提交 f196ad02 编写于 作者: L Liu Yiqun

Port fully connected operator, the FCOp c++ implementation and python unittest.

上级 843a8b1e
......@@ -47,17 +47,20 @@ endfunction()
add_subdirectory(math)
list(REMOVE_ITEM GENERAL_OPS
fc_op
net_op
minus_op
mul_op
recurrent_op
scale_op)
op_library(fc_op SRCS fc_op.cc
DEPS mul_op rowwise_add_op scale_op softmax_op sigmoid_op)
op_library(net_op SRCS net_op.cc)
op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op)
op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor operator net_op)
DEPS framework_proto tensor operator net_op)
op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op)
foreach(src ${GENERAL_OPS})
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
class FCOp : public NetOp {
public:
FCOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AppendOp(framework::OpRegistry::CreateOp(
"mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}},
{{"Out", {Output("mul_out")}}}, {}));
auto b = Input("b");
if (b != framework::kEmptyVarName) {
AppendOp(framework::OpRegistry::CreateOp(
"rowwise_add", {{"X", {Output("mul_out")}}, {"b", {Input("b")}}},
{{"Out", {Output("mul_out")}}}, {}));
}
auto activation = GetAttr<std::string>("activation");
AppendOp(framework::OpRegistry::CreateOp(
activation, {{"X", {Output("mul_out")}}}, {{"Y", {Output("Y")}}}, {}));
CompleteAddOp(false);
}
};
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The 2D input matrix of FC operator.");
AddInput("W", "The 2D weight matrix of FC operator.");
AddInput("b", "The 1D bias vector of FC operator");
AddOutput("Y", "The activated output matrix of FC operator");
AddOutput("mul_out", "The non-actived output of FC operator, X * W + b")
.AsIntermediate();
AddAttr<std::string>("activation", "The activation type of FC operator.")
.SetDefault("identity")
.InEnum({"identity", "sigmoid", "softmax"});
AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).
Equation:
Y = Act(sum_n{X_i * W_i} + b)
where X_i is a 2D matrix of size (M x K), usually M is the minibatch size and
K is the number of features. W_i is also a 2D matrix of size (K x N),
where N means the number of neurons in the fully connected layer.
b is a 1D vector of size N. Thus, the output Y is a 2D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
The config api is `paddle.v2.layer.fc`.
)DOC");
}
};
class FCGradOp : public NetOp {
public:
FCGradOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
auto y_grad = Input(framework::GradVarName("Y"));
auto mul_out_grad = Input(framework::GradVarName("mul_out"));
auto x_grad = Output(framework::GradVarName("X"));
auto w_grad = Output(framework::GradVarName("W"));
auto b_grad = Output(framework::GradVarName("b"));
CompleteAddOp(false);
}
};
} // namespace operators
} // namespace paddle
USE_OP(mul);
USE_OP(rowwise_add);
USE_NO_KERNEL_OP(identity);
USE_OP(sigmoid);
USE_OP(softmax);
namespace ops = paddle::operators;
REGISTER_OP(fc, ops::FCOp, ops::FCOpMaker, fc_grad, ops::FCGradOp);
......@@ -89,6 +89,7 @@ class IdentityOp : public NetOp {
AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
{{"scale", static_cast<AttrType>(1)}}));
CompleteAddOp(false);
}
};
......
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
${GLOB_OP_LIB})
......
......@@ -45,6 +45,7 @@ USE_OP(uniform_random);
USE_OP(lookup_table);
USE_OP(scale);
USE_NO_KERNEL_OP(identity);
USE_NO_KERNEL_OP(fc);
USE_OP(minus);
USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter);
......
......@@ -16,6 +16,7 @@ py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py)
py_test(test_gather_op SRCS test_gather_op.py)
py_test(test_scatter_op SRCS test_scatter_op.py)
py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
py_test(test_fc_op SRCS test_fc_op.py)
py_test(gradient_checker SRCS gradient_checker.py)
......
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
class TestFCOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "fc"
self.inputs = {
"X": np.random.random((32, 784)).astype("float32"),
"W": np.random.random((784, 1000)).astype("float32"),
"b": np.random.random(1000).astype("float32")
}
self.attrs = {"activation": "sigmoid"}
mul_out = np.dot(self.inputs["X"], self.inputs["W"])
add_out = np.add(mul_out, self.inputs["b"])
sigmoid_out = 1 / (1 + np.exp(-add_out))
self.outputs = {"mul_out": add_out, "Y": sigmoid_out}
class TestFCGradOp(GradientChecker):
def test_normal(self):
print "nothing"
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册