3_ptr[5], 73);
EXPECT_EQ(input3_ptr[6], 86);
EXPECT_EQ(input3_ptr[7], 99);
delete gpu_place;
}
TEST(math_function, gemm_trans_cublas) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input2;
paddle::framework::Tensor input3;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor input3_gpu;
int m = 2;
int n = 3;
int k = 3;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr1[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr1, 6 * sizeof(float));
float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
memcpy(input2_ptr, arr2, 12 * sizeof(float));
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
memcpy(input3_ptr, arr3, 8 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(*gpu_place);
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);
input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
context.Wait();
EXPECT_EQ(input3_ptr[0], 0);
EXPECT_EQ(input3_ptr[1], 24);
EXPECT_EQ(input3_ptr[2], 28);
EXPECT_EQ(input3_ptr[3], 32);
EXPECT_EQ(input3_ptr[4], 4);
EXPECT_EQ(input3_ptr[5], 73);
EXPECT_EQ(input3_ptr[6], 86);
EXPECT_EQ(input3_ptr[7], 99);
delete gpu_place;
}
#endif
TEST(math_function, gemm_notrans_cblas) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input2;
......
#include "gtest/gtest.h"
#include "paddle/operators/math/math_function.h"
TEST(math_function, notrans_mul_trans) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor out_gpu;
paddle::framework::Tensor out;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
out_gpu.mutable_data<float>({2, 2}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place, context);
float* out_ptr = out.data<float>();
context.Wait();
EXPECT_EQ(out_ptr[0], 5);
EXPECT_EQ(out_ptr[1], 14);
EXPECT_EQ(out_ptr[2], 14);
EXPECT_EQ(out_ptr[3], 50);
delete gpu_place;
}
TEST(math_function, trans_mul_notrans) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor out_gpu;
paddle::framework::Tensor out;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input1, *gpu_place, context);
out_gpu.mutable_data<float>({3, 3}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);
out.CopyFrom<float>(out_gpu, *cpu_place, context);
float* out_ptr = out.data<float>();
context.Wait();
EXPECT_EQ(out_ptr[0], 9);
EXPECT_EQ(out_ptr[1], 12);
EXPECT_EQ(out_ptr[2], 15);
EXPECT_EQ(out_ptr[3], 12);
EXPECT_EQ(out_ptr[4], 17);
EXPECT_EQ(out_ptr[5], 22);
EXPECT_EQ(out_ptr[6], 15);
EXPECT_EQ(out_ptr[7], 22);
EXPECT_EQ(out_ptr[8], 29);
delete gpu_place;
}
TEST(math_function, gemm_notrans_cublas) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input2;
paddle::framework::Tensor input3;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor input3_gpu;
int m = 2;
int n = 3;
int k = 3;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr1[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr1, 6 * sizeof(float));
float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
memcpy(input2_ptr, arr2, 12 * sizeof(float));
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
memcpy(input3_ptr, arr3, 8 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(*gpu_place);
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);
input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
// numpy code:
// a = np.arange(6).reshape(2, 3)
// b = np.arange(12).reshape(3, 4)[:, 1:]
// c = np.arange(8).reshape(2, 4)[:, 1:]
// out = np.arange(8).reshape(2, 4)
// out[:, 1:] = np.dot(a, b) + c
context.Wait();
EXPECT_EQ(input3_ptr[0], 0);
EXPECT_EQ(input3_ptr[1], 24);
EXPECT_EQ(input3_ptr[2], 28);
EXPECT_EQ(input3_ptr[3], 32);
EXPECT_EQ(input3_ptr[4], 4);
EXPECT_EQ(input3_ptr[5], 73);
EXPECT_EQ(input3_ptr[6], 86);
EXPECT_EQ(input3_ptr[7], 99);
delete gpu_place;
}
TEST(math_function, gemm_trans_cublas) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input2;
paddle::framework::Tensor input3;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor input3_gpu;
int m = 2;
int n = 3;
int k = 3;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr1[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr1, 6 * sizeof(float));
float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
memcpy(input2_ptr, arr2, 12 * sizeof(float));
