提交 f24b5dff 编写于 作者: H Helin Wang

Update Session design doc

上级 94dfd864
# Design Doc: Session
## Abstract
The *session* object encapsulates the environment in which the
computation graph is executed.
We will have *local* session and *remote* session, they offer the
same [interface](#interface). The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime envrionment.
The local runtime envrionment contains:
1. computation devices (i.e., CPU, GPU) handles, and
1. the [scope](../scope.md) which holds all variables.
The remote runtime envrionment contains:
1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and
1. the distributed [scope](../scope.md) in a cluster which holds all
variables.
The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.
## Background
The current design has an implicit global session on which
`paddle.eval()` is executed. The pain point is:
Since the user is not able to explicitly switch between runtime
environments such as the scope and the device contexts, the user
cannot run a topology in two independent environments.
For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.
Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.
We need the session object to address above issues.
## Session
A session is an object that owns the runtime environment. All
computations are executed through `session.eval`.
### Interface
```
eval(
targets,
feed_dict=None,
)
```
Evaluates the target Operations or Variables in `targets`.
- *targets*: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as elements.
The value returned by `eval()` has the same shape as the `target`
argument.
The computation graph is implicitly inferred from the targets.
- *feed_dict*: a dictionary that contains the tensors which overrides
the edges of the computation graph.
```
close()
```
Closes the session. Calling this method releases the scope.
### Create a Local Session
```
session(
gpu_ids=None
)
```
Creates a new session. One session owns one scope, so creating
multiple sessions will create different scopes.
- *gpu_ids*: a single `int` or a list of `int` of the GPU IDs to be
used as the computation devices. If not specified, all avaiable GPUs
will be used.
#### Example
```Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session(gpu_ids=[0,1])
sess.eval(c)
sess.close()
```
### Create a Remote Session
```
create_cloud_job(
name,
num_trainer,
mem_per_trainer,
gpu_per_trainer,
cpu_per_trainer,
num_ps,
mem_per_ps,
cpu_per_ps,
)
```
Creates a Paddle Cloud job. Fails if the job name exists.
```
get_cloud_job(
name
)
```
Gets a Paddle Cloud job.
```
remote_session(
job
)
```
- *job*: the Paddle Cloud job.
#### Example
```Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1)
sess = paddle.remote_ession(job)
for i in range(1000):
sess.eval(opt)
sess.close()
```
# Design Doc: Session
## Abstract
This design doc proposes to have an object called *Session* which
encapsulates the environment in which the computation graph is
executed.
The session is able to distinguish running a graph locally or
remotely, using CPU only or using one or more GPUs. Different sessions
have different runtime environments such as [scopes](./scope.md) and
device contexts.
## Background
A computation graph runs in an environment which contains states such
as the scope and device contexts. The current design has an implicit
global session on which `paddle.eval()` is executed.
Since the user is not able to explicitly switch between runtime
environments such as the scope and the device contexts, the user
cannot run a topology in two independent environments. For example, in
reinforcement learning, the user may want to have a stale model for
inference and a fresh model for training, and only replace the stale
model with the fresh model periodically. Also, we have no concept that
can encapsulate a remote environment that could execute a computation
graph.
We need a session concept to address above issues.
## Session
A session is an object that owns all runtime states such as scope,
reader OP's file handles, connection to a remote PaddlePaddle cluster,
etc.
The session has two methods: `eval` and `close`. `eval` executes the
target OP in a given graph, and `close` closes the session and
releases all related resources:
```Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session()
sess.eval(c)
sess.close()
```
### Remote Session
Paddle Cloud will support user creating a remote session pointing to
the Paddle Cloud cluster. The user can send the computation graph to
be executed on the Paddle Cloud. In this way, the user can control a
cluster from her local computer:
```Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
remote_config = ... # remote configuration such as endpoint, number of nodes and authentication.
sess = paddle.remoteSession(remote_config)
for i in range(1000):
sess.eval(opt)
sess.close()
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册