float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
memcpy(input3_ptr, arr3, 8 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::CUDADeviceContext context(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place, context);
input2_gpu.CopyFrom<float>(input2, *gpu_place, context);
input3_gpu.CopyFrom<float>(input3, *gpu_place, context);
float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(*gpu_place);
paddle::operators::math::gemm<paddle::platform::GPUPlace, float>(
context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);
input3.CopyFrom<float>(input3_gpu, *cpu_place, context);
context.Wait();
EXPECT_EQ(input3_ptr[0], 0);
EXPECT_EQ(input3_ptr[1], 24);
EXPECT_EQ(input3_ptr[2], 28);
EXPECT_EQ(input3_ptr[3], 32);
EXPECT_EQ(input3_ptr[4], 4);
EXPECT_EQ(input3_ptr[5], 73);
EXPECT_EQ(input3_ptr[6], 86);
EXPECT_EQ(input3_ptr[7], 99);
delete gpu_place;
}
TEST(math_function, selected_rows_add) {
using namespace paddle::framework;
using namespace paddle::platform;
using namespace paddle::operators::math;
CPUPlace gpu_place(0);
CUDADeviceContext ctx(gpu_place);
SetConstant<GPUPlace, float> functor;
int64_t height = 10;
int64_t row_numel = 10;
Vector<int64_t> rows1{0, 4, 7};
std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)};
auto* in1_value = selected_rows1->mutable_value();
in1_value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), gpu_place);
functor(ctx, in1_value, 1.0);
Vector<int64_t> rows2{0, 5, 7, 9};
std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)};
auto* in2_value = selected_rows2->mutable_value();
in2_value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), gpu_place);
functor(ctx, in2_value, 2.0);
std::unique_ptr<SelectedRows> output{new SelectedRows()};
auto* out_value = output->mutable_value();
// simplely concat two SelectedRows
out_value->mutable_data<float>(make_ddim({7, 10}), gpu_place);
SelectedRowsAdd<GPUPlace, float> add_functor;
add_functor(ctx, *selected_rows1, *selected_rows2, output.get());
auto out_height = output->height();
EXPECT_EQ(out_height, height);
auto& out_rows = output->rows();
// input1 rows
EXPECT_EQ(out_rows[0], 0);
EXPECT_EQ(out_rows[1], 4);
EXPECT_EQ(out_rows[2], 7);
// input2 rows
EXPECT_EQ(out_rows[3], 0);
EXPECT_EQ(out_rows[4], 5);
EXPECT_EQ(out_rows[5], 7);
EXPECT_EQ(out_rows[6], 9);
Tensor out_cpu;
out_cpu.CopyFrom<float>(*out_value, platform::CPUPlace(), ctx);
ctx.Wait();
auto* out_cpu_data = out_cpu.data<float>();
// input1 value
EXPECT_EQ(out_cpu_data[0 * row_numel + 0], 1.0);
EXPECT_EQ(out_cpu_data[0 * row_numel + 8], 1.0);
EXPECT_EQ(out_cpu_data[1 * row_numel + 1], 1.0);
EXPECT_EQ(out_cpu_data[2 * row_numel + 6], 1.0);
// input2 value
EXPECT_EQ(out_cpu_data[3 * row_numel + 3], 2.0);
EXPECT_EQ(out_cpu_data[3 * row_numel + 8], 2.0);
EXPECT_EQ(out_cpu_data[4 * row_numel + 4], 2.0);
EXPECT_EQ(out_cpu_data[5 * row_numel + 7], 2.0);
EXPECT_EQ(out_cpu_data[6 * row_numel + 9], 2.0);
std::unique_ptr<Tensor> tensor1{new Tensor()};
tensor1->mutable_data<float>(make_ddim({height, row_numel}), gpu_place);
SetConstant<GPUPlace, float> constant_functor;
constant_functor(ctx, tensor1.get(), 3.0);
std::unique_ptr<Tensor> tensor2{new Tensor()};
tensor2->mutable_data<float>(make_ddim({height, row_numel}), gpu_place);
SelectedRowsAddTensor<GPUPlace, float> add_tensor_functor;
add_tensor_functor(ctx, *output, *tensor1, tensor2.get());
Tensor tensor2_cpu;
tensor2_cpu.CopyFrom<float>(*tensor2, platform::CPUPlace(), ctx);
ctx.Wait();
auto* tensor2_cpu_data = tensor2_cpu->data<float>();
// row0: 1.0 + 2.0 + 3.0
EXPECT_EQ(tensor2_cpu_data[0 * row_numel + 0], 6.0);
// row1: 3.0
EXPECT_EQ(tensor2_cpu_data[1 * row_numel + 1], 3.0);
// row4 : 1.0 + 3.0
EXPECT_EQ(tensor2_cpu_data[4 * row_numel + 6], 4.0);
// row5: 2.0 + 3.0
EXPECT_EQ(tensor2_cpu_data[5 * row_numel + 7], 5.0);
// row6: 3.0
EXPECT_EQ(tensor2_cpu_data[6 * row_numel + 1], 3.0);
// row7: 1.0 + 2.0 + 3.0
EXPECT_EQ(tensor2_cpu_data[7 * row_numel + 3], 6.0);
// row9: 2.0 + 3.0
EXPECT_EQ(tensor2_cpu_data[9 * row_numel + 6], 5.0);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册